
QUALIFIER: Quality Assessment of Gated Flow Cytometry

Data

Mike Jiang,Greg Finak

August 1, 2012

Abstract

Background The current flowQ package does the quality assessment on the ungated FCM
data.However,there is need to identify deviant samples by monitoring the consistencies of
the underlying statistical properties of different gated cell populations(such as white blood
cells,lymphacytes,monocytes etc). The current package was also not designed for dealing
with large datasets. To meet these needs, We developed QUALIFIER package using the
gating template created in flowJo and performing QA checks on different gated populations.
It divides the data preprocessing from the actual outlier detection process so that the
statistics are calcuated all at once and the outlier detections and visualization can be done
more efficiently and interactively. ncdfFlow is used to solve the memory limit issue for large
datasets.
keywords Flow cytometry,Quality Assessment, high throughput,svg,flowWorkspace,ncdfFlowSet

1 Parsing the QA gating template

Optionally, parsing xml workspace can be done in parallel mode. It can speed up the process
for large datasets.

> library(Rmpi)

> library(snowfall)

> library(ncdfFlow)

ncdfFlow also needs to be loaded in order to support netCDF storage for flow data that
will solve the limitation of memory issue,

parseWorkspace function from flowWorkspace package is used to parse the flowJo workspace.
If Rmpi and snowfall package are loaded and it will automatically switch to the parallel mode
and nslaves arugment is used to specify the number of computing nodes used.

> ws<-openWorkspace("~/QA_MFI_RBC_bounary_eventsV3.xml")

> G<-parseWorkspace(ws,execute=TRUE,isNcdf=TRUE,nslaves=6)

> saveNcdf("G","gatingHierarchy")

> save(G,file="gatingHierarchy/GS.Rda")

The result G is a GatingSet containing multiple GatingHierarchy within which gated
cell populations are stored. Note that this step is most time consuming especially for large
datasets. So it is convienient to save the gatingset once the parsing is done so that it be loaded
directly from disk later on for the further processing

1

2 Calculating the statistics

This is the second preprocessing step followed by parsing gating template from flowJo workspace.
Firstly,we need to save the gating hierarchies are calculated and the sample annoation data
(containing all the meta information about the FCS files and samples) into a global environ-
ment.

> anno<-read.csv("~/FCS_File_mapping.csv")###read annotation data

> db<-new.env()

> saveToDB(db,G,anno)

Then statistics of each gated population is extracted and saved in db.Again,getQAStats can be
speeded up by running in parallel mode. It uses parallel package and automatically detection
the number of computing nodes available. Optionally nslaves arugment can also be provided
to manually specify the computing node.

> library(parallel)

> getQAStats(db)

> ls(db)

> db$statsOfGS[1:5,]

It is recommened to save all the preprocessed data to avoid the efforts of recomputing from
the beginning:

> save(db,file="ITNQASTUDY.rda")#save stats

Once this is done,the more interactive quality assessment task can be performed based on the
statistics extracted for each gated population.

3 Defining qaTasks

We provide a function to create a list of qaTask objects by reading external csv spreadsheet
containing descriptions of each QA task:

> checkListFile<-file.path(system.file("data",package="QUALIFIER"),"qaCheckList.csv.gz")

> qaTask.list<-makeQaTask(db,checkListFile)

> qaTask.list[1:2]

$MFIOverTime

qaTask: MFIOverTime

Level : Assay

Description : Fluorescence stability over time

population: MFI

Default formula :MFI ~ RecdDt | channel * stain

<environment: 0x6d5bc80>

Plot type: xyplot

$horiz

[1] FALSE

2

$NumberOfEvents

qaTask: NumberOfEvents

Level : Tube

Description : Number of Events Collected

population: root

Default formula :count ~ RecdDt | Tube

<environment: 0x6dce368>

Plot type: xyplot

$horiz

[1] FALSE

This is a convenient way to construct multiple qaTasks. Users can also create the individual
qaTask by using new method.

4 Quality assessment and visualiztion

The package provides two important methods:qaCheck and plot to perform quality assessment
and visualize the QA results. They both use the information stored in qaTask object and the
formula, which is given either explicitly by the argument or implicitly by the qaTask object.
It is generally of the form y ∼ x | g1 * g2 * ... ,y is the statistics to be checked in this QA, It
must be one of the four types:

”MFI”: Median Fluorescence Intensity of the cell population specified by qaTask ,
”proportion”: the percentage of the cell population specified by qaTask in the parent pop-

ulation,
”count”: the number of events of the cell population specified by qaTask ,
”spike”: the variance of intensity over time of each channel ,which indicating the stability

of the fluorescence intensity.
x specifies the variable plotted on x-axis (such as date) in plot method.
g1,g2,.... are the conditioning variables, which divide the data into subgroups and apply

the outlier detection whitin each individual groups or plot them in different panels. They may
also be omitted,in which case the outliers detection is peformed in the entire dataset.

For example, RBC Lysis efficiency(percentage of WBC population) check is defined by
qaTask .

> qaTask.list[["RBCLysis"]]

qaTask: RBCLysis

Level : Tube

Description : Sufficient RBC lysis

population: WBC_perct

Default formula :proportion ~ RecdDt | Tube

<environment: 0x6ecd8e8>

Plot type: xyplot

3

$horiz

[1] FALSE

According to the formula stored in qaTask , it uses the statistical property ”proportion” and
groups the data by ”Tube”(or staining panel). ”RecdDt” is reserved for plotting purpose. Cell
population is defined as ”WBC perct”

> qaCheck(qaTask.list[["RBCLysis"]],outlierfunc=outlier.cutoff,lBound=0.8)

As we see,qaCheck reads all the necessary information about the gated data from qaTask
object. The only thing needs to be specified by end users is how the outliers are called. This
is done by providing an outlier detection function outlierfunc that takes a numeric vector
as input and returns a logical vector as the output. Here ”outlier.cutoff” is used and threshold
”lBound”(”less than”,using uBound for ”larger than”) is specified.

> plot(qaTask.list[["RBCLysis"]])

Sufficient RBC lysis:

RecdDt

pr
op

or
tio

n

0.80

0.85

0.90

0.95

1.00

Jul Oct Jan Apr Jul

●

●
●
● ●●

●

●●

●

●●

●

●

6B11/Va24/CD8/BLK/CD4

●

●
●

●

●

●

●

●● ●

●
●●

●

Auto/Auto/Auto/Auto/Auto

Jul Oct Jan Apr Jul

●

●●

● ●

●
●
●

●

● ●
● ●

●

CD11c/CD80/DUMP/HLADr/CD123

●

●

●

●

●

●

●
●

●

●

●

●

●
●

CD11c/CD86/DUMP/HLADr/CD123

●

●

●●

●

●●
●

●
●

●

●

●

CD1c/IgD/CD27/CD19/IgM

●

●●
●

●

●

●

●●

●

●●

●

CD57/CD56/CD8/CD3/CD14

●

●
●

●
●

●

●

●

●

●

●
●

●

●

CD8/CD25/CD4/CD3/CD62L

0.80

0.85

0.90

0.95

1.00
●●

●

●

●

●

●

●

●
●

●
●●

●

CD8/CD69/CD4/CD3/HLADR

0.80

0.85

0.90

0.95

1.00
●

●

●
● ●

●

●

●

●●

●
●

●

●

HLADR/CD80/CD27/CD19/CD86

Jul Oct Jan Apr Jul

●

●●

● ●

●
●

●

●

●

●●

●

●

IgG1/IgG1/IgG1/IgG1/IgG1

●

●

●●

●●
●

●

LD/LD/LD/LD/LD

By default all the data are plotted,argument ”subset” can be used to visualize a small
subset.

> plot(qaTask.list[["RBCLysis"]],subset=Tube=='CD8/CD25/CD4/CD3/CD62L')

4

Sufficient RBC lysis:

RecdDt

pr
op

or
tio

n

0.80

0.85

0.90

0.95

Jul Oct Jan Apr Jul

●

●

●

●

●

●

●

●

●

●

●

●

●

●

CD8/CD25/CD4/CD3/CD62L

With scatterPlot flag set as true and subset properly specified plot method can generate
scatter plots for the selected FCS files,

> plot(qaTask.list[["RBCLysis"]],subset=name=='06087181_F01_I010.fcs',scatterPlot=TRUE)

5

x term in the formula is normally ignored in qaCheck.However,when ”plotType” of the
qaTask is ”bwplot”, it is used as the conditioning variable that divides the data into subgroups
within which the outlierfunc is applied.

> qaTask.list[["MNC"]]

qaTask: MNC

Level : Assay

Description : Consistency of Lymphocyte/MNC Gate

population: MNC

Default formula :proportion ~ coresampleid

<environment: 0x6e22ae8>

Plot type: bwplot

$horiz

[1] FALSE

This qaTask detects the significant variance of MNC cell population percentage among
aliquots,which have the same ”coresampleid”. Plot type of this object tells the method to
group data by ”coresampleid”.

6

> qaCheck(qaTask.list[["MNC"]],z.cutoff=1.5)

Interquartile Range based outlier detection function is used to detect outliers

> plot(qaTask.list[["MNC"]])

Consistency of Lymphocyte/MNC Gate:

coresampleid

pr
op

or
tio

n

0.0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

The red circles in the boxplot indicate the possible outlier samples and the box of red color
indicates the entire sample group has significant variance and is marked as the group outlier.

Again,with scatterPlot and subset arguments, scatter plots can be generated for the
selected FCS files or sample groups,

> plot(qaTask.list[["MNC"]]

+ ,scatterPlot=TRUE

+ ,subset=coresampleid==11730)

7

We can also apply simple aggregation to the statisics through the formula.

> qaTask.list[["BoundaryEvents"]]

qaTask: BoundaryEvents

Level : Channel

Description : Off-scale Boundary Events

population: margin

Default formula :proportion ~ RecdDt | channel

<environment: 0x6f76a30>

Plot type: xyplot

$horiz

[1] FALSE

Here the default formula only extracts the ”proportion” from each individual channel. In
order to check the total percentage of boundary events of all channels for each fcs file, we can
write a new formula by applying aggregation function ”sum” to ”proportion” and group the
data by fcs file (”name” in this case).

> qaCheck(qaTask.list[["BoundaryEvents"]]

+ ,sum(proportion) ~ RecdDt | name

8

+ ,outlierfunc=outlier.cutoff

+ ,uBound=0.0003

+)

And we still can visualize the results chanel by chanel.

> plot(qaTask.list[["BoundaryEvents"]],proportion ~ RecdDt | channel)

Off−scale Boundary Events:

RecdDt

pr
op

or
tio

n

0e+00

1e−04

2e−04

3e−04

4e−04

Jul Oct Jan Apr Jul

●

●

●●

●

●
●

●
●

●

●
●
● ●
●
●

●

●

●
●●

●

●●

●

●
●

●

●

APC−A

●

●

●

●

● ●
●

●

●

●

●
●●●●

●

●

●
●

●
●

● ●
●

●

●

●
●

●●

FITC−A

Jul Oct Jan Apr Jul

●

●

●●
●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●●●●

●

●
●

●

FL3−A

●

●

●

●
●

●

●●
●●

●
●

●
●

● ●

●●

●

●

●

●
●

●

PE−A

Jul Oct Jan Apr Jul

0e+00

1e−04

2e−04

3e−04

4e−04

●

●
●

●

PE−Cy7−A

Another three examples: QA check of Fluorescence stability overtime using t-distribution
based outlier detection function.

> qaCheck(qaTask.list[["MFIOverTime"]]

+ ,rFunc=rlm

+ ,z.cutoff=3

+)

> plot(qaTask.list[["MFIOverTime"]]

+ ,y=MFI~RecdDt|stain

+ ,subset=channel%in%c('FITC-A')
+ ,rFunc=rlm

+ ,par=list(scales=list(y=c(relation="free")))

+)

9

Fluorescence stability over time:

RecdDt

M
F

I

40
60

80

Jul Oct Jan Apr Jul

●

●●
●

● ●

●
●●

●

●

●

●

●

s= 2.3
p= 0.071

6B11

20
22

24
26

28
30

32

●●

● ●

●●●
●

●

●

●
●

●

●

s= 0.21
p= 0.053

Auto
40

60
80

12
0

Jul Oct Jan Apr Jul

●
●●

●●
●●●

● ●
●

●●

●

●

●

● ●●
●

●
●

●
●●

●

●

●

s= −0.26
p= 0.33

CD11c

30
40

50
60

70

●

●
●

●

●

●
●

●

●

●
●

●

●

s= −0.7
p= 0.12

CD1c

20
0

60
0

10
00

●

●●

●● ●

●●

●

●

●

●●

s= −22
p= 0.064

CD57

10
0

20
0

30
0

●

●

●
●● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

s= −6.6
p= 0.023

CD8

20
0

30
0

40
0

50
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

s= −7.8
p= 0.097

HLADR

Jul Oct Jan Apr Jul

30
40

50
60

●
●●● ● ●

●

●
●

● ●

●

●

●

s= 0.31
p= 0.13

IgG1

50
10

0
15

0
20

0

●

●

●

●

●

●

●
●

s= −1.7
p= 0.43

LD

Note that the ro-
bust linear regression is applied in each group in order to capture the significant MFI change
over time. The individual outliers within each group is detected based on the residue. par can
be used to pass any lattice arguments to control the apparance of the plot.

> qaCheck(qaTask.list[["spike"]]

+ ,outlierfunc=outlier.t

+ ,alpha=0.00001)

> plot(qaTask.list[["spike"]],y=spike~RecdDt|channel

+ ,subset=Tube=='CD8/CD25/CD4/CD3/CD62L'&channel%in%c('FITC-A')
+)

>

10

Measurement spikes/drifts during acquisition:

RecdDt

sp
ik

e

0

5

10

15

Jul Oct Jan Apr Jul

●

●
● ●

● ●
●● ●

●
●●●

●

FITC−A

When minitoring the total number of events for each tube, a pre-determined events number
can be provided as the threshold to the qaCheck method.

> qaCheck(qaTask.list[["NumberOfEvents"]]

+ ,formula=count ~ RecdDt | Tube

+ ,outlierfunc=outlier.cutoff

+ ,lBound=0.8*tubesEvents

+)

NULL

> plot(qaTask.list[["NumberOfEvents"]]

+ ,subset=Tube=='CD8/CD25/CD4/CD3/CD62L'
+)

11

Number of Events Collected:

RecdDt

co
un

t

10000

20000

30000

40000

50000

Jul Oct Jan Apr Jul

●

●●

● ● ●●● ●

●

● ●●●

CD8/CD25/CD4/CD3/CD62L

tubesEvents could be a one-column data frame or a named list/vector. Threshold values
are stored in the column or list/vecor and conditioning values stored in rownames or names of
the list/vector.

> tubesEvents

events.X06.22.09 events.X08.25.09 events.orig

CD8/CD25/CD4/CD3/CD62L 250000 250000 50000

CD1c/IgD/CD27/CD19/IgM 250000 250000 150000

CD57/CD56/CD8/CD3/CD14 50000 100000 20000

HLADR/CD80/CD27/CD19/CD86 250000 250000 150000

CD8/CD69/CD4/CD3/HLADR 250000 250000 20000

6B11/Va24/CD8/BLK/CD4 250000 250000 50000

Auto/Auto/Auto/Auto/Auto 20000 20000 20000

IgG1/IgG1/IgG1/IgG1/IgG1 20000 20000 20000

CD11c/CD80/DUMP/HLADr/CD123 400000 400000 400000

CD11c/CD86/DUMP/HLADr/CD123 400000 400000 400000

LD/LD/LD/LD/LD 20000 20000 20000

> qaCheck(qaTask.list[["RedundantStain"]],z.cutoff=1)

12

> plot(qaTask.list[["RedundantStain"]]

+ ,y=proportion~coresampleid|channel:stain

+ ,subset=stain%in%c('CD8')
+)

Consistency of redundant Staining Across sample aliquots:

coresampleid

pr
op

or
tio

n

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

FITC−A:CD8

1 2 3 4 5 6 7 8 9 10 11 12 13 14

FL3−A:CD8

5 Creating quality assessment report

Besides the interactive visualization provided by plot method,we also provide one routine to
generate all plots in one report.This function reads the QA results calculated by qaCheck and
the meta information of each QA task provided in spreadsheet qaCheckList and generate the
summary tables and svg plots. Svg plots provide tooltips containing the detail information
about each sample as and hyperlinks of densityplot for each individual FCS file.

> qaReport(qaTask.list,outDir="~/output",plotAll=FALSE)

plotAll is the argument to control the plotting of the individual scatter plot for each FCS file.
When TRUE, all the FCS files are plotted. If FALSE,only the FCSs marked as Outliers will
be plotted. It can also be set to ”none” meaning that no scatter plot will be generated, which
provides the quick review of the html report.

13

6 Conclusion

By the formula-based qaCheck and plot methods,different QA tasks can be defined and per-
formed in a generic way. And plot only reads the outliers detection results pre-calculated by
qaCheck, which reduces the cost of interactive visualization.

Two kinds of lattice plots are currently supported:xyplot and bwplot(boxplot),depends on
the plotType in qaTask object. When the output path is provided by dest, the svg plot is
generated. In svg plot, each dot or box (or only the one marked as outliers) is annotated by the
tooltip or hyperlink.which further points to the individual density plot of the gated population.

14

	Parsing the QA gating template
	Calculating the statistics
	Defining qaTasks
	Quality assessment and visualiztion
	Creating quality assessment report
	Conclusion

