ncdfFlow: Provides netCDF storage based methods and
functions for manipulation of flow cytometry data

Mike Jiang,Greg Finak,N. Gopalakrishnan
April 5, 2012

Abstract

Background The Bioconductor package flowCore is the object model and a collection
of standard tools designed for flow cytometry data analysis. The related R packages in-
cluding data analysis (flowClust, flowMerge, flowMeans,flowTrans ,flowStats), visualization
(flowViz) and quality control (lowQ) use the flowCore infrastructure to deal with flow cy-
tometry data. However the flowFrame or flowSet which represent a single or a set of FCS
files are memory-resident data structures and require the entire data elements to remain in
memory in order to perform all kinds of the data manipulations. Hundreds or thousands of
datasets generated by high throughput instruments can easily hit the memory limit if they
are imported as the flowSet or flowFrames in R. It presents a challenge to scientists and
bioinformaticians who use the R tools described above to perform statistical data analysis
on a regular computer .We propose a new R object model and related functions to address
this problem. The new model ncdfFlowSet inherit most of data structures from flowSet.
It stores the large volume of event-level data on disk and only keeps the file handler and
meta data in memory. Thus the memory consumption is significantly reduced. NetCDF is
used as the data formats because it is self-describing, machine-independent and specifically
optimized for storing and accessing array-oriented scientific data. With the compression
and chunking features introduced by the new release of netCDF4, the new model is able to
maintain high performance of data processing.

Most of the functions and methods including transformation,compensation,gating and
subsetting methods for flowSet are extended to ncdfFlowSet (spillover,normalize and
workflow methods of flowCore are currently not supported yet.). Thus the change of data
structure is almost transparent to the users of flowCore-based R packages.
keywords Flow cytometry, high throughput,netCDF, flowSet,ncdfFlowSet

1 Representing Flow Cytometry Data with ncdfFlowSet

ncdfFlow reppresents a flow cytometry data model that is very similar to the flowSet struc-
ture.The only difference is that the event-based 2-D data matrices from multiple samples of
the same experiment are stored as one single 3D data matrix on disk in ncdf format. Each
sample can be accessed efficiently from the 3-D matrix as a data chunk or slice and further
manipulated in memory.

The basic unit of manipulation in ncdfFlow is the ncdfFlowSet. It inherites all the slots
from flowSet. However, the flowFrame objects stored in the "frames” slot of a ncdfFlowSet
object do not host the data matrix.Instead,their the ”exprs” lots are kepted empty and the

actual data are stored in the 3-D data matrix on disk and only the file name is stored in "file”
slot of ncdfFlowSet. Thus ncdfFlowSet reduces the memory requirements and meanwhile
ensures the consistent data structure with flowSet.

2 Creating a ncdfFlowSet
We provide a function to read FCS files into a ncdfFlowSet object:

> path<-system.file("extdata", "compdata', "data",package="flowCore")
> files<-list.files(path,full.names=TRUE) [1:3]

> ncl <- read.ncdfFlowSet (files=files,ncdfFile="ncfsTest.nc")

> ncl

An ncdfFlowSet with 3 samples.

flowSetId :

NCDF file : ncfsTest.nc

An object of class "AnnotatedDataFrame"
rowNames: 060909.001 060909.002 060909.003
varLabels: name
varMetadata: labelDescription

column names:
FSC-H, SSC-H, FL1-H, FL2-H, FL3-H, FL1-A, FL4-H

As we see,the contructor function is very similar to the flowSet execpt that it requires a
filename for the ncdf file.

> fsl1 <- read.flowSet(files=files)

Note that an ncdf file that stores the actual data is generated and saved on disk once a
ncdfFlowSet is created. Users need to explicitely call the ncfsUnlink method to remove the
file before delete the object from memory by rm.

> ncfsUnlink(ncl)
> rm(ncl)

Sometime it is necessary to save both data matrix and meta data on disk and reload the
ncdfFlowSet object later. In order to do this, isSaveMeta argument has to be set to TRUE
when the ncdfFlowSet is created by read.ncdfFlowSet. ncdfFlowSet_sync can be also called
to save the meta data explicitly in cdf file.

ncl <- read.ncdfFlowSet (files=files,ncdfFile="ncfsTest.nc", isSaveMeta=TRUE)
rm(ncl)

ncl<-ncdfFlowSet_open("ncfsTest.nc")

nc1[[1]]

ncfsUnlink(nc1)

rm(ncl)

V V.V Vv VvV

Users can also create an empty ncdfFlowSet first and add data slices later by assigning
argument isWriteSlice as FALSE.

> ncl <- read.ncdfFlowSet(files=files,ncdfFile="ncfsTest.nc",isWriteSlice= FALSE)
> nc1[[1]]

flowFrame object '060909.001'
with O cells and 7 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000

139 keywords are stored in the 'description' slot

As we see here,before add the actual lowFrame by addFrame, the flowFrame object returned
by L[has 0 events.

> targetSampleName<-sampleNames (fs1) [1]
> addFrame(ncl1,fs1[[1]],targetSampleName)
> nc1[[1]]

flowFrame object '060909.001'
with 10000 cells and 7 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H <NA> 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000
$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000

141 keywords are stored in the 'description' slot
> nc1[[2]]

flowFrame object '060909.002'
with O cells and 7 observables:

name desc range minRange maxRange
$P1 FSC-H Forward Scatter 1024 0 1023
$P2 SSC-H Side Scatter 1024 0 1023
$P3 FL1-H FITC 1024 1 10000
$P4 FL2-H <NA> 1024 1 10000

$P5 FL3-H <NA> 1024 1 10000
$P6 FL1-A <NA> 1024 0 1023
$P7 FL4-H <NA> 1024 1 10000
144 keywords are stored in the 'description' slot

Note that it is important to always use sample name to specify the target position in the
data matrix where the actual is added. Because the sample name is the identifier used to index
the data matrix.

Sometime it is helpful to copy the structure from an existing ncdfFlow object and then add
the data slice to the empty ncdfFlow cloned by clone.ncdfFlowSet.

> nc2<-clone.ncdfFlowSet (ncl, "clone.nc")

> nc2[[1]]

> addFrame(nc2,fs1[[1]],sampleNames (fs1)[1])
> nc2([[1]]

We also provide the coerce function to convert the flowSet to a ncdfFlowSet.

data(GvHD)
GvHD <- GvHD[pData(GvHD)$Patient 7inj, 6:7][1:4]
> ncl<-ncdfFlowSet (GvHD)

v Vv

[1] "ncdfFlowSet saved in /tmp/RtmpYCDuJo/ncfs702£928f16f.nc"

Or coerce a ncdfFlowSet to flowSet
> fs1<-NcdfFlowSetToFlowSet (ncl, top=2)

Note that nedfFlowSet is designed to store large datasets and it is not recommened to corece
the entire ncdfFlowset to flowSet. Usually users want to select a subset from ncdfFlowSet by
[and convert the subetted data. Sometimes it is helpful to randomly select a cerntain number
of flowFrames from the entire datasets represented by by ncdfFlowSet to have a preview of the
data.The arugment "top” can be used here for this purpose.

3 Working with metadata

Like flowSet,ncdfFlowSet has an associated AnnotatedDataFrame that provides metadata of
experiments. This data frame is accessed and modified via the same methods of flowCore. :

phenoData(ncl)
pData(nc1)
varLabels(ncl)
varMetadata (nc1)
sampleNames (nc1)
keyword (nc1, "FILENAME")
identifier(ncl1)
colnames (nc1)
colnames(ncl,prefix="s6a01")
length(nc1)
getIndices(ncl, "s6a01")

vV VVVVVVVVVYV

4 Manipulating a ncdfFlowSet

You can extract a flowFrame from a ncdfFlowSet object in the same way as flowSet by using
the [[or $ extraction operators. Note that using the [extraction operator returns a new
ncdfFlowSet that points to the same ncdf file. SO the original ncdf file serves as a data
repository and the ncdfFlowSet works as view of the data in this sense.

> nm<-sampleNames (nc1) [1]
> expri<-paste("nc1$'",nm,"'",sep="")
> eval (parse (text=expri1))

flowFrame object 's6a01'
with 2205 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

150 keywords are stored in the 'description' slot
> nc1[[nm]]

flowFrame object 's6a01l’
with 2205 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

150 keywords are stored in the 'description' slot

> nm<-sampleNames (nc1) [c(1,3)]
> nc2<-ncl[nm]
> summary (nc2)

$s6a01
FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time
Min. 60.0 0.0 1.000 1.00 1.000 0.0 1.000 11.0

1st Qu. 159.0 48.0 1.046
Median 196.0 65.0 2.644
Mean 220.8 108.9 57.540
3rd Qu. 264.0 97.0 7.055
Max. 1023.0 1023.0 3782.000
$s6a03

FSC-H SSC-H FL1-H
Min. 59.0 0 1.000
1st Qu. 147.0 49 1.000
Median 192.0 71 1.145
Mean 188.5 116 62.170
3rd Qu. 226.0 119 10.200
Max. 1023.0 1023 10000.000

35.35
160.40
210.10
320.90

1.
1.
7.
2.

000
383
367
460

1637.00 326.700

FL2-H FL3-H
1.0 1.000
341.8 1.000
526.5 1.070
543.7 5.400
702.3 2.208
8504.0 7565.000

6.0
36.0
48.7

FL2-
0.
79.
124.
127.

164.
1023.

A
0
0
0
9
0
0

1.000 40.0
5.289 57.0
16.240 51.9
75.0 20.780 66.0
516.0 503.300 80.0

665

FL4-H

1.

000

1.165
2.228
8.

4.834
.400

352

Time

0.
105.
215.
233.
353.
567.

O O O o1 O O

flowSet-specific iterator £sApply can also be applied to RobjectncdfFlowSet:

> fsApply(ncl,range)
> fsApply(nci,

each_col, median)

However, we recmmend to use another iterator ncfsApply designed for the function that
returns a flowFrame (such as compensate,transform...). ncfsApply works the same as fsApply
execpt that it returns a ncdfFlowSet object with the acutal data stored in cdf to avoid the
huge memory consumption. Note that the return value of the function applied in ncfsApply
must be a flowFrame object and it should have the same dimensions(channles and events) as

the original data.

5 Compensation,Transformation and Gating

transform amd compensate for ncdfFlowSet work the same as flowSet.

rm(nc2)

VVVVVVVVVVVVVYVVYV

rm(nc2)

comp)

#transformation

= FALSE)

asinhTrans <- arcsinhTransform(transformationId="ln-transformation", a=1,
nc2 <- transform(ncl, FSC-H =asinhTrans(FSC-H))
summary(nc1) [[1]]
summary (nc2) [[1]]
ncfsUnlink (nc2)

cfile <- system.file("extdata","compdata", "compmatrix", package="flowCore")
comp.mat <- read.table(cfile, header=TRUE, skip=2, check.names
comp <- compensation(comp.mat)
#compensation
summary(nc1) [[1]]
nc2<-compensate (ncl,
summary (nc2) [[1]]
ncfsUnlink(nc2)

b=1, c=1)

Note that compensation/transformation return the ncdfFlowSet objects that point to the
new cdf file containing the compensated/transformed data.
filter for flowSet also works for ncdfFlowSet:

> rectGate <- rectangleGate(filterId="nonDebris","FSC-H"=c (200, Inf))
> fr <- filter(ncl,rectGate)

> summary (fr)

> rg2 <- rectangleGate(filterId="nonDebris", "FSC-H"=c (300, Inf))

> rg3 <- rectangleGate(filterId="nonDebris","FSC-H"=c (400, Inf))

> flist <- list(rectGate, rg2, rg3)

> names(flist) <- sampleNames(nc1[1:3])

> fr3 <- filter(nc1[1:3], flist)

> summary (fr3[[3]1])

6 Subsetting
The Subset and split methods for ncdfFlowSet:

> nc2 <- Subset(ncl,rectGate)
> summary(nc2[[1]])

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time
Min. 200 0 1.000 1.00 1.000 0.00 1.000 11.00
1st Qu. 230 69 1.334 22.33 1.000 3.00 2.692 40.00
Median 266 87 3.372 77.37 1.500 16.00 12.900 57.00

Mean 297 141 91.900 165.70 10.830 38.24 22.020 51.82
3rd Qu. 316 122 18.990 223.80 2.551 53.00 29.790 66.00
Max. 1023 1023 1943.000 1637.00 326.700 516.00 464.200 80.00

> nc2 <- Subset(ncl, fr)
> summary(nc2[[1]])

FSC-H SSC-H FL1-H FL2-H FL3-H FL2-A FL4-H Time
Min. 200 0 1.000 1.00 1.000 0.00 1.000 11.00
1st Qu. 230 69 1.334 22.33 1.000 3.00 2.692 40.00
Median 266 87 3.372 77.37 1.500 16.00 12.900 57.00

Mean 297 141 91.900 165.70 10.830 38.24 22.020 51.82
3rd Qu. 316 122 18.990 223.80 2.551 53.00 29.790 66.00
Max. 1023 1023 1943.000 1637.00 326.700 516.00 464.200 80.00
> rm(nc2)

> morphGate <- norm2Filter("FSC-H", "SSC-H", filterId = "MorphologyGate",scale = 2)
> smaller <- Subset(ncl[c(1,3)], morphGate,c("FSC-H", "SSC-H"))
> smaller[[1]]

flowFrame object 's6a01l’
with 1647 cells and 2 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023

150 keywords are stored in the 'description' slot

> nc1[[1]]

flowFrame object 's6a01l’
with 2205 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

150 keywords are stored in the 'description' slot
> rm(smaller)

Note that Subset does not create the new ncdf file (the same as extraction operator [). So we
need to be careful about using ncfsUnlink to delete the subsetted data since it points to the
same ncdf file that is also used by the original ncdfFlowSet object.

split returns a ncdfFlowList object which is a container of multiple ncdfFlowSet objects.

> ##splitting by a gate

> qGate <- quadGate(filterId="qg", "FSC-H"=200, "SSC-H"=400)
> fr<-filter(ncl,qGate)

> ncList<-split(acl,fr)

> nclist

An ncdfFlowList with 4 ncdfFlowSets
containing 4 unique samples.

> nc1[[1]]

flowFrame object 's6al1l’
with 2205 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000

$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

150 keywords are stored in the 'description' slot
> ncList[[2]][[1]]

flowFrame object 's6a01'
with 36 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

150 keywords are stored in the 'description' slot

> ncList[[1]][[1]]

flowFrame object 's6a01l’
with 74 cells and 8 observables:

name desc range minRange maxRange
$P1 FSC-H FSC-Height 1024 0 1023
$P2 SSC-H SSC-Height 1024 0 1023
$P3 FL1-H CD15 FITC 1024 1 10000
$P4 FL2-H CD45 PE 1024 1 10000
$P5 FL3-H CD14 PerCP 1024 1 10000
$P6 FL2-A <NA> 1024 0 1023
$P7 FL4-H CD33 APC 1024 1 10000
$P8 Time Time (102.40 sec.) 1024 0 1023

150 keywords are stored in the 'description' slot

Keep in mind that the ncdfFlowSet objects contained in ncdfFlowList share the same
ncdf file as the original ncdfFlowSet. So deleting ncdfFlowList by ncfsUnlink is also going
to make the data not accessible to the original ncdfFlowSet.

	Representing Flow Cytometry Data with ncdfFlowSet
	Creating a ncdfFlowSet
	Working with metadata
	Manipulating a ncdfFlowSet
	Compensation,Transformation and Gating
	Subsetting

