
randPack overview

VJ Carey, R Gentleman

March 30, 2012

1 Introduction

This package supports tasks of implementing and analyzing clinical trials. Various ap-
proaches to randomization are offered.

2 Classes

2.1 High-level containers for trials

Two key organizing classes are defined to manage clinical trials and associated clinical
experiments.

> library(randPack)

> getClass("ClinicalTrial")

Class "ClinicalTrial" [package "randPack"]

Slots:

Name: Experiment PatientData Randomizers

Class: ClinicalExperiment environment list

> getClass("ClinicalExperiment")

Class "ClinicalExperiment" [package "randPack"]

Slots:

Name: name factors treatments randomization strataFun

Class: character list integer list function

Name: patientIDs

Class: PatientID

1

> getClass("PatientID")

Class "PatientID" [package "randPack"]

Slots:

Name: strata start stop

Class: character integer integer

Use of these administrative containers is illustrated here.
First the set of strata and patient IDs is defined.

> pIDs = new("PatientID",

+ strata = c("Center1", "Center2"),

+ start = c(1000L, 2000L),

+ stop = c(1150L, 2150L)

+)

> validPID(pIDs)

[1] TRUE

Now we create a ’vacuous’ randomized experiment because we do not specify ran-
domization methods for strata. These will be introduced later. The labeling and relative
frequencies of assignments are created first.

> trts = c(A = 3L, B = 4L, C = 1L)

> CEvac = new("ClinicalExperiment",

+ name="My first experiment",

+ treatments = trts,

+ factors = list(F1 = c("A", "B", "C"), F2 = c("t1", "t2")),

+ strataFun = function(pDesc) pDesc@strata,

+ #randomization = list(Center1= list(pbdesc), Center2=list(rd)),

+ #randomization = list(Center1= list(pbdesc), Center2=list(pbdesc)),

+ randomization = list(Center1= list(a=1), Center2=list(a=1)),

+ patientIDs = pIDs

+)

> CEvac

ClinicalExperiment: My first experiment

With 3 treatments

A B C

With 2 strata

Center1 Center2

2

> treatmentFactors(CEvac)

$F1

[1] "A" "B" "C"

$F2

[1] "t1" "t2"

> factorNames(CEvac)

[1] "F1" "F2"

> randPack:::numberOfFactorLevels(CEvac)

F1 F2

3 2

We create a trial object on the basis of an experiment specification.

> CTvac = createTrial(CEvac, seed=c(301, 401))

2.2 Classes for randomization computations

> getClass("RandomizerDesc")

Virtual Class "RandomizerDesc" [package "randPack"]

Slots:

Name: treatments type

Class: integer character

Known Subclasses: "MinimizationDesc", "PermutedBlockDesc", "RandomDesc", "UrnDesc",

"EfronBiasedCoinDesc"

> getClass("Randomizer")

Virtual Class "Randomizer" [package "randPack"]

Slots:

Name: name treatmentTable stateVariables

Class: character integer environment

Known Subclasses: "Random", "PermutedBlock", "Urn", "Minimization", "EfronBiasedCoin"

3

> getClass("PermutedBlockDesc")

Class "PermutedBlockDesc" [package "randPack"]

Slots:

Name: numBlocks treatments type

Class: integer integer character

Extends: "RandomizerDesc"

> getClass("PermutedBlock")

Class "PermutedBlock" [package "randPack"]

Slots:

Name: name treatmentTable stateVariables

Class: character integer environment

Extends: "Randomizer"

2.2.1 Permuted blocks

Now we describe a permuted blocks randomization description based on this treatment
regimen set.

> pbdesc = new("PermutedBlockDesc", treatments = trts, type="PermutedBlock",

+ numBlocks=4L)

A hidden function .newPBlock will create a vector of allocations:

> ##should be 24 (no, 32) long and have one C ever 8 allocs

> table(dempb <- randPack:::.newPBlock(pbdesc))

A B C

12 16 4

> bls = rep(1:4, each=8)

> sapply(split(dempb,bls), function(x) sum(x=="C"))

1 2 3 4

1 1 1 1

4

2.2.2 Pure randomization

The .newRandom function will create a collection of unconstrained randomizations.

> rd = new("RandomDesc", treatments = trts, type = "Random", numPatients = 32L)

> mmpb = makeRandomizer("Expt1", pbdesc, seed = 101)

> mmr = makeRandomizer("Expr1r", rd, seed=201)

> demrd = randPack:::.newRandom(rd)

> table(demrd)

demrd

A B C

10 17 5

3 Creating the components of a trial

First we can create a treatment regimen set, a named vector.

> trts = c(A = 3L, B = 4L, C = 1L)

Now we use the randomization description objects in the randomization slot to create
a real clinical experiment representation.

> CE1 = new("ClinicalExperiment",

+ name="My first experiment",

+ treatments = trts,

+ factors = list(F1 = c("A", "B", "C"), F2 = c("t1", "t2")),

+ strataFun = function(pDesc) pDesc@strata,

+ #randomization = list(Center1= list(pbdesc), Center2=list(rd)),

+ randomization = list(Center1= list(pbdesc), Center2=list(pbdesc)),

+ patientIDs = pIDs

+)

> CE1

ClinicalExperiment: My first experiment

With 3 treatments

A B C

With 2 strata

Center1 Center2

The associated trial is:

> CT1 = createTrial(CE1, seed=c(301, 401))

Here is how we can create 4 patient data objects for randomization.

5

> pD1 = new("PatientData", name="Sally H", date=Sys.Date(),

+ covariates=list(sex="F", age=33), strata="Center1")

> pD2 = new("PatientData", name="Sally Z", date=Sys.Date(),

+ covariates=list(sex="F", age=34), strata="Center1")

> pD3 = new("PatientData", name="Tom Z", date=Sys.Date(),

+ covariates=list(sex="M", age=44), strata="Center2")

> pD4 = new("PatientData", name="Jack Z", date=Sys.Date(),

+ covariates=list(sex="M", age=54), strata="Center2")

Treatment codes are obtained as follows:

> trt1 = getTreatment(CT1, pD1)

> trt2 = getTreatment(CT1, pD2)

> trt3 = getTreatment(CT1, pD3)

> trt4 = getTreatment(CT1, pD4)

We can get covariate plus allocation information using:

> getEnrolleeInfo(CT1)

$Center1

name sex age alloc

1 Sally H F 33 A

2 Sally Z F 34 B

$Center2

name sex age alloc

1 Tom Z M 44 B

2 Jack Z M 54 A

4 Illustrating the use of other randomizers

4.1 Efron’s biased coin

This procedure requires a probability p ∈ (0.5, 1.0) that specifies the probability that a
biased coin falls in such a way that treatment A is selected.

> trts = c(A = 1L, B= 1L)

> bcdesc = new("EfronBiasedCoinDesc", treatments = trts, type="EfronBiasedCoin",

+ numPatients=1000L, p=2/3)

> CE1@randomization = list(Center1= list(bcdesc), Center2=list(bcdesc))

> CT2 = createTrial(CE1, seed=c(301, 401))

> btrt1 = getTreatment(CT2, pD1)

6

> btrt2 = getTreatment(CT2, pD2)

> btrt3 = getTreatment(CT2, pD3)

> btrt4 = getTreatment(CT2, pD4)

> c(btrt1, btrt2, btrt3, btrt4)

[1] "B" "A" "B" "B"

4.2 Wei’s urn design

This procedure requires parameters α and β nonnegative integers indicating how balls
labeled A and B are added to an urn as allocations are made by drawing from the
urn. Initially α balls of both types are present, and when a patient is randomized, they
are assigned the treatment corresponding to the label of the ball drawn, which is then
replaced. If the ball drawn was of type A, then β B balls are added. If the ball drawn
was of type B, then α A balls are added.

> urndesc = new("UrnDesc", treatments = trts, type="Urn",

+ numPatients=1000L, alpha=1, beta=3)

> CE1@randomization = list(Center1= list(urndesc), Center2=list(urndesc))

> CT3 = createTrial(CE1, seed=c(301, 401))

> utrt1 = getTreatment(CT3, pD1)

> utrt2 = getTreatment(CT3, pD2)

> utrt3 = getTreatment(CT3, pD3)

> utrt4 = getTreatment(CT3, pD4)

> c(utrt1, utrt2, utrt3, utrt4)

[1] "B" "A" "A" "A"

5 Work related to minimization

We create minimization-based allocator descriptions as follows:

> md = new("MinimizationDesc", treatments=c(A=1L, B=1L), method=minimizePocSim,

+ type="Minimization", featuresInUse="sex")

Now bind to an experiment:

> randomization(CE1) = list(Center1=list(md), Center2 = list(md))

Create the trial and obtain treatments:

> CT4 = createTrial(CE1, seed=c(301,401))

> getTreatment(CT4, pD1)

7

[1] "B"

> getTreatment(CT4, pD2)

[1] "A"

> getTreatment(CT4, pD3)

[1] "A"

> getTreatment(CT4, pD4)

[1] "A"

6 Software Design Overview

Here we briefly describe the ideas that underlie our design, which may seem a bit overly
complex initially, however, we have found that they are needed to provide sufficient
flexibility to support practical use of the software.

6.1 Randomizers

There are two components here, first is the description of the randomizer. This descrip-
tion is a complete description of all the components needed to create a randomizer for
use. The randomizerDesc class is used to hold the information. Then, for any instance
of this class one can create a realization, which is a randomizer that can then be used
to randomize patients.

Perhaps the most important reason for this separation is that if one wants to use
re-randomization as a basis for inference, then this approach makes that particularly
simple. One need only obtain an instance of the randomizerDesc to create as many
randomizers as needed for inference.

6.2 Patient Identifiers

Within any study patient identifiers are used once patients have been entered into the
study. These identifiers are then used to identify specific patient records in the database
that is used to store them.

Our implementation provides patient IDs for each strata and allows for a starting
number and a stoping number (this is one way to indicate that the strata, and perhaps
the trial, has reached its accrual goals). This could easily be extended to support other
mechanisms of assigning patient IDs.

8

	Introduction
	Classes
	High-level containers for trials
	Classes for randomization computations
	Permuted blocks
	Pure randomization

	Creating the components of a trial
	Illustrating the use of other randomizers
	Efron's biased coin
	Wei's urn design

	Work related to minimization
	Software Design Overview
	Randomizers
	Patient Identifiers

