An Introduction to ShortRead

Martin Morgan
Modified: 28 September 2010. Compiled: May 24, 2012

> library("ShortRead")

The ShortRead package aims to provide key functionality for input, quality
assurance, and basic manipulation of ‘short read” DNA sequences such as those
produced by Solexa, 454, and related technologies, including flexible import of
common short read data formats. This vignette introduces key functionality.

Support is most fully developed for Solexa; contributions from the commu-
nity are welcome.

1 A first workflow

This section walks through a simple work flow. It outlines the hierarchy of files
produced by Solexa. It then illustrates a common way for reading short read
data into R.

1.1 SolexaPath: navigating Solexa output

SolexaPath provides functionality to navigate files produced by Solexa Genome
Analyzer pipeline software. A typical way to start a ShortRead session is to
point to the root of the output file hierarchy. The ShortRead package includes
a very small subset of files emulating this hierarchy. The root is found at

> exptPath <- system.file("extdata", package="ShortRead")

Usually exptPath would be a location on the users’ file system. Key components
of the hierarchy are parsed into R with

> sp <- SolexaPath(exptPath)
> sp

class: SolexaPath

experimentPath: /tmp/RtmprQQVMr/Rinst107d3b39e8fe/ShortRead/extdata
dataPath: Data

scanPath: NA

imageAnalysisPath: Cl1-36Firecrest

baseCallPath: Bustard

analysisPath: GERALD

SolexaPath scans the directory hierarchy to identifying useful directories. For
instance, image intensity files are in the ‘Firecrest’ directory, while summary
and alignment files are in the analysis directory

> imageAnalysisPath (sp)

[1] "/tmp/RtmprQQVMr/Rinst107d3b39e8fe/ShortRead/extdata/Data/C1-36Firecrest"

> analysisPath(sp)

[1] "/tmp/RtmprQQVMr/Rinst107d3b39e8fe/ShortRead/extdata/Data/C1-36Firecrest/Bustard/GERALD'

Most functionality in ShortRead uses baseCallPath or analysisPath. Solexa
documentation provides details of file content. SolexaPath accepts additional
arguments that allow individual file paths to be specified.

Many functions for Solexa data input ‘know’ where appropriate files are
located. Specifying sp is often sufficient for identifying the desired directory
path. Examples of this are illustrated below, with for instance readAligned
and readFastq.

Displaying an object, e.g., sp, provides hints at how to access information
in the object, e.g., analysisPath. This is a convention in ShortRead.

1.2 readAligned: reading aligned data into R

Solexa s_N_export.txt files (_N_ is a placeholder for the lane identifier) rep-
resent one place to start working the short read data in R. These files result
from running ANALYSIS eland_extended in the Solexa Genome Analyzer. The
files contain information on all reads, including alignment information for those
reads successfully aligned to the genome. ShortRead parses additional align-
ment files, including MAQ binary and text (mapview) files and Bowtie text files;
consult the help page for readAligned for details. ShortRead flexibly parses
many other Solexa files; aligned reads represent just one entry point.

To read a single s_N_export.txt file into R, for instance from lane 2, use
the command

> aln <- readAligned(sp, "s_2_export.txt")
> aln

class: AlignedRead
length: 1000 reads; width: 35 cycles

chromosome: NM NM ... chrb.fa 29:255:255

position: NA NA ... 71805980 NA

strand: NA NA ... + NA

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

This illustrates the convention used for identifying files for input into R and used
by ShortRead. The function takes a directory path and a pattern (as a regular

expression, similar to the R function 1list.files) of file names to match in the
directory. Usually, all files matching the pattern are read into a single R object;
this behavior is desirable for several of the input functions in ShortRead. In the
present case the usual expectation is that a single s_N_export.txt file will be
read into a single R object, so the pattern argument will identify a single file.

1.2.1 Input of other aligned read files

ELAND software provides access to much interesting data, in addition to align-
ments, but if the interest is in aligned reads then input may come from any of a
number of different software packages. Many of these alignments can be input
with ShortRead.

Bowtie is a very fast aligner, taking a few tens of minutes to align entire
lanes of reads to reference genomes. Use readAligned with the type="Bowtie"
argument to input alignments. Reading Bowtie output using readAligned pro-
duces the same class of object as reading ELAND output. Like ELAND, Bowtie
provides information on short read, quality, chromosome, position, and strand;
there is no information on alignment quality avaiable from Bowtie. ELAND and
Bowtie provide very different auxiliary information. Consult the readAligned
and help page Bowtie manual for additional detail.

MAQ is another poplar aligner. ShortRead can input MAQ binary or text for-
mats (see the arguments type="MAQMapShort", "MAQMap", and "MAQMapview").
As with Bowtie, MAQ provides essential information about reads and their alig-
ments, plus additional information that differs somewhat from the additional
information provided by ELAND.

Alignment information may come in a variety of different text-based formats.
Not all of these will be supported by ShortRead. There are a number of tools
available to input this into R.

A basic strategy is involves two passes over the data, followed by synthesis
of results into an AlignedRead object. First, input alignment data using func-
tions such as read.table. Use the colClasses argument to ‘mask-out’ (i.e.,
avoid importing) DNA and quality sequences. Next, use readXStringColumns
or readFastq to import the short read and quality information. Finally, use
the alignment data and reads as arugments to the AlignedRead function to
synthesize the input. The following illustrates use of readXStringColumns and
readFastq. These functions receive further attention below.

1.2.2 Cautions

There are several confusing areas of input. (1) Some alignment programs and
genome resources start numbering nucleotides of the subject sequence at 0,
whereas others start at 1. (2) Some alignment programs report matches on the
minus strand in terms of the ‘left-most’ position of the read (i.e., the location of
the 3’ end of the aligned read), whereas other report ‘five-prime”matches (i.e.,
in terms of the 5’ end of the read), regardless of whether the alignment is on
the plus or minus strand. (3) Some alignment programs reverse complement the

sequence of reads aligned to the minus strand. (4) Base qualities are sometimes
encoded as character strings, but the encoding differs between ‘fastq’ and ‘solexa
fastq’. It seems that all combinations of these choices are common ‘in the wild’.

The help page for readAligned attempts to be explicit about how reads are
formatted. Briefly:

e Subject sequence nucleotides are numbered starting at 1, rather than zero.
readAligned adjusts the coordinate system of input reads if necessary
(e.g., reading MAQ alignments).

e Alignments on the minus strand are reported in ‘left-most’ coordinates
systems.

e ELAND and Bowtie alignments on the minus strand are not reverse com-
plemented.

e Character-encoded base quality scores are intrepreted as the default for
the software package being parsed, e.g., as ‘Solexa fastq’ for ELAND. The
object returned by quality applied to an AlignedRead object is either
FastqQuality or SFastqQuality.

Alignment programs sometimes offer the opportunity to custommize output;
such customization needs to be accomodated when reads are input using Short-
Read.

1.2.3 Filtering input

Downstream analysis may often want to use a well-defined subset of reads. These
can be selected with the filter argument of readAligned. There are built-in
filters, for instance to remove all reads containing an N nucleotide, to select just
those reads that map to the genome file chr5. fa, to select reads on the + strand,
or to ‘level the playing field’ by selecting only a single read for any chromosome,
position and strand:

> nfilt <- nFilter()

> cfilt <- chromosomeFilter('chr5.fa')

> sfilt <- strandFilter("+")

> ofilt <- occurrenceFilter (withSread=FALSE)

Here we select only those reads that map to chr5.fa:
> chrb5 <- readAligned(sp, "s_2_export.txt", filter=cfilt)

Filters can be ‘composed’ to act in unison, e.g., selecting only reads mapping to
chrb.fa and on the + strand:

> filt <- compose(cfilt, sfilt)
> chrbplus <- readAligned(sp, "s_2_export.txt", filter=filt)

Filters can subset aligned reads at other stages in the work flow, using a paradigm
like the following:

> chr5 <- aln[cfilt(aln)]

Users can easily create their own filter by writing a function that accepts an
object of class AlignedRead, and returns a logical vector indicating which reads
in the object pass the filter. See the example on the srFilter help page for
details, and for information about additional built-in filters.

1.3 Exploring ShortRead objects

aln is an object of AlignedRead class. It contains short reads and their (cali-
brated) qualities:

> sread(aln)

A DNAStringSet instance of length 1000
width seq
[1] 35 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC
[2] 35 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT
[3] 35 ACCAAAAACACCACATACACGAGCAACACACGTAC
[4] 35 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA
[5] 35 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA
(6] 35 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA
[7] 35 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT
(8] 35 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG
[9] 35 AATGACCGATAATTAAAAATAAAATCTTTGCATAT

[992] 35 GAAAAAAAAACAGAACGATGCGTTCATCCACGGCA
[993] 35 TTATCCCTGGTTTCTCCTTGTGACTCTCTGTTGTC
[994] 35 AGAGCTTTAGGCAGCTCGGTGTGTCCTTTCTATTC
[995] 35 TATATTGCCCCCTGCAGCAATGCCCCTTACCCGTC
[996] 35 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG
[997] 35 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT
[998] 35 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA
[999] 35 ATCTACATTAAGGTCAATTACAATGATAAATAAAA
[1000] 35 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC

> quality(aln)

class: SFastqQuality
quality:
A BStringSet instance of length 1000
width seq

[1] 35 YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH
[2] 35 ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO
[3] 35 LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE
[4] 35 JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ
[5] 35 LLLILITIDLLHLLLLLLLLLLLALLLLHLLLLEL

(6] 35 YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD

[71 35 Z777777777Y77777Y7777ZYY7777777ZUUUUU
[8] 35 Z7777777UZ7ZUZ772777772777ZYZYZZZUUHUH
9] 35 7Z77777Y77Y7777Y77777777777Z7ZXUNUUU

[992] 35 YYYVVVSSGVSQIGIUSFFYIHLUUHFQXULPLLH

[993] 35 Z777777777777777777ZY7X7ZZ777ZZSUUJUU
[994] 35 YIOSMSGSYOSUIYUSUDLIWUQIQQUUUFPLENG
[995] 35 ZZ77777777777Y7ZXYZZZXZ7Z7ZX777ZSZUUUUU

[996] 35 ZZZ7ZZ7Z7ZZYZZYUYZYUYZKYUDUZIYYODJGUGAA
[997] 35 ZZ7777777777777Z7ZZZYZZYXXZYSSXXUUHHQ
[998] 35 ZZZ7Z77777777277Z7ZYZZZZYZZZZYZZXZUUUUS
[999] 35 ZZZZZZ7Z7Z7ZZZYXZYZYZZYZYZZXKZSYXUUNUN
[1000] 35 7Z7777777777777Y777777Z7Z7ZYYSYSZXUUUUU

The short reads are stored as a DNAStringSet class. This class is defined
in Biostrings. It represents DNA sequence data relatively efficiently. There
are a number of very useful methods defined for DNAStringSet. Some of these
methods are illustrated in this vignette. Other methods are described in the
help pages and vignettes of the Biostrings and IRanges packages.

Qualities are represented as SFastqQuality-class objects. The qualities in the
aln object returned by readAligned are of class BStringSet. The BStringSet
class is also defined in Biostrings, and shares many methods with those of
DNAStringSet.

The aln object contains additional information about alignments. Some of
this additional information is expected from any alignment, whether generated
by Solexa or other software. For example, aln contains the particular sequence
within a target (e.g., chromosomes in a genome assembly), the position (e.g.,
base pair coordinate), and strand to which the alignment was made, and the
quality of the alignment. The display of aln suggests how to access this infor-
mation. For instance, the strand to which alignments are made can be extracted
(as a factor with three levels and possibly NA; the level "*" corresponds to reads
for which strand alignment is intrinsically not meaningful, whereas NA represents
the traditional concept of information not available, e.g., because the read did
not align at all) and tabulated using familiar R functions.

> whichStrand <- strand(aln)
> class(whichStrand)

[1] "factor"
> levels(whichStrand)
[1] |l+|| n_n Il*ll

> table(whichStrand, useNA="ifany")

whichStrand
+ - * <NA>
203 203 0 594

This shows that about 59.4% of reads were not aligned (level NA).
The aln object contains information in addition to that expected of all align-
ments. This information is accessible using alignData:

> alignData(aln)

An object of class "AlignedDataFrame"
readName: 1 2 ... 1000 (1000 total)
varLabels: run lane ... contig (7 total)
varMetadata: labelDescription

Users familiar with the EzpressionSet class in Biobase will recognize this as an
AnnotatedDataFrame-like object, containing a data frame with rows for each
short read. The AlignedDataFrame contains additional meta data about the
meaning of each column. For instance, data extracted from the Solexa export
file includes:

> varMetadata(alignData(aln))

labelDescription
run Analysis pipeline run
lane Flow cell lane
tile Flow cell tile
X Cluster x-coordinate
vy Cluster y-coordinate
filtering Read successfully passed filtering?
contig Contig

Guides to the precise meaning of this data are on the help page for the Aligne-
dRead class, and in the manufacturer manuals.

Simple information about the alignments can be found by querying this
object. For instance, unaligned reads have NA as their position, and reads passing
Solexa ‘filtering’ (their base purity and chastity criteria) have a component of
their auxiliary alignData set to "Y". Thus the fraction of unaligned reads and
reads passing filtering are

> mapped <- !is.na(position(aln))
> filtered <- alignData(aln)[["filtering"]] =="Y"
> sum(!mapped) / length(aln)

[1] 0.594
> sum(filtered) / length(aln)

[1] 0.764

Extracting the reads that passed filtering but were unmapped is accom-
plished with

> failedAlign <- aln[filtered & !mapped]
> failedAlign

class: AlignedRead
length: 400 reads; width: 35 cycles

chromosome: NM NM ... NM 29:255:255

position: NA NA ... NA NA

strand: NA NA ... NA NA

alignQuality: NumericQuality

alignData varLabels: run lane ... filtering contig

Alternatively, we can extract just the short reads, and select the subset of those
that failed filtering.

> failedReads <- sread(aln)[filtered & !mapped]

1.4 Quality assessment

The ga function provides a convenient way to summarize read and alignment
quality. One way of obtaining quality assessment results is

> gaSummary <- qga(sp)

The ga object is a list-like structure. As invoked above and currently imple-
mented, qa visits all s_N_export.txt files in the appropriate directory. It ex-
tracts useful information from the files, and summarizes the results into a nested
list-like structure.

Evaluating qa for a single lane can take several minutes. For this reason a
common use case is to evaluate qa and save the result to disk for later use, e.g.,

> save(qaSummary, file="/path/to/file.rda")

A feature of ShortRead is the use of Rmpi or multicore and coarse-grained
parallel processing when available. Thus commands such as

> library ("Rmpi")

> mpi.spawn.Rslaves (nsl=8)
> gaSummary <- ga(sp)

> mpi.close.Rslaves()

or

> library(multicore)
> gaSummary <- gqa(sp)

will distribute the task of processing each lane to each of the Rmpi workers
or multicore cores. In the Rmpi example, all 8 lanes of a Solexa experiment
are processed in the time take to process a single lane. multicore may impose
significant memory demands, as each core will attempt to load a full lane of
data.

The elements of the quality assessment list are suggested by the output:

> qaSummary

class: SolexaExportQA(11)
QA elements (access with qal[["elt"]]):
readCounts: data.frame(1l 3)
baseCalls: data.frame(l 5)
readQualityScore: data.frame(1536 4)
baseQuality: data.frame(94 3)
alignQuality: data.frame(69 3)
frequentSequences: data.frame(150 4)
sequenceDistribution: data.frame(11l 4)
perCycle: list(2)
baseCall: data.frame(173 4)
quality: data.frame(648 5)
perTile: 1list(2)
readCounts: data.frame(3 4)
medianReadQualityScore: data.frame(3 4)
depthOfCoverage: data.frame(2 4)
adapterContamination: data.frame(l 1)

For instance, the count of reads in each lane is summarized in the readCounts
element, and can be displayed as

> qaSummary[["readCounts"]]

read filtered aligned
s_2_export.txt 1000 764 406

> qaSummary[["baseCalls"]]

A C G T N
s_2_export.txt 9537 7480 7406 10537 40

The readCounts element contains a data frame with 1 row and 3 columns
(these dimensions are indicated in the parenthetical annotation of readCounts
in the output of qgaSummary). The rows represent different lanes. The columns
indicated the number of reads, the number of reads surviving the Solexa filtering
criteria, and the number of reads aligned to the reference genome for the lane.
The baseCalls element summarizes base calls in the unfiltered reads.

Other elements of qaSummary are more complicated, and their interpretation
is not directly obvious. Instead, a common use is to forward the results of qa
to a report generator.

> report (qaSummary, dest="/path/to/report_directory")

The report includes R code that can be used to understand how SolexaExportQA-
class objects can be processed; reports are generated as HTML suitable for
browser viewing.

The functions that produce the report tables and graphics are internal to
the package. They can be accessed through calling ShortRead:::functionName
where functionName is one of the functions listed below, organized by report
section.

Run Summary : .ppnCount, .df2a, .laneLbl, .plotReadQuality
Read Distribution : .plotReadOccurrences, .freqSequences
Cycle Specific : .plotCycleBaseCall, .plotCycleQuality

Tile Performance : .atQuantile, .colorkeyNames, .plotTileLocalCoords, .tile-
Geometry, .plotTileCounts, .plotTileQualityScore

Alignment : .plotAlignQuality
Multiple Alignment : .plotMultipleAlignmentCount
Depth of Coverage : .plotDepthOfCoverage

Adapter Contamination : .ppnCount

2 Using ShortRead for data exploration
2.1 Datal/O

ShortRead provides a variety of methods to read data into R, in addition to
readAligned.

2.1.1 readXStringColumns

readXStringColumns reads a column of DNA or other sequence-like data. For
instance, the Solexa files s_N_export.txt contain lines with the following in-
formation:

> pattern <- "s_2_export.txt"
> f1 <- file.path(analysisPath(sp), pattern)
> strsplit(readLines(fl, n=1), "\t")

[[11]
[1] "HWI-EAS88"
[2] n 3 n
[3] n 2 n
[4] n 1 n

10

[5] "451"

[6] "945"

[7] nn

[8] "

[9] "CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC"
[10] "YQMIMIMMLMMIGIGMFICMFFFIMMHITHAAGAH"
[11] "NM"

[12] nn

[13] "

[14] "

[15] "

[16] "

[17] nn

(18] "

[19] "

[20] "

[21] "

[22] "N"

> length(readLines(f1))
[1] 1000

Column 9 is the read, and column 10 the ASCII-encoded Solexa Fastq quality
score; there are 1000 lines (i.e., 1000 reads) in this sample file.

Suppose the task is to read column 9 as a DNAStringSet and column 10
as a BStringSet. DNAStringSet is a class that contains ITUPAC-encoded DNA
strings (IUPAC code allows for nucleotide ambiguity); BStringSet is a class that
contains any character with ASCII code 0 through 255. Both of these classes
are defined in the Biostrings package. readXStringColumns allows us to read
in columns of text as these classes.

Important arguments for readXStringColumns are the dirPath in which to
look for files, the pattern of files to parse, and the colClasses of the columns
to be parsed. The dirPath and pattern arguments are like 1ist.files. col-
Classes is like the corresponding argument to read.table: it is a list specifying
the class of each column to be read, or NULL if the column is to be ignored. In
our case there are 21 columns, and we would like to read in columns 9 and 10.
Hence

> colClasses <- rep(list(NULL), 21)
> colClasses[9:10] <- c("DNAString", "BString")
> names(colClasses) [9:10] <- c("read", "quality")

We use the class of the type of sequence (e.g., DNAString or BString), rather
than the class of the set that we will create (e.g., DNAStringSet or BStringSet).
Applying names to colClasses is not required, but makes subsequent manipu-
lation easier. We are now ready to read our file

11

> cols <- readXStringColumns(analysisPath(sp), pattern, colClasses)
> cols

$read
A DNAStringSet instance of length 1000
width seq
[1] 35 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC
[2] 35 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT
[3] 35 ACCAAAAACACCACATACACGAGCAACACACGTAC
[4] 35 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA
(5] 35 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA
(6] 35 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA
[7] 35 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT
(8l 35 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG
9] 35 AATGACCGATAATTAAAAATAAAATCTTTGCATAT

[992] 35 GAAAAAAAAACAGAACGATGCGTTCATCCACGGCA
[993] 35 TTATCCCTGGTTTCTCCTTGTGACTCTCTGTTGTC
[994] 35 AGAGCTTTAGGCAGCTCGGTGTGTCCTTTCTATTC
[995] 35 TATATTGCCCCCTGCAGCAATGCCCCTTACCCGTC
[996] 35 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG
[997] 35 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT
[998] 35 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA
[999] 35 ATCTACATTAAGGTCAATTACAATGATAAATAAAA
[1000] 35 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC

$quality
A BStringSet instance of length 1000
width seq
[1] 35 YQMIMIMMLMMIGIGMFICMFFFIMMHITIHAAGAH
[2] 35 ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO
(3] 35 LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE
[4] 35 JJIYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ
(5] 35 LLLILITIDLLHLLLLLLLLLLLALLLLHLLLLEL
(6] 35 YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD

[7] 35 ZZZ7777777Y7777Z7ZYZZZZYYZZ777ZZZUUUUU
[8] 35 ZZZ7Z7Z7Z7Z7ZUZ7UZZ7777227Z7Z7Z7ZZYZYZZZUUHUH
[9] 35 ZZ7Z7777Y77Y7777Y7777777777777ZXUNUUU

[992] 35 YYYVVVSSGVSQIGIUSFFYIHLUUHFQXULPLLH

[993] 35 Z777777777777777777ZY7ZX7ZZ777ZZSUUJUU
[994] 35 YIOSMSGSYOSUIYUSUDLIWUQIQQUUUFPLENG
[995] 35 7777777777777Y7ZXYZZ7ZX777X777SZUUUUU

[996] 35 ZZZZZZZYZZYUYZYUYZKYUDUZIYYODJGUGAA
[997] 35 ZZ77777777777777ZZYZZYXXZYSSXXUUHHQ
[998] 35 Z77777777777777Y777Z7ZY777ZZYZZXZUUUUS

12

[999] 35 Z7727777777Z7ZYXZYZYZZYZYZZXKZSYXUUNUN
[1000] 35 Z7Z777777777777ZY77777ZZZYYSYSZXUUUUU

The file has been parsed, and appropriate data objects were created.

A feature of readXStringColumns and other input functions in the Short-
Read package is that all files matching pattern in the specified dirPath will be
read into a single object. This provides a convenient way to, for instance, parse
all tiles in a Solexa lane into a single DNAStringSet object.

There are several advantages to reading columns as XStringSet objects.
These are more compact than the corresponding character representation:

> object.size(cols$read)

50840 bytes

> object.size(as.character(cols$read))
94280 bytes

They are also created much more quickly. And the DNAStringSet and related
classes are used extensively in ShortRead, Biostrings, BSgenome and other pack-
ages relevant to short read technology.

2.1.2 readFastq

readXStringColumns should be considered a ‘low-level’ function providing easy
access to columns of data. Another flexible input function is readFastq. Fastq
files combine reads and their base qualities in four-line records such as the
following:

> fqpattern <- "s_1_sequence.txt"
> f1 <- file.path(analysisPath(sp), fqpattern)
> readLines (f1, 4)

[1] "@HWI-EAS88_1_1_1_1001_499"
[2] "GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT"
[3] "+HWI-EAS88_1_1_1_1001_499"

(4] "111111111111Y1Y1111111111]1]1VCHVMPLAS"

The first and third lines are an identifier (encoding the machine, run, lane, tile,
x and y coordinates of the cluster that gave rise to the read, in this case). The
second line is the read, and the fourth line the per-base quality. Files of this
sort can be read in as

> fq <- readFastq(sp, fqpattern)
> fq

class: ShortReadQ
length: 256 reads; width: 36 cycles

13

This resulting object (of class ShortReadQ) contains the short reads, their qual-
ities, and the identifiers:

> reads <- sread(fq)
> qualities <- quality(fq)
> class(qualities)

[1] "SFastqQuality"
attr(, "package")
[1] "ShortRead"

> id(fq)

A BStringSet instance of length 256
width seq
[1] 24 HWI-EAS88_1_1_1_1001_499

[2] 23 HWI-EAS88_1_1_1_898_392
[3] 23 HWI-EAS88_1_1_1_922_465
[4] 23 HWI-EAS88_1_1_1_895_493

[5] 23 HWI-EAS88_1_1_1_953_493

[6] 23 HWI-EASS88_1_1_1_868_763

[71] 23 HWI-EASS88_1_1_1_819_788
[8] 23 HWI-EAS88_1_1_1_801_123
[9] 23 HWI-EAS88_1_1_1_885_419

[248] 23 HWI-EAS88_1_1_1_603_569

[249] 23 HWI-EAS88_1_1_1_718_225

[250] 23 HWI-EAS8S8_1_1_1_406_412
[251] 23 HWI-EAS88_1_1_1_549_119
[252] 23 HWI-EAS88_1_1_1_693_898
[253] 23 HWI-EAS88_1_1_1_183_559
[254] 23 HWI-EAS88_1_1_1_314_891
[255] 23 HWI-EAS88_1_1_1_884_867
[256] 23 HWI-EAS88_1_1_1_878_444

Notice that the class of the qualities is SFastqQuality, to indicate that these
are quality scores derived using the Solexa convention, rather than ordinary
BStringSet objects.

The object has essential operations for convenient manipulation, for instance
simultaneously forming the subset of all three components:

> fql1:5]

class: ShortReadQ
length: 5 reads; width: 36 cycles

14

2.1.3 Additional input functions

ShortRead includes additional functions to facilitate input. For instance, read-
Prb reads Solexa _prb.txt files. These files contain base-specific quality in-
formation, and readPrb returns an SFastqQuality-class object representing the
fastg-encoded base-specific quality scores of all reads.

As a second example, the s_N_LLLL_int.txt files in the imageAnalysis-
Path directory contain lines, one line per read, of nucleotide intensities. Each
line contain lane, tile, X and Y coordinate information, followed by quadru-
plets of intensity values. There are as many quadruplets as there are cycles.
Each quadruplet represents the intensity of the A, C, G, and T nucleotide at the
corresponding cycle. These (and their error estimates, if available), are input
with
> int <- readIntensities(sp, withVariability=FALSE)

> int

class: Solexalntensity

dim: 256 4 36

readInfo: SolexalntensityInfo
intensity: ArraylIntensity
measurementError: not available

An interesting exercise is to display the intensities at cycle 2 (below) and to
compare these to cycle, e.g., 30.

> print (splom(intensity(int)[[,,2]], pch=".", cex=3))

15

. * - 12000
, . .) 100006000 1200
Vv r . - 8000
t P - 6000 T
3. /I‘- 4000
| g 2000 —
K D00 4000 0
- —— Il 1 1 1 —2000
- 12000 .
1000800010000

— 8000
~ 6000 G 6000

E‘. . T 4000 f"
e e . 2000

- k12000 T TTTT
b 1000800010000 ;
.« 77 8000 o
_"---.‘E =z - 6000 C 6000 4 £, .-
[ia"p. 4000 o F-u - .
L 2000 - ¥ FL .
ﬁ 0 4000 POl 7 .
[| . :
F10000 T T T A -
| goop 6000 100 .. ;
L d
- 6000 e b
4000 | ¥ .
&
2000 4 ° .\?"'"
02000 o | A b -

Scatter Plot Matrix

Additional files can be parsed using standard R input methods.

2.2 Sorting

Short reads can be sorted using srsort, or the permutation required to bring
the short read into lexicographic order can be determined using srorder. These
functions are different from sort and order because the result is independent of
the locale, and they operate quickly on DNAStringSet and BStringSet objects.

The function srduplicated identifies duplicate reads. This function re-
turns a logical vector, similar to duplicated. The negation of the result from
srduplicated is useful to create a collection of unique reads. An experimen-
tal scenario where this might be useful is when the sample preparation involved
PCR. In this case, replicate reads may be due to artifacts of sample preparation,
rather than differential representation of sequence in the sample prior to PCR.

2.3 Summarizing read occurrence
The tables function summarizes read occurrences, for instance,

> tbls <- tables(aln)
> names (tbls)

[1] "top" "distribution"

16

> tbls$top[1:5]

GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA
GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGiZ
GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGi
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAi
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC?

2

> head(tbls$distribution)

nOccurrences nReads

1 1 972
2 2 5
3 3 1
4 5 1
5 10 1

The top component returned by tables is a list tallying the most commonly
occurring sequences in the short reads. Knowledgeable readers will recognize
the top-occurring read as a close match to one of the manufacturer adapters.
The distribution component returned by tables is a data frame that
summarizes how many reads (e.g., 972) are represented exactly 1 times.

2.4 Finding near matches to short sequences

Facilities exist for finding reads that are near matches to specific sequences,
e.g., manufacturer adapter or primer sequences. srdistance reports the edit
distance between each read and a reference sequence. srdistance is imple-
mented to work efficiently for reference sequences whose length is of the same
order as the reads themselves (10’s to 100’s of bases). To find reads close to the
most common read in the example above, one might say

> dist <- srdistance(sread(aln), names(tbls$top) [1])[[1]]
> table(dist)[1:10]

dist
0O 1 2 3 4 7 910 12 13
10 711 2 1 1 1 1 3 2

‘Near’ matches can be filtered from the alignment, e.g.,

> alnSubset <- aln[dist>4]

17

A different strategy can be used to tally or eliminate reads that consist pre-
dominantly of a single nucleotide. alphabetFrequency calculates the frequency
of each nucleotide (in DNA strings) or letter (for other string sets) in each
read. Thus one could identify and eliminate reads with more than 30 adenine
nucleotides with

> countA <- alphabetFrequency(sread(aln))[,"A"]
> alnNoPolyA <- aln[countA < 30]

alphabetFrequency, which simply counts nucleotides, is much faster than srdis-
tance, which performs full pairwise alignment of each read to the subject.

Users wanting to use R for whole-genome alignments or more flexible pairwise
aligment are encouraged to investigate the Biostrings package, especially the
PDict class and matchPDict and pairwiseAlignment functions.

2.5 The coverage function

The coverage function provides a way to summarize where reads align on a
reference sequence. The idea is that the aligned reads, or under some analyses
the extension of those aligned reads by an amount meant to estimate the actual
fragment size, ‘pile up’ on top of nucleotide positions in the reference sequence.
A convenient summary of the alignment of many reads is thus a vector describing
the depth of the pile at each position in the reference sequence. A typical work
flow invokes coverage on an instance of the AlignedRead class obtained from
readAligned; additional methods offering greater control operate on IRanges
directly. The coverage methods returns a run-length encoding of the pile-up
(or a list of such run length encodings). The run-length encoding returned
by coverage is a space-efficient representation; the long integer vector can be
recovered with as.integer.

There are complicated issues associated with use of coverage, relating to
how software reports the ‘position’ of an alignment, especially on the minus
strand. These issues are illustrated in figure [I] In the figure, the two strands
are represented by|, aligned reads by +++, and extensions by ---. The
idea is that 5-nucleotide reads have been aligned to a reference sequence, and
the alignment extended by 10 nucleotides. In the ‘leftmost’ notation (used
by ELAND) and assuming that the reference sequence is always numbered in
relation to the plus strand and indexed starting at 1 (readAligned translates
reported alignment positions so they are indexed from 1), the reported position
is 15 for the alignments on either the plus or the minus strand. In contrast
the ‘fiveprime’ scheme the alignment to the plus strand is 15, and to the minus
strand 19. This is the scheme used by MAQ), for instance.

The default behavior of coverage is to use the ‘leftmost’ coordinate system.
This is appropriate for data derived from ELAND.

18

'leftmost':

P
b ——
'+' strand: 5' ...l .. oo ool 3
'-' strand: 3'|l.... ..o . ool B
—————————— A
P
'fiveprime':
P
B o T
'+' strand: 5'|... ool end e 3
'-' strand: 3'l.... ... oo ool]l B
—————————— 4+

Figure 1: Alignment schemes used by coverage. +++ represents the read and --
the extension. P is the alignment position as recorded under the corresponding
leftmost or fiveprime schemes.

3 Advanced features

3.1 The pattern argument to input functions

Most ShortRead input functions are designed to accept a directory path ar-
gument, and a pattern argument. The latter is a grep-like pattern (as used
by, e.g., list.files). Many input functions are implemented so that all files
matching the pattern are read into a single large input object. Thus the
s_N_LLLL_seq.txt files consist of four numeric columns and a fifth column
corresponding to the short read. The following code illustrates the file structure
and inputs the final column into a DNAStringSet:

> seqFls <- list.files(baseCallPath(sp), "_seq.txt", full=TRUE)
> strsplit(readLines(seqFls[[1]], 1), "\t")

[[11]

[1] nqn
[2] nqn
[3] Il109ll
[4] Il548|l

[5] "TTGTTTTCATGTGATTTTAAAAATGTATTTGTTTGT"

> colClasses <- c(rep(list(NULL), 4), "DNAString")
> reads <- readXStringColumns(baseCallPath(sp), "s_1_0001_seq.txt",
+ colClasses=colClasses)

The more general pattern

19

> reads <- readXStringColumns (baseCallPath(sp), "s_1_.*_seq.txt",
+ colClasses=colClasses)

inputs all lane 1 tile files into a single DNAStringSet object.

3.2 srapply

Solexa and other short read technologies often include many files, e.g., one
s_L_NNNN_int.txt file per tile, 300 tiles per lane, 8 lanes per flow cell for 2400
s_L_NNNN_int.txt files per flow cell. A natural way to extract information
from these is to write short functions, e.g., to find the average intensity per base
at cycle 12.

> calcInt <- function(file, cycle, verbose=FALSE)

+ {

+ if (verbose)

+ cat("calcInt", file, cycle, "\n")

+ int <- readIntensities(dirname(file), basename(file),

+ intExtension="", withVariability=FALSE)
+ apply(intensity(int)[,,12], 2, mean)
+ }

One way to apply this function to all intensity files in a Solexa run is

> intFls <- list.files(imageAnalysisPath(sp), ".*_int.txt$", full=TRUE)
> lres <- lapply(intFls, calcInt, cycle=12)

The files are generally large and numerous, so even simple calculations consume
significant computational resources. The srapply function is meant to provide
a transparent way to perform calculations like this distributed over multiple
nodes of an MPI cluster, or across multiple cores of a single machine. Thus

> srres <- srapply(intFls, calclInt, cycle=12)
> identical(lres, srres)

(1] TRUE
evaluates the function as lapply, whereas

> library ("Rmpi")

> mpi.spawn.Rslaves (nsl=16)

> srres <- srapply(intFls, calclInt, cycle=12)
> mpi.close.Rslaves()

distributes the calculation over available workers, while

> library(multicore)
> srres <- srapply(intFls, calcInt, cycle=12)

distributes tasks across cores of a single machine. The result is a speedup
approximately inversely proportional to the number of available compute nodes
or cores; memory requirements for the multicore approach may be substantial.

20

> tolLatex(sessionInfo())

e R version 2.15.0 (2012-03-30), x86_64-unknown-1linux-gnu

e Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8,
LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C

e Base packages: base, datasets, grDevices, graphics, methods, stats, utils

e Other packages: BiocGenerics 0.2.0, Biostrings 2.24.1,
GenomicRanges 1.8.6, IRanges 1.14.3, RColorBrewer 1.0-5,
Rsamtools 1.8.4, ShortRead 1.14.4, lattice 0.20-6, latticeExtra 0.6-19

e Loaded via a namespace (and not attached): Biobase 2.16.0,
bitops 1.0-4.1, grid 2.15.0, hwriter 1.3, stats4 2.15.0, tools 2.15.0,
zlibbioc 1.2.0

Table 1: The output of sessionInfo on the build system after running this
vignette.

4 Conclusions and directions for development

ShortRead provides tools for reading, manipulation, and quality assessment of
short read data. Current facilities in ShortRead emphasize processing of single-
end Solexa data.

Development priorities in the near term include expanded facilities for im-
porting key file types from additional manufactures, more extensive quality as-
sessment methodologies, and development of infrastructure for paired-end reads.

21

	A first workflow
	SolexaPath: navigating Solexa output
	readAligned: reading aligned data into R
	Input of other aligned read files
	Cautions
	Filtering input

	Exploring ShortRead objects
	Quality assessment

	Using ShortRead for data exploration
	Data I/O
	readXStringColumns
	readFastq
	Additional input functions

	Sorting
	Summarizing read occurrence
	Finding near matches to short sequences
	The coverage function

	Advanced features
	The pattern argument to input functions
	srapply

	Conclusions and directions for development

