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Chapter 1

Introduction

1.1 Scope

This guide provides an overview of the Bioconductor package edgeR for differential expression
analyses of read counts arising from RNA-Seq, SAGE or similar technologies [Robinson
et al., 2010]. The package can be applied to any technology that produces read counts for
genomic features. Of particular interest are summaries of short reads from massively parallel
sequencing technologies such as Illumina™, 454 or ABI SOLiD applied to RNA-Seq, SAGE-
Seq or ChIP-Seq experiments. edgeR provides statistical routines for assessing differential
expression in RNA-Seq experiments or differential marking in ChIP-Seq experiments.

The package implements exact statistical methods for multigroup experiments developed
by Robinson and Smyth [2007, 2008]. It also implements statistical methods based on gener-
alized linear models (glms), suitable for multifactor experiments of any complexity, developed
by McCarthy et al. [2012]. Sometimes we refer to the former exact methods as classic edgeR,
and the latter as glm edgeR. However the two sets of methods are complementary and can of-
ten be combined in the course of a data analysis. Most of the glm functions can be identified
by the letters “glm” as part of the function name.

A particular feature of edgeR functionality, both classic and glm, are empirical Bayes
methods that permit the estimation of gene-specific biological variation, even for experiments
with minimal levels of biological replication.

edgeR can be applied to differential expression at the gene, exon, transcript or tag level.
In fact, read counts can be summarized by any genomic feature. edgeR analyses at the
exon level are easily extended to detect differential splicing or isoform-specific differential
expression.

This guide begins with brief overview of some of the key capabilities of package, and then
gives a number of fully worked case studies, from counts to lists of genes.



1.2 Citation

The edgeR package implements statistical methods from the following publications. Please
try to cite the appropriate articles if you use the package, as such citation is the main means
by which the authors receive credit for their work.

Robinson, MD, and Smyth, GK (2008). Small sample estimation of negative binomial dis-
persion, with applications to SAGE data. Biostatistics 9, 321-332.

Proposed the idea of sharing information between genes by estimating the negative
binomial variance parameter globally across all genes. This made the use of negative
binomial models practical for RNA-Seq and SAGE experiments with small to mod-
erate numbers of replicates. Introduced the terminology dispersion for the variance
parameter. Proposed conditional maximum likelihood for estimating the dispersion,
assuming common dispersion across all genes. Developed an exact test for differential
expression appropriate for the negative binomially distributed counts. Despite the of-
ficial publication date, this was the first of the papers to be submitted and accepted
for publication.

Robinson, MD, and Smyth, GK (2007). Moderated statistical tests for assessing differences
in tag abundance. Bioinformatics 23, 2881-2887.

Introduced empirical Bayes moderated dispersion parameter estimation. This improves
on the simple idea fitting a global model to the genewise dispersion parameters.

Robinson, MD, McCarthy, DJ, Smyth, GK (2010). edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.

Announcement of the edgeR software package. Introduced the terminology coefficient
of biological variation.

Robinson MD, Oshlack A (2010). A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biology 11, R25.

Introduced the idea of model-based scale normalization of RNA-Seq data. Proposed
TMM normalization.

McCarthy, DJ, Chen, Y, Smyth, GK (2012). Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Research. Pub-
lished online 28 January 2012.

Extended negative binomial differential expression methods to glms, making the meth-
ods applicable to general experiments. Introduced the use of Cox-Reid approximate
conditional maximum likelihood for estimating the dispersion parameters, and used
this for empirical Bayes moderation. Developed fast algorithms for fitting glms to
thousands of genes in parallel. Gives a full explanation of the concept of biological
coefficient of variation.



1.3 How to get help

Most questions about edgeR will hopefully be answered by the documentation or references.
Every function mentioned in this guide has its own help page. For example, a detailed
description of the arguments and output of the exactTest function can be read by typing
7exactTest or help(exactTest) at the R prompt.

The authors of the package always appreciate receiving reports of bugs in the package
functions or in the documentation. The same goes for well-considered suggestions for im-
provements. Other questions about how to use edgeR are best sent to the Bioconductor mail-
ing list bioconductor@stat.math.ethz.ch. Often other users are likely to have experienced
similar problems, and posting to the list allows everyone to gain from the answers. To sub-
scribe to the mailing list, see https://stat.ethz.ch/mailman/listinfo/bioconductor.
Please send requests for general assistance and advice to the mailing list rather than to the
individual authors. Users posting to the mailing list for the first time may find it helpful to
read the posting guide at http://www.bioconductor.org/doc/postingGuide.html.

1.4 Quick start

A classic edgeR analysis might look like the following. Here we assume there are four RNA-
Seq libraries in two groups, and the counts are stored in a tab-delimited text file, with gene
symbols in a column called Symbol.

x <- read.delim("fileofcounts.txt",row.names="Symbol")
group <- factor(c(1,1,2,2))

y <- DGEList (counts=x,group=group)

y <- estimateCommonDisp (y)

y <- estimateTagwiseDisp(y)

et <- exactTest(y)

topTags (et)

V V V V V V VvV

A glm edgeR analysis of the same data would look similar, except that a design matrix
would be formed:

> design <- model.matrix(~group)

> y <- estimateGLMTrendedDisp(y,design)
> y <- estimateGLMTagwiseDisp(y,design)
> fit <- glmFit(y,design)
> 1lrt <- glmLRT(y,fit,coef=2)
> topTags(lrt)

Many variants are available on this analysis.



Chapter 2

Overview of capabilities

2.1 Reading the counts

edgeR works on a table of integer read counts, with rows corresponding to genes or genomic
features and columns to independent libraries. The first step in any analysis will usually be
to read these counts into an R session. This is straightforward for anyone experienced with
R, but can be hurdle for first-timers.

If the count data is contained in a single tab-delimited or comma-separated text file with
multiple columns, one for each sample, then the simplest method is usually to read the file
into R using one of the standard R read functions such as read.delim. See the quick start
above, or the case study on LNCaP Cells, or the case study on oral carcinomas later in this
guide for examples.

If the counts for different samples are stored in separate files, then the files have to be
read separately and collated together. The edgeR function readDGE is provided to do this.
Files need to contain two columns, one for the counts and one for a gene identifier. See the
SAGE and deepSAGE case studies for examples of this.

2.2 The DGEList data class

edgeR stores data in a simple list-based data object called a DGEList. This type of object is
easy to use because it can be manipulated like any list in R.

The function readDGE makes a DGEList object directly.

If the table of counts is already available as a matrix or a data.frame, y say, then a
DGEList object can be made by

> dge <- DGEList(counts=y)
A grouping factor can be added at the same time:

> group <- c(1,1,2,2)
> dge <- DGEList(counts=y, group=group)



The main components of an DGEList object are a matrix counts containing the integer
counts, a data.frame samples containing information about the samples or libraries, and a
optional data.frame genes containing annotation for the genes or genomic features. The
data.frame samples contains a column 1lib.size for the library size or sequencing depth for
each sample. If not specified by the user, the library sizes will be computed from the column
sums of the counts. For classic edgeR the data.frame samples must also contain a column
group, identifying the group membership of each sample.

2.3 Normalization issues for count data

2.3.1 General comments

The edgeR methodology needs to work with the original digital expression counts, so these
should not be transformed in any way by users prior to analysis. edgeR automatically takes
into account the total size (total read number) of each library in all calculations of fold-
changes, concentration and statistical significance. For some datasets, no other normalization
is required for evaluating differential expression.

It bears emphasizing that RPKM values should not be used for assessing differential
expression of genes between samples in edgeR. We use the raw counts, because the methods
implemented in edgeR are based on the negative binomial distribution, a discrete distribu-
tion. To be able to perform good inference on differential expression it is very important
to model the mean-variance relationship in the data appropriately. There are good reasons
why the NB model is appropriate for the raw count data, but transforming the data using
RPKM (or FPKM or similar) renders our distributional assumptions invalid and we cannot
guarantee that our methods will be reliable for such transformed data.

There are methods implemented in edgeR to normalize the counts for compositional
bias in sequenced libraries and for differences between libraries in sequencing depth. These
adjustments are offsets in the models used for testing DE and do not transform the counts
in any way.

2.3.2 Adjustments for gene length, GC content, mappability and
SO on

edgeR does not require any adjustment for read count biases related to gene sequence such
as gene length, GC content, mappability and so on. While these factors are likely to be
important for obtaining a unbiased estimate of the absolute expression level, edgeR does not
need absolute expression levels. edgeR is instead concerned with differential expression.
The reason we do not worry about gene length bias, GC bias and so on when conducting
DE analysis of the same genes between samples is that the biases will affect the same gene
in the same way in different samples. This being the case, then it is OK to test for DE gene
between samples because such biases in effect “cancel out” when making the comparison



between samples. This reasoning does not hold for comparing the expression level of different
genes in one sample—to do this you would probably need to account for gene length and
other biases, but this is not what edgeR is designed to do.

In summary, any function of gene sequence will the same gene in the same way each
RNA-Seq library, so any gene characteristic such as length or GC content cancels out of
genewise comparisons between treatment conditions. Hence we do not recommend adjusting
read counts for these or similar factors before attempting an edgeR analysis.

2.3.3 Calculating normalization factors

Recently, Robinson and Oshlack [2010] described a method to account for a bias introduced
by what they call RNA composition. In brief, there are occasions when comparing different
DGE libraries where a small number of genes are very highly expressed in one sample, but
not in another. Because these highly expressed genes consume a substantial proportion of the
sequencing “real estate”, the remaining genes in the library are undersampled. Similarly, this
situation may occur when the two tissues being compared have transcriptomes of different
sizes, i.e. when there are noticeably more transcripts expressed in one tissues than the other.
Robinson and Oshlack [2010] show that in comparing kidney and liver RNA, there are a
large number of genes expressed in kidney but not in liver, causing the remaining genes
to be undersampled and skewing the differential expression calls. To account for this, the
authors developed an empirical approach to estimate the bias and proposed to build that
into the library size (or, an offset in a generalized linear model), making it an effective library
size. We demonstrate this below on the Marioni et al. [2008] RNA-seq dataset.

Given a table counts or a DGEList object, one can calculate normalization factors using
the calcNormFactors() function.

> head (D)

R1L1Kidney R1L2Liver R1L3Kidney R1L4Liver

10 0 0 0 0

15 4 35 7 32

17 0 2 0 0

18 110 177 131 135

19 12685 9246 13204 9312

22 0 1 0 0

> g <- gsub("R[1-2]L[1-8]", "", colnames(D))

> d <- DGEList(counts = D, group = substr(colnames(D), 5, 30))
> d$samples

group lib.size norm.factors

R1L1Kidney Kidney 1804977 1
R1L2Liver Liver 1691734 1
R1L3Kidney Kidney 1855190 1
Ri1L4Liver Liver 1696308 1



> d <- calcNormFactors(d)
> d$samples

group lib.size norm.factors

R1L1Kidney Kidney 1804977 1.209
RilL2Liver Liver 1691734 0.821
R1L3Kidney Kidney 1855190 1.225
RilL4Liver Liver 1696308 0.823

By default, calcNormFactors uses the TMM method and the sample whose 75%-ile
(of library-scale-scaled counts) is closest to the mean of 75%-iles as the reference. Alter-
natively, the reference can be specified through the refColumn argument. Also, you can
specify different levels of trimming on the log-ratios or log-concentrations, as well as a cutoff
on the log-concentrations (See the help documentation for further details, including other
specification of estimating the normalization factors).

To see the bias and normalization visually, consider a smear plot between the first (kidney)
and second (liver) sample, produced by the following code:

maPlot (d$counts[,1], d$counts[,2], normalize=TRUE, pch=19, cex=0.4, ylim=c(-8, 8))
grid(col = "blue")
abline(h = log2(d$samples$norm.factors[2]/d$samples$norm.factors[1]), col="red", lwd=4)
eff.libsize <- d$samples$lib.size * d$samples$norm.factors
maPlot (d$counts[, 1]/eff.libsize[1], d$counts[, 2]/eff.libsizel[2],

normalize = FALSE, pch = 19, cex = 0.4, ylim = c(-8, 8))
grid(col = "blue")

vV + VvV VVvyVv

In the left panel of Figure 2.1, we show a smear plot (X-axis: log-concentration, Y-axis: log
fold-change of liver over kidney, those with 0 in either sample are shown in the smear on the
left) of the raw data (Note: the argument normalize=TRUE only divides by the sum of counts
in each sample and has nothing to do with the normalization factors mentioned above). One
should notice a shift downward in the log-ratios, presumably caused by the genes highly
expressed in liver that are taking away sequencing capacity from the remainder of the genes
in the liver RNA sample. The red line signifies the estimated TMM (trimmed mean of
M values) normalization factor, which in this case represents the adjustment applied to the
library size to account for the compositional bias. The right panel of Figure 2.1 simply shows
the M and A values after correction. Here, one should find that the bulk of the M-values are
centred around 0.

2.4 Negative binomial models

2.4.1 Introduction

The starting point for an RNA-Seq experiment is a set of n RNA samples, typically associated
with a variety of treatment conditions. Each sample is sequenced, short reads are mapped
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Figure 2.1: Smear plots before (left) and after (right) composition normalization.

to the appropriate genome, and the number of reads mapped to each genomic feature of
interest is recorded. The number of reads from sample ¢ mapped to gene g will be denoted
Ygi- The set of genewise counts for sample ¢ makes up the expression profile or library for
that sample. The expected size of each count is the product of the library size and the
relative abundance of that gene in that sample.

2.4.2 Biological coefficient of variation (BCV)

RNA-Seq profiles are formed from n RNA samples. Let 7, be the fraction of all cDNA
fragments in the ith sample that originate from gene g. Let G denote the total number of
genes, SO 25:1 mgi = 1 for each sample. Let \/59 denote the coefficient of variation (CV)
(standard deviation divided by mean) of 7, between the replicates i. We denote the total
number of mapped reads in library ¢ by IV; and the number that map to the gth gene by yg;.
Then

E(ng) = Hgi = Nz'ﬂ-gi-

Assuming that the count y, follows a Poisson distribution for repeated sequencing runs
of the same RNA sample, a well known formula for the variance of a mixture distribution
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implies:
var(yg:) = Ex [var(y|m)] + vary [E(y|m)] = pigi + dgpiy;.
Dividing both sides by pZ; gives

CV2(ng-) = 1/pgi + ¢y

The first term 1/p,, is the squared CV for the Poisson distribution and the second is the
squared CV of the unobserved expression values. The total CV? therefore is the technical
CV? with which 7, is measured plus the biological CV? of the true my;. In this article, we

call ¢, the dispersion and \/@ the biological CV although, strictly speaking, it captures
all sources of the inter-library variation between replicates, including perhaps contributions
from technical causes such as library preparation as well as true biological variation between
samples.

Two levels of variation can be distinguished in any RNA-Seq experiment. First, the
relative abundance of each gene will vary between RNA samples, due mainly to biological
causes. Second, there is measurement error, the uncertainty with which the abundance of
each gene in each sample is estimated by the sequencing technology. If aliquots of the same
RNA sample are sequenced, then the read counts for a particular gene should vary according
to a Poisson law Marioni et al. [2008]. If sequencing variation is Poisson, then it can be shown
that the squared coefficient of variation (CV) of each count between biological replicate
libraries is the sum of the squared CVs for technical and biological variation respectively,

Total CV? = Technical CV? + Biological CV?.

Biological CV (BCV) is the coefficient of variation with which the (unknown) true abun-
dance of the gene varies between replicate RNA samples. It represents the CV that would
remain between biological replicates if sequencing depth could be increased indefinitely. The
technical CV decreases as the size of the counts increases. BCV on the other hand does
not. BCV is therefore likely to be the dominant source of uncertainty for high-count genes,
so reliable estimation of BCV is crucial for realistic assessment of differential expression in
RNA-Seq experiments. If the abundance of each gene varies between replicate RNA sam-
ples in such a way that the genewise standard deviations are proportional to the genewise
means, a commonly occurring property of measurements on physical quantities, then it is
reasonable to suppose that BCV is approximately constant across genes. We allow however
for the possibility that BCV might vary between genes and might also show a systematic
trend with respect to gene expression or expected count.

The magnitude of BCV is more important than the exact probabilistic law followed
by the true gene abundances. For mathematical convenience, we assume that the true gene
abundances follow a gamma distributional law between replicate RNA samples. This implies
that the read counts follow a negative binomial probability law.
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2.4.3 Estimating BCVs

When a negative binomial model is fitted, we need to estimate the BCV(s) before we carry out
the analysis. The BCV, as shown in the previous section, is the square root of the dispersion
parameter under the negative binomial model. Hence, it is equivalent to estimating the
dispersion(s) of the negative binomial model.

The parallel nature of sequencing data allows some possibilities for borrowing information
from the ensemble of genes which can assist in inference about each gene individually. The
easiest way to share information between genes is to assume that all genes have the same
mean-variance relationship, in other words, the dispersion is the same for all the genes
[Robinson and Smyth, 2008]. An extension to this “common dispersion” approach is to put
a mean-dependent trend on a parameter in the variance function, so that all genes with the
same expected count have the same variance [Anders and Huber, 2010].

However, the truth is that the gene expression levels have non-identical and dependent
distribution between genes, which makes the above assumptions too naive. A more gen-
eral approach that allows genewise variance functions with empirical Bayes shrinkage was
introduced several years ago [Robinson and Smyth, 2007] and has recently been extended
to generalized linear models and thus more complex experimental designs [McCarthy et al.,
2012]. Only when using tagwise dispersion will genes that are consistent between replicates
be ranked more highly than genes that are not. It has been seen in many RNA-Seq datasets
that allowing gene-specific dispersion is necessary in order that differential expression is not
driven by outliers. Therefore, the tagwise dispersions are strongly recommended in model
fitting and testing for differential expression.

In edgeR, we first estimate a common dispersion for all the tags and then apply an em-
pirical Bayes strategy for squeezing the tagwise dispersions towards the common dispersion.
The amount of shrinkage is determined by the prior weight given to the common dispersion
and the precision of the tagwise estimates. The prior can be thought of arising from a num-
ber of prior observations, equivalent to prior.n tags with common dispersion and the same
number of libraries per tag as in the current experiment. The prior number of tags prior.n
can be set by the user. The precision of the tagwise estimators is roughly proportion to the
per-tag degrees of freedom, equal to the number of libraries minus the number of groups
or the number of GLM coefficients. We generally recommend choosing prior.n so that the
total degrees of freedom (prior.n*df) associated with the prior is about 20-30. For example,
if there are four libraries and two groups, the tagwise degrees of freedom are 2, so we would
recommend prior.n=10. This is an empirical rule of thumb borne out of experience with a
number of datasets. The default behavior of the edgeR is to set the prior degrees of freedom
to 20.
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2.5 Pairwise comparisons between two or more groups
(classic)

2.5.1 Estimating dispersions

edgeR uses the quantile-adjusted conditional maximum likelihood (qCML) method to exper-
iments with single factor.

Compared against several other estimators (e.g. maximum likelihood estimator, Quasi-
likelihood estimator etc.) using an extensive simulation study, CML is the most reliable in
terms of bias on a wide range of conditions and specifically performs best in the situation
of many small samples with a common dispersion, the model which is applicable to Next-
Gen sequencing data. We have deliberately focused on very small samples due to the fact
that DNA sequencing costs prevent large number of replicates for SAGE and RNA-seq
experiments.

The qCML method calculates the likelihood conditioning on the total counts for each tag,
and uses pseudo counts after adjusted for library sizes. Given a table counts or a DGEList ob-
ject, the qCML common dispersion can be calculated using the estimateCommonDisp () func-
tion, and the qCML tagwise dispersions can be calculated using the estimateTagwiseDisp()
function.

However, the qCML method is only applicable on dataset with single factor design since it
fails to take into account the effects from multiple factors in a more complicated experiment.
Therefore, the qCML method (i.e. the estimateCommonDisp () and estimateTagwiseDisp()
function) is recommended for a study with single factor. When experiment has more than
one factor involved, we need to seek a new way of estimating dispersions.

Here is a simple example in estimating dispersions using the qCML method. Given a
DGEList object D, we estimate the dispersions using the following commands.

To estimate common dispersion:

D <- estimateCommonDisp (D)
To estimate tagwise dispersions:
D <- estimateTagwiseDisp(D)

Note that common dispersion needs to be estimated before estimating tagwise dispersions.
For more detailed examples, see the case studies in section 3.1 (Zhang’s data), section
3.2 ('t Hoen’s data) and section 3.3 (Li’s data).

2.5.2 Testing for DE genes

For all the Next-Gen squencing data analyses we consider here, people are most interested
in finding differentially expressed genes/tags between two (or more) groups. Once negative
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binomial models are fitted and dispersion estimates are obtained, we can proceed with testing
procedures for determing differential expression using the exact test.

The exact test is based on the qCML methods. Knowing the conditional distribution
for the sum of counts in a group, we can compute exact p-values by summing over all sums
of counts that have a probability less than the probability under the null hypothesis of the
observed sum of counts. The exact test for the negative binomial distribution has strong
parallels with Fisher’s exact test.

As we dicussed in the previous section, the exact test is only applicable to experiments
with a single factor. The testing can be done by using the function exactTest(), and the
function allows both common dispersion and tagwise dispersion approaches. For example:

> et <- exactTest(D)
> topTags(et)

For more detailed examples, see the case studies in section 3.1 (Zhang’s data), section
3.2 ('t Hoen’s data) and section 3.3 (Li’s data).

2.6 More complex experiments (glm functionality)

2.6.1 Generalized linear models

Generalized linear models (GLMs) are an extension of classical linear models to nonnormally
distributed response data Nelder and Wedderburn [1972], McCullagh and Nelder [1989].
GLMs specify probability distributions according to their mean-variance relationship, for
example the quadratic mean-variance relationship specified above for read counts. Assuming
that an estimate is available for ¢4, so the variance can be evaluated for any value of p,
GLM theory can be used to fit a log-linear model

log Kgi = XzTBg + log N;

for each gene Lu et al. [2005], Bullard et al. [2010]. Here x; is a vector of covariates that
specifies the treatment conditions applied to RNA sample ¢, and 3, is a vector of regression
coefficients by which the covariate effects are mediated for gene g. The quadratic variance
function specifies the negative binomial GLM distributional family. The use of the negative
binomial distribution is equivalent to treating the m, as gamma distributed.

2.6.2 Estimating dispersions

For general experiments (with multiple factors), edgeR uses the Cox-Reid profile-adjusted
likelihood (CR) method in estimating dispersions. The CR method is derived to overcome
the limitations of the qCML method as mentioned above. It takes care of multiple factors
by fitting generalized linear models (GLM) with a design matrix.
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The CR method is based on the idea of approximate conditional likelihood which reduces
to residual maximum likelihood. Given a table counts or a DGEList object and the design
matrix of the experiment, generalized linear models are fitted. This allows valid estimation
of the dispersion, since all systematic sources of variation are accounted for.

The CR method can be used to calculate a common dispersion for all the tags, trended
dispersion depending on the tag abundance, or separate dispersions for individual tags. These
can be done by calling the functions estimateGLMCommonDisp (), estimateGLMTrendedDisp ()
and estimateGLMTagwiseDisp(), and it is strongly recommended in multi-factor experiment
cases.

Here is a simple example in estimating dispersions using GLM method. Given a DGEList
object D and a design matrix, we estimate the dispersions using the following commands.

To estimate common dispersion:

D <- estimateGLMCommonDisp(D, design)

To estimate trended dispersions:

D <- estimateGLMTrendedDisp(D, design)

To estimate tagwise dispersions:

D <- estimateGLMTagwiseDisp(D, design)

Note that we need to estimate either common dispersion or trended dispersions prior
to the estimation of tagwise dispersions. When estimating tagwise dispersions, the empir-
ical Bayes method is applied to squeeze tagwise dispersions towards common dispersion or
trended dispersions whichever exists. If both exist, the default is to use the trended disper-
sions.

For more detailed examples, see the case study in section 3.4 (Tuch’s data).

2.6.3 Testing for DE genes

For General experiments, once negative binomial models are fitted and dispersion estimates
are obtained, we can proceed with testing procedures for determing differential expression
using the generalized linear model (GLM) likelihood ratio test.

The GLM likelihood ratio test is based on the idea of fitting negative binomial GLMs
with the Cox-Reid dispersion estimates. By doing this, it automatically takes all known
sources of varations into account. Therefore, the GLM likelihood ratio test is recommended
for experiment with multiple factors.

The testing can be done by using the functions glmFit() and glmLRT(). Given raw
counts, a fixed value for the dispersion parameter and a design matrix, the function glmFit ()
fits the negative binomial GLM for each tag and produces an object of class DGEGLM with
some new components.
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Then this DGEGLM object can be passed to the function glmLRT() to carry out the likeli-
hood ratio test. User can select coefficient(s) to drop from the full design matrix. This gives
the null model against which the full model is compared with in the likelihood ratio test.
Tags can then be ranked in order of evidence for differential expression, based on the p-value
computed for each tag.

As a brief example, consider a situation in which are three treatment groups, each with
two replicates, and the researcher wants to make pairwise comparisons between them. A
linear model representing the study design can be fitted to the data with commands such as:
> group <- factor(c(1,1,2,2,3,3))

> design <- model.matrix(~group)
> fit <- glmFit(y,design,etc)

The fit has three parameters. The first is the baseline level of group 1. The second and third
are the 2 vs 1 and 3 vs 1 differences.
To compare 2 vs 1:

> 1rt.2vsl <- glmLRT(y,fit,coef=2)
> topTags(lrt.2vsl)

To compare 3 vs 1:

> 1rt.3vsl <- glmLRT(y,fit,coef=3)

To compare 3 vs 2:

> 1rt.3vs2 <- glmLRT(y,fit,contrast=c(0,-1,1))

The contrast argument in this case requests a statistical test of the null hypothesis that
coefficient3—coefficient2 is equal to zero.
To find genes different between any of the three groups:

> 1rt <- glmlRT(y,fit,coef=2:3)
> topTags(lrt)

For more detailed examples, see the case study in section 3.4 (Tuch’s data) and 3.5
(arabidopsis RNA-Seq data).

2.7 What to do if you have no replicates

edgeR is primarily intended for use with data including biological replication. Nevertheless,
RNA-Seq and ChIP-Seq are still expensive technologies, so it sometimes happens that only
one library can be created for each treatment condition. In these cases there are no replicate
libraries from which to estimate biological variability. In this situation, the data analyst
is faced with the following choices, none of which are ideal. We do not recommend any of
these choices as a satisfactory alternative for biological replication. Rather, they are the best
that can be done at the analysis stage, and options 2—4 may be better than assuming that
biological variability is absent.
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1. Be satisfied with a descriptive analysis, that might include an MDS plot and an analysis
of fold changes. Do not attempt a significance analysis. This may be the best advice.

2. Simply pick a reasonable dispersion value, based on your experience with similar data,
and use that. Although subjective, this is still more defensible than assuming Poisson
variation. Typical values are dispersion=0.4 for human data, dispersion=0.1 for data
on genetically identical model organisms or dispersion=0.01 for technical replicates.

3. Remove one or more explanatory factors from the linear model in order to create
some residual degrees of freedom. Ideally, this means removing the factors that are
least important but, if there is only one factor and only two groups, this may mean
removing the entire design matrix or reducing it to a single column for the intercept.
If your experiment has several explanatory factors, you could remove the factor with
smallest fold changes. If your experiment has several treatment conditions, you could
try treating the two most similar conditions as replicates. Estimate the dispersion from
this reduced model, then insert these dispersions into the data object containing the
full design matrix, then proceed to model fitting and testing with glmFit and glmLRT.
This approach will only be successful if the number of DE genes is relatively small.

In conjunction with this reduced design matrix, you could try estimateGLMCommonDisp
with method="deviance", robust=TRUE and subset=NULL. This is our current best at-
tempt at an automatic method to estimate dispersion without replicates, although it
will only give good results when the counts are not too small and the DE genes are a
small proportion of the whole. Please understand that this is only our best attempt
to return something useable. Reliable estimation of dispersion generally requires repli-
cates.

4. If there exist a sizeable number of control transcripts that should not be DE, the the
dispersion could be estimated from them. For example, suppose that housekeeping is
an index variable identifying housekeeping genes that do not respond to the treatment
used in the experiment. First create a copy of the data object with only one treatment

group:

> dl <-d
> di$samples$group <- 1

Then estimate the dispersion from the housekeeping genes and all the libraries as one
group:

> d0 <- estimateCommonDisp(dl[housekeeping,])
Then insert this into the full data object and proceed:

> d$common.dispersion <- dO$common.dispersion
> et <- exactTest(d)
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and so on. A reasonably large number of control transcripts is required, at least a few
dozen and ideally hundreds.
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Chapter 3

Case studies
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3.1 SAGE profiles of normal and tumour tissue

3.1.1 Introduction

This section provides a detailed analysis of data from a SAGE experiment to illustrate
the data analysis pipeline for edgeR. The data come from a very early study using SAGE
technology to analyse gene expression profiles in human cancer cells [Zhang et al., 1997].

Zhang et al. [1997] examined human colorectal and pancreatic cancer tumor tissue. In this
case study, we analyse the data comparing primary colon tumor tissue with normal colon
epithelium cells. Two tumor and two normal RNA samples were available from different
individuals.

3.1.2 Reading the data

The tag counts for the four individual libraries are stored in four separate plain text files
obtained from the GEO repository:

> dir()
[1] "GSM728.txt" "GSM729.txt" "GSM755.txt" "GSM756.txt" "targets.txt"

In each file, the tag IDs and counts for each tag are provided in a table.
The file targets.txt gives the filename, the group and a brief description for each sample:

> targets <- readTargets()

> targets

files group description
1 GSM728.txt NC Normal colon
2 GSM729.txt NC Normal colon
3 GSM755.txt Tu Primary colonrectal tumour
4 GSM756.txt Tu Primary colonrectal tumour

This makes a convenient argument to the function readDGE, which reads the tables of counts,
calculates the sizes of the count libraries and produces a DGEList object for use by subsequent
functions. The skip and comment.char arguments are used to ignore comment lines:

> d <- readDGE(targets, skip=5, comment.char = "!")
> d$samples

files group description lib.size norm.factors
1 GSM728.txt NC Normal colon 50179 1
2 GSM729.txt NC Normal colon 49593 1
3 GSM755.txt Tu Primary colonrectal tumour 57686 1
4 GSM756.txt Tu Primary colonrectal tumour 49064 1
> head(d$counts)
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1 2 3 4
CCCATCGTCC 1288 1380 1236 O
CCTCCAGCTA 719 458 148 142
CTAAGACTTC 559 558 248 199
GCCCAGGTCA 520 448 22 62
CACCTAATTG 469 472 763 421
CCTGTAATCC 448 229 459 374

> summary (d$counts)

1 2 3 4
Min. : 0 Min. : 0 Min. : 0 Min. : 0
1st Qu.: 0 1st Qu.: 0 1st Qu.: 0 1st Qu.: 0
Median : 0 Median : 0 Median : 0 Median : 0
Mean 1 Mean 1 Mean 1 Mean : 1
3rd Qu.: 1 3rd Qu.: 1 3rd Qu.: 1 3rd Qu.: 1
Max. 11288 Max. 11380 Max. 11236 Max. ;1011

There are 57448 unique tags:

> dim(d)
[1] 57448 4

3.1.3 Filter low expression tags

The number of unique tags is greater than the total number of reads in each library, so the
average number of reads per tag per sample is less than one. We will filter out tags with
very low counts. We want to keep tags that are expressed in at least one normal or tumor
cells. Since there are two replicate samples in each group, we keep tags that are expressed
at a reasonable level in at least two samples. Our expession cutoff is 100 counts per million
(cpm). For the library sizes here, 100 cpm corresponds to a read count of about 5:

> keep <- rowSums (cpm(d)>100) >= 2

> d <- dlkeep,]
> dim(d)

[1] 1233 4

This reduces the dataset to around 1200 tags. For the filtered tags, there is very little power
to detect differential expression, so little information is lost by filtering.
After filtering, it is a good idea to reset the library sizes:

> d$samples$lib.size <- colSums(d$counts)

> d$samples

files group description lib.size norm.factors
1 GSM728.txt NC Normal colon 27012 1
2 GSM729.txt NC Normal colon 27735 1
3 GSM755.txt Tu Primary colonrectal tumour 28696 1
4 GSM756.txt Tu Primary colonrectal tumour 22461 1
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3.1.4 Normalization
Apply TMM normalization:

> d <- calcNormFactors(d)
> d$samples

files group description lib.size norm.factors
1 GSM728.txt NC Normal colon 27012 0.989
2 GSM729.txt NC Normal colon 27735 1.005
3 GSM755.txt Tu Primary colonrectal tumour 28696 0.906
4 GSM756.txt Tu Primary colonrectal tumour 22461 1.110

The normalization factors here are all very close to one, indicating that the four libraries are
very similar in composition.

This DGEList is now ready to be passed to the functions that do the calculations to
determine differential expression levels for the genes.

3.1.5 Estimating the dispersions

The first major step in the analysis of DGE data using the NB model is to estimate the
dispersion parameter for each tag, a measure of the degree inter-library variation for that
tag. Estimating the common dispersion gives an idea of overall variability across the genome
for this dataset:

> d <- estimateCommonDisp(d, verbose=TRUE)

Disp = 0.173 , BCV = 0.416

The square root of the common dispersion gives the coefficient of variation of biological
variation (BCV). Here the BCV is 41%. This is a relatively large value, but not untypical
for observational studies on human tumor tissue where the replicates are independent tumors
or individuals.

For routine differential expresion analysis, we use empirical Bayes tagwise dispersions.
For SAGE date, no abundance-dispersion trend is usually necessary:

> d <- estimateTagwiseDisp(d, trend="none")

plotBCV() plots the tagwise dispersions against log2-CPM:

> plotBCV(d, cex=0.4)
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3.1.6 Differential expression

Once the dispersions are estimated, we can proceed with testing procedures for determining
differential expression. The function exactTest conducts tagwise tests using the exact nega-
tive binomial test proposed by Robinson and Smyth [2008]. The test results for the n most
significant tags are conveniently displayed by the topTags function:

> et <- exactTest(d)
> topTags(et, n=20)

Comparison of groups: Tu-NC
logFC logCPM  PValue FDR

AGCTGTTCCC 12.19 13.46 6.55e-14 8.08e-11
CTTGGGTTTT 8.94 10.19 3.57e-09 2.20e-06
TCACCGGTCA -4.00 10.88 5.06e-08 2.08e-05
TACAAAATCG 8.19 9.43 8.18e-08 2.15e-05
GTCATCACCA -7.74  9.00 8.72e-08 2.15e-05
TAATTTTTGC 5.63 9.16 2.71e-07 5.58e-05
TAAATTGCAA -4.03 10.63 3.40e-07 5.99e-05
GTGCGCTGAG 7.42 8.64 5.25e-07 7.98e-05
GGCTTTAGGG 3.44 12.59 5.82e-07 7.98e-05
ATTTCAAGAT -5.40 9.05 7.37e-07 9.08e-05
GCCCAGGTCA -3.42 13.25 1.15e-06 1.19e-04
GTGTGTTTGT 7.31 8.53 1.18e-06 1.19e-04
CGCGTCACTA 4.78 10.09 1.25e-06 1.19e-04
CTTGACATAC -7.21 8.46 1.44e-06 1.27e-04
GACCAGTGGC -4.78  9.29 1.57e-06 1.29e-04
CCAGTCCGCC 7.84  9.09 2.22e-06 1.71e-04
GGAACTGTGA -3.62 10.76 3.36e-06 2.44e-04
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CCTTCAAATC -5.12 8.77 3.57e-06 2.45e-04
GCAACAACAC 3.81 9.94 3.78e-06 2.45e-04
GATGACCCCC -3.37 9.84 7.70e-06 4.75e-04

By default, Benjamini and Hochberg’s algorithm is used to control the false discovery rate
(FDR) [Benjamini and Hochberg, 1995].

The table below shows the counts per million for the tags that edgeR has identified as
the most differentially expressed. There are pronounced differences between the groups:

> detags <- rownames (topTags(et, n=20))
> cpm(d) [detags,]

1 2 3 4
AGCTGTTCCC 0 0.0 4146.9 45011.4
CTTGGGTTTT 0 0.0 731.8 4318.6
TCACCGGTCA 4368 2704.2  209.1 222.6
TACAAAATCG 0 0.0 487.9 2493.2
GTCATCACCA 1296 721.1 0.0 0.0
TAATTTTTGC 0 36.1 1289.4 935.0
TAAATTGCAA 3813 2127.3 104.5 267.1
GTGCGCTGAG 0 0.0 627.3 1024.0
GGCTTTAGGG 777 1298.0 13660.4 8370.1
ATTTCAAGAT 1296  757.2 0.0 44 .5
GCCCAGGTCA 19251 16152.9 766.7 2760.3
GTGTGTTTGT 0 0.0 522.7 1024.0
CGCGTCACTA 37 108.2 3066.6 935.0
CTTGACATAC 666 721.1 0.0 0.0
GACCAGTGGC 777 1622.5 0.0 89.0
CCAGTCCGCC 0 0.0 209.1 2181.6
GGAACTGTGA 3332 3028.7 69.7 489.7
CCTTCAAATC 1074 612.9 0.0 44.5
GCAACAACAC 111 144.2 2265.1 1335.6
GATGACCCCC 1555 1766.7 104.5 222.6

The total number of differentially expressed genes at FDR< 0.05 is:

> summary(de <- decideTestsDGE(et, p=0.05, adjust="BH"))

[,1]
-1 87
0 1088
1 58

Here the entries for -1, 0 and 1 are for down, non-differentially expressed and up tags
respectively.

The function plotSmear generates a plot of the tagwise log-fold-changes against log-cpm
(analogous to an MA-plot for microarray data). DE tags are highlighted on the plot:

> detags <- rownames(d) [as.logical(de)]
> plotSmear(et, de.tags=detags)
> abline(h = c(-2, 2), col = "blue")
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The horizontal blue lines show 4-fold changes.

3.1.7 Setup
This analysis was conducted on:

> sessionInfo()

R version 2.15.0 (2012-03-30)
Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[6] LC_TIME=English_Australia.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods  base

other attached packages:
[1] edgeR_2.7.4 limma_3.13.1

loaded via a namespace (and not attached):
[1] tools_2.15.0
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3.2 deepSAGE of wild-type vs Dclkl transgenic mice

3.2.1 Introduction

This section provides a detailed analysis of data from an experiment using deep-sequenced
tag-based expression profiling ['t Hoen et al., 2008].

The biological question addressed was the identification of transcripts differentially ex-
pressed in the hippocampus between wild-type mice and transgenic mice overexpressing a
splice variant of the 6C-doublecortin-like kinase-1 (DclkI) gene. The splice variant, DCLK-
short, makes the kinase constitutively active and causes subtle behavioural phenotypes.

The tag-based gene expression technology in this experiment could be thought of as
a hybrid between SAGE and RNA-seq—like SAGE it uses short sequence tags (~ 17bp)
to identify transcripts, but it uses the deep sequencing capabilities of Solexa/Illumina 1G
Genome Analyzer to greatly increase the number of tags that can be sequenced.

The RNA samples came from wild-type male C57/BL6j mice and transgenic mice over-
expressing DCLK-short with a C57/BL6j background. Tissue samples were collected from
four individuals in each of the two groups by dissecting out both hippocampi from each
mouse. Total RNA was isolated and extracted from the hippocampus cells and sequence
tags were prepared using Illumina’s Digital Gene Expression Tag Profiling Kit according to
the manufacturer’s protocol.

Sequencing was done using Solexa/Illumina’s Whole Genome Sequencer. RNA from
each biological sample was supplied to an individual lane in one Illumina 1G flowcell. The
instrument conducted 18 cycles of base incorporation, then image analysis and basecalling
were performed using the Illumina Pipeline. Sorting and counting the unique tags followed,
and the raw data (tag sequences and counts) are what we will analyze here. 't Hoen et al.
[2008] went on to annotate the tags by mapping them back to the genome. In general, the
mapping of tags is an important and highly non-trivial part of a DGE experiment, but we
shall not deal with this task in this case study.

3.2.2 Reading in the data

The tag counts for the eight individual libraries are stored in eight separate plain text files:

> dir()
[1] "GSE10782_Dataset_Summary.txt" "GSM272105.txt"
[3] "GSM272106.txt" "GSM272318.txt"
[5] "GSM272319.txt" "GSM272320. txt"
[7] "GSM272321.txt" "GSM272322. txt"
[9] "GSM272323.txt" "Targets.txt"

In each file, the tag IDs and counts for each tag are provided in a table. It is best to
create a tab-delimited, plain-text ‘Targets’ file, which, under the headings ‘files’, ‘group’ and
‘description’, gives the filename, the group and a brief description for each sample.
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> targets <- read.delim("targets.txt", stringsAsFactors = FALSE)

> targets

files group description
1 GSM272105.txt DCLK Dclkl transgenic mouse hippocampus
2 GSM272106.txt WT wild-type mouse hippocampus
3 GSM272318.txt DCLK Dclkl transgenic mouse hippocampus
4 GSM272319.txt WT wild-type mouse hippocampus
5 GSM272320.txt DCLK Dclkl transgenic mouse hippocampus
6 GSM272321.txt WT wild-type mouse hippocampus
7 GSM272322.txt DCLK Dclkl transgenic mouse hippocampus
8 GSM272323.txt WT wild-type mouse hippocampus

This object makes a convenient argument to the function readDGE which reads the tables of
counts into our R session, calculates the sizes of the count libraries and produces a DGEList
object for use by subsequent functions. The skip and comment.char arguments are used to
skip over comment lines:

> d <- readDGE(targets, skip = 5, comment.char = "!")
> colnames(d) <- c("DCLK1","WT1","DCLK2","WT2","DCLK3","WT3","DCLK4", "WT4")
> d$samples

files group description lib.size
DCLK1 GSM272105.txt DCLK Dclkl transgenic mouse hippocampus 2685418
WT1  GSM272106.txt WT wild-type mouse hippocampus 3517977
DCLK2 GSM272318.txt DCLK Dclkl transgenic mouse hippocampus 3202246
WT2  GSM272319.txt WT wild-type mouse hippocampus 3558260
DCLK3 GSM272320.txt DCLK Dclkl transgenic mouse hippocampus 2460753
WT3  GSM272321.txt WT wild-type mouse hippocampus 294909
DCLK4 GSM272322.txt DCLK Dclkl transgenic mouse hippocampus 651172
WT4  GSM272323.txt WT wild-type mouse hippocampus 3142280
norm.factors
DCLK1 1
WT1 1
DCLK2 1
WT2 1
DCLK3 1
WT3 1
DCLK4 1
WT4 1
> dim(d)
[1] 844316 8

3.2.3 Filtering

For this dataset there were over 800,000 unique tags sequenced, most of which have a very
small number of counts in total across all libraries. We want to keep tags that are expressed
in at least one of wild-type or transgenic mice. In either case, the tag should be expressed
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in at least four libraries. We seek tags that achieve one count per million for at least four
libraries:

> keep <- rowSums(cpm(d) > 1) >= 4
> d <- d[keep,]
> dim(d)

[1] 44882 8

3.2.4 Data exploration

Before proceeding with the computations for differential expression, it is possible to produce
a plot showing the sample relations based on multidimensional scaling:

> plotMDS(d)

- DCLK

S k4 DCLKRCLK
N
c |
)
2 o |
Q
£ °
[a) —

WT3
<
Clj —
WL
T T T T
-1.0 -0.5 0.0 0.5
Dimension 1

The DCLK and WT samples separate quite nicely.

3.2.5 Estimating the dispersion

First we estimate the common dispersion to get an idea of the overall degree of inter-library
variability in the data:

> d <- estimateCommonDisp(d, verbose=TRUE)
Disp = 0.151 , BCV = 0.389

The biological coefficient of variation is the square root of the common dispersion.

Generally it is important to allow tag-specific dispersion estimates, so we go on to com-
pute empirical Bayes moderated tagwise dispersion estimates. The trend is turned off as not
usually required for SAGE data:
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> d <- estimateTagwiseDisp(d, trend="none")

The following plot displays the estimates:

> plotBCV(d)
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3.2.6 Differential expression

Conduct exact conditional tests for differential expression between the mutant and the wild-
type:

> et <- exactTest(d, pair=c("WT","DCLK"))

Top ten differentially expressed tags:

> topTags(et)
Comparison of groups: DCLK-WT

logFC 1logCPM  PValue FDR
TCTGTACGCAGTCAGGC 9.40 5.36 4.65e-20 2.09e-15
CATAAGTCACAGAGTCG 9.83  3.48 2.28e-18 5.12e-14
CCAAGAATCTGGTCGTA 3.91 3.54 7.67e-15 1.15e-10
GCTAATAAATGGCAGAT 3.19 5.82 5.50e-14 6.17e-10
CTGCTAAGCAGAAGCAA 3.42 3.80 7.45e-14 6.69e-10
AAAAGAAATCACAGTTG 9.49 3.07 1.57e-13 1.17e-09
TTCCTGAAAATGTGAAG 3.66  3.81 2.43e-13 1.56e-09
ATACTGACATTTCGTAT -4.32 4.32 3.50e-13 1.97e-09
CTACTGCAGCATTATCG 3.03  3.95 1.94e-12 9.68e-09
CTGACCCACTCAATGCT 3.50 3.98 6.41e-12 2.88e-08
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The following table shows the individual counts per million for the top ten tags. edgeR
chooses tags that both have large fold changes and are consistent between replicates:

> detags <- rownames (topTags(et)$table)
> cpm(d) [detags, order(d$samples$group)]

DCLK1 DCLK2 DCLK3 DCLK4 WT1 WT2 WT3 WT4

TCTGTACGCAGTCAGGC 59.58 31.54 178.81 50.68 0.000 0.281 0.00 0.00
CATAAGTCACAGAGTCG 24.95 24.05 23.57 10.75 0.000 0.000 0.00 0.00
CCAAGAATCTGGTCGTA 26.07 20.61 19.10 19.96 0.853 1.405 0.00 2.23
GCTAATAAATGGCAGAT 144.11 100.24 53.64 109.03 12.791 8.993 3.39 12.09
CTGCTAAGCAGAAGCAA 28.30 27.48 21.13 23.04 1.990 1.967 0.00 3.50
AAAAGAAATCACAGTTG 11.54 28.11 17.07 4.61 0.000 0.000 0.00 0.00
TTCCTGAAAATGTGAAG 27.56 21.86 34.95 15.36 1.706 2.529 0.00 2.23

ATACTGACATTTCGTAT 1.86 1.56 3.25 1.54 32.121 64.076 13.56 33.10
CTACTGCAGCATTATCG 27.56 30.29 28.45 19.96 3.411 .091 .00 4.14
CTGACCCACTCAATGCT 23.09 23.73 45.92 19.96 3.980 1.686 0.00 2.23

w
o

The total number of differentiallly expressed genes at FDR< 0.05:

> summary(de <- decideTestsDGE(et, p=0.05))

[,1]
-1 540
0 43215
1 1127

A smearplot displays the log-fold changes with the DE genes highlighted:
> detags <- rownames(d) [as.logical(de)]

> plotSmear(et, de.tags=detags)
> abline(h = c(-2, 2), col = "blue")
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Blue lines indicate 4-fold changes.

3.2.7 Setup

This analysis was conducted on:

> sessionInfo()

R version 2.15.0 (2012-03-30)
Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[6] LC_TIME=English_Australia.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods  base

other attached packages:
[1] edgeR_2.7.4 limma_3.13.1

loaded via a namespace (and not attached):
[1] tools_2.15.0
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3.3 RNA-seq of hormone-treated LNCaP cells

3.3.1 Introduction

This case study considers a two-group RNA-seq dataset with relatively low biological vari-
ability. It provides a detailed analysis of data from a study by Li et al. [2008] designed to
address a range of practical issues in RNA-seq experiments:

1. How many annotated genes are detected in a single cell type?

2. What is the number of tags that is necessary for the analysis of differentially regulated
genes under different experimental conditions?

3. To what extent can different mRNA isoforms be detected?

4. How can one quantify alternative splicing by using a single or combination of existing
technologies?

Li et al. [2008] attempt to address all of these issues on an androgen-sensitive prostate
cancer cell model. We are interested primarily in the second question, and the challenge of
identifying differentially regulated genes under different experimental conditions. We will
demonstrate the use of the edgeR package for analyzing RNA-seq data for differential gene
expression.

3.3.2 Source of the data

Li et al. [2008] sequenced poly(A)™ RNA from mock-treated or androgen sensitive LNCaP
cells (a cell line of human cells commonly used in the field of oncology) on the Illumina
1G Genome Analyzer. The researchers used a double-random priming approach that was
capable of generating strand-specific information, although this is not of relevance to our
analysis here. The raw RNA-seq data provided by Li et al. consists of 7 ‘lanes’ of 35bp
reads. ' Approximately 10 million sequence tags were generated from both control and
hormone-treated cells (treated with DHT), and Li et al. [2008]’s analysis suggests that this
tag density is sufficient for quantitative analysis of gene expression.

The 10 million sequenced tags arise from four libraries from control cells and three li-
braries for hormone-treated cells, giving a total of seven libraries to analyse. From Li et al.
[2008] and its companion paper [Li et al., 2006] it is unclear as to whether the treatments
are independent or not. The following analysis shows how a quantitative analysis of gene
expression, focusing on identifying differentially expressed genes, can be conducted for these
seven libraries using edgeR.

!The Illumina instrument requires samples to be placed in a ‘flow cell’ which contains eight ‘lanes’—each
lane has a sample of cDNA and generates a library of sequence counts for that sample.
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3.3.3 Reading in the data and creating a pceList object

Our first task is to load the edgeR package and read the data into R. In this case, the tag
counts for the libraries are stored in a single table in a plain text file pnas_expression.txt, in
which the rows of the table represent tags and the columns represent the different libraries.

To turn the raw RNA-seq data into a table of counts, reads were mapped to the NCBI36
build of the human genome using bowtie, allowing up to two mismatches. Reads which did
not map uniquely were discarded. The number of mapped reads that overlapped ENSEMBL
gene annotations (version 53) was then counted. In counting reads associated with genes,
reads which mapped to non-coding gene regions, such as introns, were included in the count.

Unlike in the other datasets we have look at, counts here are aggregated at the gene, not
at the tag, level.

The files object provides the name of the data file, and makes a convenient argument
to the function read.delim which reads the table of counts into our R session. We assume
that the user can navigate to the directory containing the data file (using, for example, the
setwd command in R).

> library(edgeR)
> library(limma)
> raw.data <- read.delim("pnas_expression.txt")
> names (raw.data)

[1] "ensembl_ID" "lanel" "lane2" "lane3" "lane4d"
[6] "laneb" "lane6" "lane8" "len"

The raw data is stored in a table with columns representing the gene names, the counts
for the seven libraries and a column giving the length of each gene. The gene length is
not currently used by edgeR, but this information could be used in future versions of the
package. In the code below, we assign the counts matrix to an object d with the appropriate
rownames, define the groups to which the samples belong, and then pass these arguments
to DGEList, which calculates the library sizes and constructs a DGEList containing all of the
data we require for the analysis.

3.3.4 Normalization and filtering

We filter out lowly expressed tags and those which are only expressed in a small number of
samples. We keep only those tags that have at least one count per million in at least three
samples. The counts per million can be computed easily using the cpm function in edgeR.

TMM normalization is applied to this dataset to account for compositional difference
between the libraries. As we would hope to see, the normalization factors are very similar
within groups and do not differ too greatly between the Control and DHT samples.

> d <- raw.datal[, 2:8]

> rownames(d) <- raw.datal, 1]
> group <- c(rep("Control", 4), rep("DHT", 3))
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> d <- DGEList(counts = d, group = group)
> dim(d)

[1] 37435 7

> cpm.d <- cpm(d)
> d <- d[ rowSums(cpm.d > 1) >=3, ]
> d <- calcNormFactors(d)

This DGEList is now ready to be passed to the functions that do the calculations to
determine differential expression levels for the genes.

3.3.5 Data exploration

Before proceeding with the computations for differential expression, it is possible to produce
a plot showing the sample relations based on multidimensional scaling, as demonstrated for
the Tag-seq data above. We can produce a multidimensional-scaling (MDS) plot for the
Li Data using the command below. An MDS plot can be used to explore similarities or
dissimilarities between samples in a visual way.

> plotMDS(d, xlim=c(-1,1), labels =

+ c("Controll", "Control2", "Control3", "Control4", "DHT1", "DHT2", "DHT3"))
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In this plot, Dimension 1 clearly separates the Control from the DHT-treated samples.
This shows that the replicates are reasonably similar to each other and that we can expect
to find lots of DE genes. Having now investigated some of the relationships between the
samples we can proceed to the DE analysis of the data.
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3.3.6 Estimating the dispersion

As discussed for the SAGE data, the first major step in the analysis of DGE data using the
NB model is to estimate the dispersion parameter for each tag. The most straight-forward
analysis of SAGE data uses the common dispersion estimate as the dispersion for all tags.
It is simpler than estimating the dispersion separately for each tag, but it does not provides
results as appropriate as using the tagwise dispersions.

> d <- estimateCommonDisp(d, verbose=TRUE)
Disp = 0.02 , BCV = 0.141

The output of estimateCommonDisp is a DGEList object with several new elements. The
element common.dispersion, as the name suggests, provides the estimate of the common
dispersion. The element genes contains the information about gene/tag identifiers.

Here the coefficient of variation of biological variation (square root of the common dis-
persion) is found to be 0.141. We also note that although a common dispersion estimate of
0.02 may seem ‘small’, if a tag has just an average of just 200 counts per sample, then the
estimate of the tag’s variance is 5 times greater than it would be under the Poisson model.

An extension to simply using the common dispersion for each tag is to estimate the
dispersion separately for each tag, while ‘squeezing’ these estimates towards the common
dispersion estimate in order to improve inference by sharing information between tags. This
type of analysis can also be carried out in few steps using the edgeR package.

The function estimateTagwiseDisp produces a DGEList object that contains all of the
elements present in the object produced by estimateCommonDisp, and the tagwise dispersion
estimates (d$tagwise.dispersion).

> d <- estimateTagwiseDisp(d)

As we know, the biological coefficient of variation (BCV) is the square root of the dis-
persion, the distribution of the BCV can be viewed in the following figure, which plots the
BCV against counts per million (i.e. tag abundance). Here we have also allowed for a mean-
dependent trend on the tagwise dispersion values, which can be inspected in the following
figure. As is quite typical for RNA-Seq data, here we see that the BCV estimates decrease
as the tag abundance increases.

> plotBCV(d)
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3.3.7 Differential expression

Once we have the estimates of the dispersion, we can proceed with testing procedures for
determining differential expression. The edgeR package uses an exact test for the negative
binomial distribution, which has strong parallels with Fisher’s exact test, to compute exact
p-values that can be used to assess differential expression. The function exactTest allows the
user to conduct the NB exact test for pairwise comparisons of groups. By default, exactTest
will use the tagwise dispersion estimates if they are found in the object d.

> et <- exactTest(d)

The output below shows that the edgeR package identifies a huge amount of differential
expression between the control group and the DHT-treated group. All of the top genes are
up-regulated in the DHT-treated group compared with the control group.

> topTags(et)
Comparison of groups: DHT-Control

logFC logCPM PValue FDR
ENSG00000151503 5.82 9.71 0.00e+00 0.00e+00

ENSGO0000096060 5.00 9.94 0.00e+00 0.00e+00
ENSG0O0000166451 4.66  8.83 7.19e-229 3.95e-225
ENSG00000127954 8.17 7.20 5.67e-210 2.34e-206
ENSG00000162772 3.32 9.74 1.52e-182 5.00e-179
ENSG00000113594 4.08 8.03 1.62e-153 4.46e-150
ENSG00000116133 3.26  8.78 4.00e-148 9.42e-145
ENSG00000115648 2.63 11.47 1.30e-139 2.68e-136
ENSG00000123983 3.59 8.58 6.20e-138 1.14e-134
ENSG00000116285 4.22 7.35 6.51e-136 1.07e-132
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The table below shows the counts per million for the genes that edgeR has identified as
the most differentially expressed. For these genes there seems to be very large differences
between the groups, suggesting that the DE genes identified are truly differentially expressed,
and not false positives.

> detags <- rownames (topTags (et)$table)
> cpm(d) [detags, ]

lanel lane3 lane4 lane5 lane6 lane8

'_l
©
=
o
N

ENSG00000151503 35.8 30.3 33.98 39.71 1814 1875 1795
ENSGO0000096060 66.4 68.3 72.81 76.06 2180 2032 2128
ENSG00000166451 41.9 44.9 39.52 38.37 960 902 1068
ENSG00000127954 0.0 0.0 2.08 2.02 333 328 323
ENSG00000162772 175.8 176.3 173.35 204.63 1630 1782 1631
ENSG00000113594 37.8 31.1 39.52 28.94 513 523 613
ENSG0O0000116133 99.1 92.5 106.78 96.26 895 878 814
ENSG00000115648 960.6 937.0 913.21 905.36 5336 5420 4799
ENSG00000123983 63.4 65.7 65.18 72.70 743 686 921
ENSG00000116285 18.4 24.2 15.95 21.54 354 343 320

The decideTestsDGE function provides a useful way to summarize DE results after testing,
as shown below.

> summary(decideTestsDGE (et, p.value=0.05))

[,1]
-1 2085
0 12121
1 2288

Of the 4373 tags identified as DE using tagwise dispersions, 2085 are up-regulated in
DHT-treated cells and 2288 are up-regulated in the control cells.

The function plotSmear can be used to generate a plot of the log-fold change against the
log-counts per million for each tag (analogous to an MA-plot in the microarray context). DE
tags are highlighted on the plot.

> detags <- rownames (topTags(et, n = 4373)$table)

> plotSmear(et, de.tags=detags)
> abline(h = c(-2, 2), col = "dodgerblue")
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3.3.8 Setup
The analysis of this section was conducted with:

> sessionInfo()

R version 2.15.0 (2012-03-30)
Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[6] LC_TIME=English_Australia.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods  base

other attached packages:
[1] edgeR_2.7.3 1limma_3.13.1

loaded via a namespace (and not attached):
[1] tools_2.15.0
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3.4 RNA-Seq of oral carcinomas vs matched normal
tissue

3.4.1 Introduction

This section provides a detailed analysis of data from a paired design RNA-seq experiment,
featuring oral squamous cell carcinomas and matched normal tissue from three patients
Tuch et al. [2010]. The aim of the analysis is to detect genes differentially expressed between
tumor and normal tissue, adjusting for any differences between the patients. This provides
an example of the GLM capabilities of edgeR.

RNA was sequenced on an Applied Biosystems SOLiD System 3.0 and reads mapped to
the UCSC hgl8 reference genome Tuch et al. [2010]. Read counts, summarised at the level
of refSeq transcripts, are available in Table S1 of Tuch et al. [2010].

3.4.2 Reading in the data

The read counts for the six individual libraries are stored in one tab-delimited file. To make
this file, we downloaded Table S1 from Tuch et al. [2010], deleted some unnecessary columns
and edited the column headings slightly:

> rawdata <- read.delim("TableS1.txt", check.names=FALSE, stringsAsFactors=FALSE)
> head(rawdata)

RefSeqID Symbol NbrOfExons 8N 8T 33N 33T 51N 51T

1 NM_182502 TMPRSS11B 10 2692 3 7805 321 3372 9
2 NM_003280 TNNC1 6 1684 O 1787 7 4894 559
3 NM_152381 XIRP2 10 9915 15 10396 48 23309 7181
4 NM_022438 MAL 3 2496 2 3585 239 1596 7
5 NM_001100112 MYH2 40 4389 7 7944 16 9262 1818
6 NM_017534 MYH2 40 4402 7 7943 16 9244 1815

For easy manipulation, we put the data into a DGEList object:

> library(edgeR)
> y <- DGEList(counts=rawdatal,4:9], genes=rawdatal,1:3])

3.4.3 Annotation

The study by Tuch et al. [2010] was undertaken a few years ago, so not all of the RefSeq IDs
provided by match RefSeq IDs currently in use. We retain only those transcripts with IDs
in the current NCBI annotation, which is provided by the org.HS.eg.db package:

> library(org.Hs.eg.db)

> idfound <- y$genes$RefSeqID J,inj, mappedRkeys (org.Hs.egREFSER)
> y <- ylidfound,]

> dim(y)
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[1] 15610 6

We add Entrez Gene IDs to the annotation:

> egREFSEQ <- toTable(org.Hs.egREFSEQ)
head (egREFSEQ)

gene_id accession
NM_130786
NP_570602
NM_000014
NP_000005
NR_040112
9 NM_000662

m <- match(y$genes$RefSeqID, egREFSEQ$accession)
y$genes$EntrezGene <- egREFSEQ$gene_id[m]

\
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Now use the Entrez Gene IDS to update the gene symbols:

> egSYMBOL <- toTable(org.Hs.egSYMBOL)
> head (egSYMBOL)

gene_id symbol

1 1 A1BG
2 2 A2M
3 3 A2MP1
4 9 NAT1
5 10 NAT2
6 11 AACP
> m <- match(y$genes$EntrezGene, egSYMBOL$gene_id)
> y$genes$Symbol <- egSYMBOL$symbol [m]
> head(y$genes)

RefSeqID Symbol NbrOfExons EntrezGene
1 NM_182502 TMPRSS11B 10 132724
2 NM_003280 TNNC1 6 7134
3 NM_152381 XIRP2 10 129446
4 NM_022438 MAL 3 4118
5 NM_001100112 MYH2 40 4620
6 NM_017534 MYH2 40 4620

3.4.4 Filtering

Different RefSeq transcripts for the same gene symbol count predominately the same reads.
So we keep one transcript for each gene symbol. We choose the transcript with highest
overall count:
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> o <- order (rowSums (y$counts))
>y <= ylo,]

> d <- duplicated(y$genes$Symbol)
>y <-yl!d,]

> nrow(y)

[1] 10529

Normally we would also filter lowly expressed genes. For this data, all transcripts already
have at least 50 reads for all samples of at least one of the tissues types.
Recompute the library sizes:

> y$samples$lib.size <- colSums (y$counts)
Use Entrez Gene IDs as row names:

> rownames (y$counts) <- rownames(y$genes) <- y$genes$EntrezGene
> y$genes$EntrezGene <- NULL

3.4.5 Normalization

TMM normalization is applied to this dataset to account for compositional difference between
the libraries.

> y <- calcNormFactors (y)

> y$samples

group lib.size norm.factors
8N 1 7413954 1.155
8T 1 7140100 1.062
33N 1 15308019 0.656
33T 1 13704190 0.948
51N 1 19374726 1.089
51T 1 14430515 1.203

3.4.6 Data exploration

The first step of an analysis should be to examine the samples for outliers and for other
relationships. The function plotMDS produces a plot in which distances between samples
correspond to leading biological coefficient of variation (BCV) between those samples:

> plotMDS(y)
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In the plot, dimension 1 separates the tumor from the normal samples, while dimsionion
2 roughly corresponds to patient number. This confirms the paired nature of the samples.
The tumor samples appear more heterogeneous than the normal samples.

3.4.7 The design matrix

Before we fit negative binomial GLMs, we need to define our design matrix based on the
experimental design. Here we want to test for differential expressions between tumour and
normal tissues within patients, i.e. adjusting for differences between patients. In statistical
terms, this is an additive linear model with patient as the blocking factor:

v

Patient <- factor(c(8,8,33,33,51,51))
Tissue <- factor(c(”N”, "T”, "N", ”T", ”N", IITH))
data.frame (Sample=colnames(y),Patient, Tissue)

VvV Vv

Sample Patient Tissue

1 8N 8 N

2 8T 8 T

3 33N 33 N

4 33T 33 T

5 51N 51 N

6 51T 51 T

> design <- model.matrix(“Patient+Tissue)
> rownames (design) <- colnames (y)

This sort of additive model is appropriate for paired designs, or experiments with batch
effects.

3.4.8 Estimating the dispersion

First we estimate the overall dispersion for the dataset, to get an idea of the overall level of
biological variability:
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> y <- estimateGLMCommonDisp(y, design, verbose=TRUE)
Disp = 0.162 , BCV = 0.402

The square root of the common dispersion gives the coefficient of variation of biological
variation. Here the common dispersion is found to be 0.162, so the coefficient of biological
variation is around 0.402:

Then we estimate gene-wise dispersion estimates, allowing a possible trend with averge
count size:

> y <- estimateGLMTrendedDisp(y, design)
> y <- estimateGLMTagwiseDisp(y, design)

3.4.9 Differential expression

Now proceed to determine differentially expressed genes. Fit genewise glms:
> fit <- glmFit(y, design)

Conduct likelihood ratio tests for the group effect and show the top genes.

> 1rt <- glmLRT(y, fit)
> topTags(1lrt)

Coefficient: TissueT

RefSeqID Symbol NbrOfExons logFC logCPM LR  PValue FDR
27179 NM_014440 IL36A 4 -6.13 5.48 108.6 2.00e-25 1.97e-21
4118 NM_022440 MAL 2 -7.16 6.66 107.3 3.74e-25 1.97e-21
5837 NM_005609 PYGM 20 -5.48 6.07 98.5 3.32e-23 1.17e-19
5737 NM_000959 PTGFR 3 -5.21 4.81 94.7 2.23e-22 5.86e-19
132724 NM_182502 TMPRSS11B 10 -7.42 7.72 86.9 1.14e-20 2.40e-17
487 NM_173201 ATP2A1 22 -4.62 6.03 83.9 5.11e-20 8.97e-17
3850 NM_057088 KRT3 9 -5.83 6.57 81.6 1.65e-19 2.48e-16
4606 NM_004533 MYBPC2 28 -5.47 6.57 80.7 2.61e-19 3.44e-16
2027 NM_053013 ENO3 12 -5.18 6.39 74.3 6.55e-18 7.66e-15
1160  NM_001099735 CKMT2 10 -5.50 4.77 73.2 1.15e-17 1.21e-14

The top DE tags have tiny p-values and FDR values, as well as large fold changes.
Here glmLFT has conducted a test for the last coefficient in the linear model, which we
can see is the tumor vs normal tissue effect:

> colnames (design)
[1] "(Intercept)" "Patient33" "Patient51" "TissueT"

The genewise tests for tumor vs normal differential expression, adjusting for differences
between the three patients, can be viewed as analogous to paired t-tests, but generalized to
negative binomial count data.

Here’s a closer look at the counts-per-million in individual samples for the top genes:
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> o <- order(lrt$table$PValue)
> cpm(y) [o[1:10],]

8N 8T 33N 33T 51N 51T
27179  49.5 1.40 119.2 3.284 41.4 0.0693
4118 279.6 0.14 191.9 7.005 69.7 0.4851
5837 188.7 3.08 82.8 1.168 112.1 7.1377
5737 61.4 0.98 18.5 0.876 89.5 3.1184
132724 349.6 0.42 509.9 23.423 174.0 0.6237
487 131.9 3.50 101.4 3.794 116.9 11.1569
3850 144.2 0.98 246.5 26.123 45.7 0.3465
4606 130.3 1.54 31.7 0.438 415.2 31.6690
2027 146.3 0.56 84.1 5.400 249.4 15.4534
1160 48.2 0.14 23.9 0.511 85.9 6.7219

We see that all the top genes have consistent tumour vs normal changes for the three patients.
The total number of differentially expressed genes at 5% FDR is given by:

> summary(de <- decideTestsDGE(lrt))

[,1]
-1 978
0 9247
1 304

Plot log-fold change against log-counts per million, with DE genes highlighted:

> detags <- rownames (y) [as.logical(de)]
> plotSmear (1rt, de.tags=detags)
> abline(h=c(-1, 1), col="blue")

logFC

2 4 6 8 10 12 14

The blue lines indicate 2-fold changes.
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3.4.10 Setup
This analysis was conducted on:

> sessionInfo()

R version 2.15.0 (2012-03-30)
Platform: 1386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[6] LC_TIME=English_Australia.1252

attached base packages:
[1] splines stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] org.Hs.eg.db_2.7.1 RSQLite_0.11.1 DBI_0.2-5
[4] AnnotationDbi_1.18.0 Biobase_2.16.0 BiocGenerics_0.2.0
[7] edgeR_2.7.8 limma_3.13.1

loaded via a namespace (and not attached):
[1] IRanges_1.14.2 stats4_2.15.0 tools_2.15.0

46



3.5 RNA-Seq of pathogen inoculated arabidopsis with
batch effects

3.5.1 Introduction

This case study re-analyses arabidopsis thaliana RNA-Seq data described by Cumbie et al.
[2011]. Summarized count data is available as a data object in the CRAN package NBPSeq
comparing AhrcC challenged and mock-inoculated samples [Cumbie et al., 2011]. Samples
were collected in three batches, and adjustment for batch effects proves to be important.
The aim of the analysis therefore is to detect genes differentially expressed in response to
AhrcC challenge, while correcting for any differences between the batches.

3.5.2 RNA samples

Pseudomonas syringae is a bacterium often used to study plant reactions to pathogens. In
this experiment, six-week old Arabidopsis plants with inoculated with the AhrcC mutant of
P. syringae, after which total RNA was extracted from leaves. Control plants were inoculated
with a mock pathogen.

Three biological replicates of the experiment were conducted at separate times and using
independently grown plants and bacteria.

3.5.3 Sequencing

The six RNA samples were sequenced one per lane on an Illumina Genome Analyzer. Reads
were aligned and summarized per gene using GENE-counter. The reference genome was
derived from the TAIR9 genome release (www.arabidopsis.org).

3.5.4 Filtering and normalization
Load the data from the NBPSeq package:

> library(NBPSeq)
> library(edgeR)
> data(arab)
> head(arab)

mockl mock2 mock3 hrccl hrcc2 hrcc3
AT1G01010 35 7 40 46 64 60
AT1G01020 43 45 32 43 39 49
AT1G01030 16 24 26 27 35 20
AT1G01040 72 43 64 66 25 90
AT1G01050 49 78 90 67 45 60
AT1G01060 0 15 2 0 21 8
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There are two experimental factors, treatment (hrce vs mock) and the time that each replicate
was conducted:

> Treat <- factor(substring(colnames(arab),1,4))
> Treat <- relevel(Treat, ref="mock")
> Time <- factor(substring(colnames(arab),5,5))

There is no purpose in analysing genes that not expressed in either experimental condi-
tion. We consider a gene to be expressed at a reasonable level in a sample if it has at least
two counts for each million mapped reads in that sample. This cutoff is ad hoc, but serves
to require at least 4-6 reads in this case. Since this experiment has three replicates for each
condition, a gene should be expressed in at least three samples if it responds to at least one
condition. Hence we keep genes with at least two counts per million (CPM) in at least three
samples:

> keep <- rowSums (cpm(arab)>2) >= 3
> arab <- arablkeep, ]
> table(keep)
keep
FALSE TRUE
9696 16526

Note that the filtering does not use knowledge of what treatment corresponds to each sample,
so the filtering does not bias the subsequent differential expression analysis.
Create a DGEList and apply TMM normalization:

> y <- DGEList (counts=arab,group=Treat)
> y <- calcNormFactors(y)
> y$samples

group lib.size norm.factors
mockl mock 1896802 0.979

mock2 mock 1898690 1.054
mock3 mock 3249396 0.903
hrccl hrcc 2119367 1.051
hrcc2 hrcc 1264927 1.096
hrcc3 hrcc 3516253 0.932

3.5.5 Data exploration

An MDS plot shows the relative similarities of the six samples. Distances on an MDS plot of
a DGEList object correspond to leading BC'V, the biological coefficient of variation between
each pair of samples using the 500 genes with most heterogeneous expression.

> plotMDS(y, main="BCV distance")
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For comparision, we also make an MDS plot with distances defined in terms of shrunk fold
changes.

> els <- y$samples$lib.size * y$samples$norm.factors
> aug.count <- 2+*ncol(arab)*els/sum(els)
> 1ogCPM <- log2( t(t(arab)+aug.count) )
> plotMDS(1logCPM, main="logFC distance")
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The two plots give similar conclusions. Each pair of samples extracted at each time tend
to cluster together, suggesting a batch effect. The hrce treated samples tend to be above
the mock samples for each time, suggesting a treatment effect within each time. The two
samples at time 1 are less consistent than at times 2 and 3.

To examine further consistency of the three replicates, we compute predictive log2-fold-
changes (logFC) for the treatment separately for the three times.

> design <- model.matrix("Time+Time:Treat)
> logFC <- predFC(y,design,prior.count=1)/log(2)

The logFC at the three times are positively correlated with one another, as we would hope:

> cor(logFC[,4:6])

Timel:Treathrcc Time2:Treathrcc Time3:Treathrcc

Timel:Treathrcc 1.000 0.241 0.309
Time2:Treathrcc 0.241 1.000 0.369
Time3:Treathrcc 0.309 0.369 1.000

The correlation is highest between times 2 and 3.
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3.5.6 The design matrix

Before we fit GLMs, we need to define our design matrix based on the experimental design.
We want to test for differential expressions between AhrcC challenged and mock-inoculated
samples within batches, i.e. adjusting for differences between batches. In statistical terms,
this is an additive linear model. So the design matrix is created as:

> design <- model.matrix("Time+Treat)
> rownames (design) <- colnames (y)

> design

(Intercept) Time2 Time3 Treathrcc
mock1 1 0 0 0
mock?2 1 1 0 0
mock3 1 0 1 0
hrccil 1 0 0 1
hrcc2 1 1 0 1
hrcc3 1 0 1 1
attr(,"assign")
[11 o112

attr(,"contrasts")
attr(,"contrasts")$Time
[1] "contr.treatment"

attr(,"contrasts")$Treat
[1] "contr.treatment"

3.5.7 Estimating the dispersion
Estimate the average dispersion over all genes:
> y <- estimateGLMCommonDisp(y, design, verbose=TRUE)

Disp = 0.0706 , BCV = 0.266

The square root of dispersion is the coefficient of biological variation (BCV). Here the com-
mon dispersion is 0.0706, so the BCV is 0.266. The common BCV is on the high side,
considering that this is a designed experiment using genetically identical plants.

Now estimate genewise dispersion estimates, allowing for a possible abundance trend:

> y <- estimateGLMTrendedDisp(y, design)
> y <- estimateGLMTagwiseDisp(y, design, prior.n=3)

Here we have chosen prior.n slightly smaller than the default, which is 10 in this case, after
inspecting the following BCV plot. The genewise dispersions show a decreasing trend with
expression level. At low logCPM, the dispersions are very large indeed:

> plotBCV(y)
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3.5.8 Differential expression
Now proceed to determine differentially expressed genes. Fit genewise glms:

> fit <- glmFit(y, design)

First we check whether there was a genuine need to adjust for the experimental times. We
do this by testing for differential expression between the three times. There is considerable
differential expression, justifying our decision to adjust for the batch effect:

> Irt <- glmLRT(y, fit, coef=2:3)
> topTags(1lrt)

Coefficient: Time2 Time3

logFC.Time2 logFC.Time3 logCPM LR  PValue FDR
AT5G66800 5.59 -1.075 5.43 271 1.61e-59 2.66e-55
AT5G31702 5.84 -2.605 5.90 223 3.01e-49 2.49e-45
AT5G23000 5.62 -0.289 5.68 199 6.28e-44 3.46e-40
AT3G33004 4.82 -1.764 5.60 195 4.38e-43 1.81e-39
AT2G45830 5.43 -0.596 4.65 181 4.01e-40 1.33e-36
AT2G11230 3.50 -1.532 5.56 166 8.64e-37 2.38e-33
AT2GO7782 3.49 -1.618 5.23 151 1.59e-33 3.75e-30
AT2G23910 3.60 -0.386 5.07 141 1.95e-31 4.03e-28
AT5G35736 5.44 -0.994  4.57 134 7.95e-30 1.42e-26
AT2G27770 2.47 -1.571 5.37 134 8.60e-30 1.42e-26

> FDR <- p.adjust(lrt$table$PValue, method="BH")
> sum(FDR < 0.05)

[1] 3276
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Now conduct likelihood ratio tests for the pathogen effect and show the top genes. By
default, the test is for the last coefficient in the design matrix, which in this case is the
treatment effect:

> 1rt <- glmLRT(y, fit)
> topTags(1lrt)

Coefficient: Treathrcc

logFC logCPM LR  PValue FDR
AT2G19190 4.50  7.37 255 2.38e-57 3.93e-53
AT5G48430 6.34 6.71 231 2.86e-52 2.36e-48
AT2G39530 4.34 6.70 220 9.01e-50 4.96e-46
AT2G39380 4.95 5.75 201 1.01e-45 4.19e-42
AT3G46280 4.78 8.09 194 4.76e-44 1.57e-40
AT1G51800 3.97 7.70 192 9.60e-44 2.64e-40
AT2G44370 5.43 5.17 174 1.20e-39 2.83e-36
AT1G51850 5.33 5.39 167 2.80e-38 5.79e-35
AT1G51820 4.34 6.36 162 5.07e-37 9.31e-34
AT3G55150 5.80 4.86 158 2.74e-36 4.53e-33

Here’s a closer look at the individual counts-per-million for the top genes. The top genes are
very consistent across the three replicates:

> top <- rownames (topTags(lrt)$table)
> cpm(y) [top,order (y$samples$group)]
hrccl hrcc2 hrce3 mockl mock2 mock3

AT2G19190 358.6 279.1 327.3 16.343 12.64 12.00
AT5G48430 198.6 344.7 116.6 4.218 4.74 0.00
AT2G39530 166.1 210.3 226.7 6.854 9.48 12.00
AT2G39380 96.3 92.5 126.0 2.109 3.16 4.31
AT3G46280 404.4 410.3 765.3 18.452 17.91 16.62
AT1G51800 380.8 381.0 432.6 28.469 17.38 27.70
AT2G44370 59.9 73.5 80.2 2.109 1.05 1.54
AT1G51850 82.1 61.7 101.5 1.054 1.05 3.39
AT1G51820 127.4 171.6 178.3 9.490 7.90 5.54
AT3G55150 45.3 71.2 60.0 0.527 1.06 1.23

The total number of genes significantly up-regulated or down-regulated at 5% FDR is
summarized as follows:

> summary(dt <- decideTestsDGE(1lrt))

[,1]
-1 1291
0 13959
1 1276

We can pick out which genes are DE:

> isDE <- as.logical(dt)
> DEnames <- rownames (y) [isDE]
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Then we can plot all the logFCs against average count size, highlighting the DE genes:

> plotSmear (1rt, de.tags=DEnames)
> abline(h=c(-1,1), col="blue")

logFC

0 2 4 6 8 10 12 14

The blue lines indicate 2-fold up or down.

3.5.9 Setup

This analysis was conducted on:

> sessionInfo()

R version 2.15.0 (2012-03-30)
Platform: i1386-pc-mingw32/i1386 (32-bit)

locale:

[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C

[6] LC_TIME=English_Australia.1252

attached base packages:
[1] splines stats graphics grDevices utils datasets methods

[8] base

other attached packages:
[1] edgeR_2.7.8 limma_3.13.1 NBPSeq_0.1.4 gvalue_1.30.0

loaded via a namespace (and not attached):
[1] tcltk_2.15.0 tools_2.15.0
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