MSnbase development

Laurent Gatto 1g390@cam.ac.uk Cambridge Center for Proteomics Kathryn S. Lilley Group University of Cambridge

August 27, 2012

Abstract

This vignette describes the classes implemented in $\mathsf{MSnbase}$ package. It is intended as a starting point for developers or users who would like to learn more or further develop/extend pSet.

Keywords: Mass Spectrometry (MS), proteomics, infrastructure.

Contents

1	Intr	roduction	2	
2	MSr	base classes	2	
	2.1	pSet: a virtual class for raw mass spectrometry data and meta		
data				
	2.2	MSnExp: a class for MS experiments	3	
	2.3	MSnSet: a class for quantitative proteomics data	4	
	2.4	MSnProcess: a class for logging processing meta data	4	
	2.5	MIAPE: Minimum Information About a Proteomics Experiment .	5	
	2.6	Spectrum et al.: classes for MS spectra	7	
	2.7	ReporterIons: a class for isobaric tags	8	
	2.8	NAnnotatedDataFrame: multiplexed AnnotatedDataFrames	9	
3	Mis	cellaneous	9	
4	Ses	sion information	10	

Foreword

MSnbase is under active developed; current functionality is evolving and new features will be added. This software is free and open-source software. If you use it, please support the project by citing it in publications:

Laurent Gatto and Kathryn S. Lilley. *MSnbase - an R/Bioconductor* package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics 28, 288-289 (2011).

You are welcome to contact me for questions, bugs, typos or suggestions about $\mathsf{MSnbase}$. If you wish to reach a broader audience for general questions about proteomics analysis using R, you may want to use the Bioconductor mailing list¹.

1 Introduction

This document is not a replacement for the individual manual pages, that document the slots of the MSnbase classes. It is a centralised high-level description of the package design.

MSnbase aims at being compatible with the Biobase infrastructure Gentleman et al. (2004). Many meta data structures that are used in eSet and associated classes are also used here. As such, knowledge of the *Biobase development* and the new eSet vignette² would be beneficial.

The initial goal is to use the MSnbase infrastructure for labelled quantitation using reporter ions (iTRAQ (Ross et al., 2004) and TMT (Thompson et al., 2003)). Spectral counting should be trivial to apply with current features, as long as identification data is at hand. Currently, no effort is invested to streamline label-free quantitative proteomics, although some effort has been done to keep the infrastructure flexible enough to accommodate more designs.

2 MSnbase classes

All classes have a .__classVersion__ slot, of class Versioned from the Biobase package. This slot documents the class version for any instance to be used for debugging and object update purposes. Any change in a class implementation should trigger a version change.

2.1 pSet: a virtual class for raw mass spectrometry data and meta data

This virtual class is the main container for mass spectrometry data, i.e spectra, and meta data. It is based on the eSet implementation for genomic data.

¹https://stat.ethz.ch/mailman/listinfo/bioconductor

 $^{^2 \}rm The vignette can directly be accessed with <code>vignette("BiobaseDevelopment", package="Biobase")</code> once Biobase is loaded.$

The main difference with eSet is that the assayData slot is an environment containing any number of Spectrum instances (see section 2.6).

One new slot is introduced, namely processingData, that contains one MSnProcess instance (see section 2.4). and the experimentData slot is now expected to contain MIAPE data (see section 2.5). The annotation slot has not been implemented, as no prior feature annotation is known in shotgun proteomics.

> getClass("pSet")

Virtual Class "pSet" [package "MSnbase"]

Slots:

Name:	assayData	phenoData	featureData
Class:	environment	NAnnotatedDataFrame	AnnotatedDataFrame
Name:	experimentData	-	processingData
Class:	MIAxE		MSnProcess
Name:	.cache	classVersion	
Class:	environment	Versions	

Extends: "Versioned"

Known Subclasses: "MSnExp"

Future work Currently, few setters have been implemented.

2.2 MSnExp: a class for MS experiments

MSnExp extends pSet to store MS experiments. It does not add any new slots to pSet. Accessors and setters are all inherited from pSet and new ones should be implemented for pSet. Methods that manipulate actual data in experiments are implemented for MSnExp objects.

```
> getClass("MSnExp")
```

Class "MSnExp" [package "MSnbase"]

Slots:

Name:	assayData	phenoData	featureData
Class:	environment	NAnnotatedDataFrame	AnnotatedDataFrame
Name:	experimentData	protocolData	processingData
Class:	MIAxE	AnnotatedDataFrame	MSnProcess

```
Name: .cache .__classVersion__
Class: environment Versions
```

Extends: Class "pSet", directly Class "Versioned", by class "pSet", distance 2

2.3 MSnSet: a class for quantitative proteomics data

This class stores quantitation data and meta data after running quantify on an MSnExp object. The quantitative data is in form of a $n \times m$ matrix, where mis the number of features/spectra originally in the MSnExp used as parameter in quantify and m is the number of reporter ions (see section 2.7).

This prompted to keep a similar implementation as the ExpressionSet class, while adding the proteomics-specific annotation slot introduced in the pSet class, namely processingData for objects of class MSnProcess (see section 2.4).

The MSnSet class extends the virtual eSet class to provide compatibility for ExpressionSet-like behaviour. The experiment meta-data in experimentData is also of class MIAPE (see section 2.5). The annotation slot, inherited from eSet is not used.

```
> getClass("MSnSet")
```

Class "MSnSet" [package "MSnbase"]

Slots:

Name:	experimentData	processingData	qual
Class:	MIAPE	MSnProcess	data.frame
Name:	assayData	phenoData	featureData
Class:	AssayData	AnnotatedDataFrame	AnnotatedDataFrame
Name:	annotation	protocolData	classVersion
Class:	character	${\tt AnnotatedDataFrame}$	Versions

Extends: Class "eSet", directly Class "VersionedBiobase", by class "eSet", distance 2 Class "Versioned", by class "eSet", distance 3

2.4 MSnProcess: a class for logging processing meta data

This class aims at recording specific manipulations applied to MSnExp or MSnSet instances. The processing slot is a character vector that describes major

processing. Most other slots are of class logical that indicate whether the data has been centroided, smoothed, ... although many of the functionality is not implemented yet. Any new processing that is implemented should be documented and logged here.

It also documents the raw data file from which the data originates (files slot) and the MSnbase version that was in use when the MSnProcess instance, and hence the MSnExp/MSnSet objects, were originally created.

```
> getClass("MSnProcess")
```

```
Class "MSnProcess" [package "MSnbase"]
```

Slots:

Name:	files	processing	merged	cleaned
Class:	character	character	logical	logical
Name:	removedPeaks	smoothed	trimmed	normalised
Class:	character	logical	numeric	logical
Name: Class:	MSnbaseVersion character	classVersion Versions		

Extends: "Versioned"

2.5 MIAPE: Minimum Information About a Proteomics Experiment

The Minimum Information About a Proteomics Experiment (Taylor et al., 2007, 2008) MIAPE class describes the experiment, including contact details, information about the mass spectrometer and control and analysis software.

Raw data is currently imported from mzXML files (Pedrioli et al., 2004) < using the xcms:::rampRawData and xcms:::rampRawDataMSn functions from the xcms package (Smith et al., 2006). These functions do not give access to the meta data. New importer functions are under development (see for instance mzR³) that will hopefully give programmatic access to meta data stored in the data file to populate the MIAPE object.

```
> getClass("MIAPE")
```

Class "MIAPE" [package "MSnbase"]

Slots:

Name:

title

url

³https://github.com/sneumann/mzR/blob/master/DESCRIPTION

Class:	character	character
Name:	abstract	pubMedIds
Class:	character	character
Name:	samples	preprocessing
Class:	list	list
Name:	other	dateStamp
Class:	list	character
Name:	name	lab
Class:	character	character
Name:	contact	instrumentModel
Class:	character	character
Name:	instrumentManufacturer	instrumentCustomisations
Class:	character	character
Name:	softwareName	softwareVersion
Class:	character	character
Name:	switchingCriteria	isolationWidth
Class:	character	numeric
Name:	parameterFile	ionSource
Class:	character	character
Name:	ionSourceDetails	analyser
Class:	character	character
Name:	analyserDetails	collisionGas
Class:	character	character
Name:	collisionPressure	collisionEnergy
Class:	numeric	character
Name:	detectorType	detectorSensitivity
Class:	character	character
Name:	classVersion	
Class:	Versions	
Extonday		

Extends: Class "MIAxE", directly Class "Versioned", by class "MIAxE", distance 2

2.6 Spectrum et al.: classes for MS spectra

Spectrum is a virtual class that defines common attributes to all types of spectra. MS1 and MS2 specific attributes are defined in the Spectrum1 and Spectrum2 classes, that directly extend Spectrum.

The choices of attributes has been dictated by the xcms:::rampRawData and xcms:::rampRawDataMSn functions and what data from the mzXML file they gave access to. It is expected that some hopefully minor changes might come up here when migrating to other data import packages, that allow random access to mzXML data and support mzML (Martens et al., 2010).

```
> getClass("Spectrum")
```

Virtual Class "Spectrum" [package "MSnbase"]

Slots:

Name:	msLevel	peaksCount	rt	acquisitionNum
Class:	integer	integer	numeric	integer
Name:	scanIndex	mz	intensity	fromFile
Class:	integer	numeric	numeric	integer
Name:	centroided	classVersion		
Class:	logical	Versions		

```
Extends: "Versioned"
```

Known Subclasses: "Spectrum2", "Spectrum1"

```
> getClass("Spectrum1")
```

Class "Spectrum1" [package "MSnbase"]

Slots:

Name:	polarity	msLevel	peaksCount	rt
Class:	integer	integer	integer	numeric
Name:	acquisitionNum	scanIndex	mz	intensity
Class:	integer	integer	numeric	numeric
Name:	fromFile	centroided .	classVersion	
Class:	integer	logical	Versions	

Extends: Class "Spectrum", directly Class "Versioned", by class "Spectrum", distance 2

> getClass("Spectrum2")

Class "Spectrum2" [package "MSnbase"]

Slots:

Name:	merged	precScanNum	precursorMz
Class:	numeric	integer	numeric
Name:	precursorIntensity	precursorCharge	collisionEnergy
Class:	numeric	integer	numeric
Name:	msLevel	peaksCount	rt
Class:	integer	integer	numeric
Name:	acquisitionNum	scanIndex	mz
Class:	integer	integer	numeric
Name:	intensity	fromFile	centroided
Class:	numeric	integer	logical
Name:	classVersion		

Class: Versions

Extends: Class "Spectrum", directly Class "Versioned", by class "Spectrum", distance 2

2.7 ReporterIons: a class for isobaric tags

The iTRAQ and TMT (or any other peak of interest) are implemented ReporterIons instances, that essentially defines an expected MZ position for the peak and a width around this value as well a names for the reporters.

```
> getClass("ReporterIons")
```

Class "ReporterIons" [package "MSnbase"]

Slots:

Name:	name	reporterNames	description	mz
Class:	character	character	character	numeric

Name:	col	width	<pre>classVersion</pre>
Class:	character	numeric	Versions

Extends: "Versioned"

2.8 NAnnotatedDataFrame: multiplexed AnnotatedDataFrames

The simple expansion of the AnnotatedDataFrame classes adds the multiplex and multiLabel slots to document the number and names of multiplexed samples.

```
> getClass("NAnnotatedDataFrame")
```

Class "NAnnotatedDataFrame" [package "MSnbase"]

Slots:

Name: Class:	multiplex numeric	multiLabels character	varMetadata data.frame	data data.frame
Name: Class:	dimLabels character	classVersion Versions		

Extends:

```
Class "AnnotatedDataFrame", directly
Class "Versioned", by class "AnnotatedDataFrame", distance 2
```

3 Miscellaneous

Unit tests MSnbase implements unit tests with the testthat package.

Processing methods Methods that process raw data, i.e. spectra should be implemented for Spectrum objects first and then eapply'ed (or similar) to the assayData slot of an MSnExp instance in the specific method.

Speed and memory requirements Raw mass spectrometry file are generally several hundreds of MB large and most of this is used for binary raw spectrum data. As such, data containers can easily grow very large and thus require large amounts of RAM. This requirement is being tackled by avoiding to load the raw data into memory and using on-disk random access to the content of mzXML/mzML data files on demand. When focusing on reporter ion quantitation, a direct solution for this is to trim the spectra using the trimMz method to select the area of interest and thus substantially reduce the size of the Spectrum objects. This is illustrated in section ?? on page ?? of the MSnbase-demo vignette.

The independent handling of spectra is ideally suited for parallel processing. The **quantify** method now performs reporter peaks quantitation in parallel. More functions are being updated.

4 Session information

- R version 2.15.1 (2012-06-22), x86_64-unknown-linux-gnu
- Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=C, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=C, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8, LC_IDENTIFICATION=C
- Base packages: base, datasets, grDevices, graphics, methods, stats, tools, utils
- Other packages: Biobase 2.16.0, BiocGenerics 0.2.0, MSnbase 1.4.1, Rcpp 0.9.13, cacheSweave 0.6-1, codetools 0.2-8, filehash 2.2-1, formatR 0.6, ggplot2 0.9.1, highlight 0.3.2, mzR 1.2.2, parser 0.0-16, pgfSweave 1.3.0, stashR 0.3-5
- Loaded via a namespace (and not attached): BiocInstaller 1.4.7, IRanges 1.14.4, MASS 7.3-20, RColorBrewer 1.0-5, affy 1.34.0, affyio 1.24.0, colorspace 1.1-1, dichromat 1.2-4, digest 0.5.2, grid 2.15.1, labeling 0.1, lattice 0.20-10, limma 3.12.1, memoise 0.1, munsell 0.3, plyr 1.7.1, preprocessCore 1.18.0, proto 0.3-9.2, reshape 0.8.4, reshape2 1.2.1, scales 0.2.1, stats4 2.15.1, stringr 0.6.1, tikzDevice 0.6.2, vsn 3.24.0, zlibbioc 1.2.0

References

- Robert C. Gentleman, Vincent J. Carey, Douglas M. Bates, Ben Bolstad, Marcel Dettling, Sandrine Dudoit, Byron Ellis, Laurent Gautier, Yongchao Ge, Jeff Gentry, Kurt Hornik, Torsten Hothorn, Wolfgang Huber, Stefano Iacus, Rafael Irizarry, Friedrich Leisch, Cheng Li, Martin Maechler, Anthony J. Rossini, Gunther Sawitzki, Colin Smith, Gordon Smyth, Luke Tierney, Jean Y. H. Yang, and Jianhua Zhang. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol*, 5(10):-80, 2004. doi: 10.1186/gb-2004-5-10-r80. URL http://dx.doi.org/10.1186/gb-2004-5-10-r80.
- Lennart Martens, Matthew Chambers, Marc Sturm, Darren Kes sner, Fredrik Levander, Jim Shofstahl, Wilfred H Tang, Andreas Rompp, Steffen Neumann, Angel D Pizarro, Lu isa Montecchi-Palazzi, Natalie Tasman, Mike Coleman, Florian Reisinger, Pune et Souda, Henning Hermjakob, Pierre-Alain Binz, and Eric W Deutsch. mzml - a community standard for mass spectrometry

data. Molecular & Cellular Proteomics : MCP, 2010. doi: 10.1074/mcp.R110. 000133.

- Patrick G A Pedrioli, Jimmy K Eng, Robert Hubley, Mathijs Vogelzang, Eric W Deutsch, Brian Raught, Brian Pratt, Erik Nilsson, Ruth H Angeletti, Rolf Apweiler, Kei Cheung, Catherine E Costello, Henning Hermjakob, Sequin Huang, Randall K Julian, Eugene Kapp, Mark E McComb, Stephen G Oliver, Gilbert Omenn, Norman W Paton, Richard Simpson, Richard Smith, Chris F Taylor, Weimin Zhu, and Ruedi Aebersold. A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol., 22(11):1459–66, 2004. doi: 10.1038/nbt1031.
- Philip L. Ross, Yulin N. Huang, Jason N. Marchese, Brian Williamson, Kenneth Parker, Stephen Hattan, Nikita Khainovski, Sasi Pillai, Subhakar Dey, Scott Daniels, Subhasish Purkayastha, Peter Juhasz, Stephen Martin, Michael Bartlet-Jones, Feng He, Allan Jacobson, and Darryl J. Pappin. Multiplexed protein quantitation in saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. *Mol Cell Proteomics*, 3(12):1154–1169, Dec 2004. doi: 10.1074/mcp.M400129-MCP200. URL http://dx.doi.org/10.1074/mcp.M400129-MCP200.
- C.A. Smith, E.J. Want, G. O'Maille, R. Abagyan, and G. Siuzdak. Xcms: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. *Analytical Chemistry*, 78:779– 787, 2006.
- Chris F. Taylor, Norman W. Paton, Kathryn S. Lilley, Pierre-Alain Binz, Randall K. Julian, Andrew R. Jones, Weimin Zhu, Rolf Apweiler, Ruedi Aebersold, Eric W. Deutsch, Michael J. Dunn, Albert J. R. Heck, Alexander Leitner, Marcus Macht, Matthias Mann, Lennart Martens, Thomas A. Neubert, Scott D. Patterson, Peipei Ping, Sean L. Seymour, Puneet Souda, Akira Tsugita, Joel Vandekerckhove, Thomas M. Vondriska, Julian P. Whitelegge, Marc R. Wilkins, Ioannnis Xenarios, John R. Yates, and Henning Hermjakob. The minimum information about a proteomics experiment (miape). Nat Biotechnol, 25(8):887–893, Aug 2007. doi: 10.1038/nbt1329. URL http://dx.doi.org/10.1038/nbt1329.
- Chris F Taylor, Pierre-Alain Binz, Ruedi Aebersold, Michel Affolter, Robert Barkovich, Eric W Deutsch, David M Horn, Andreas HÃijhmer, Martin Kussmann, Kathryn Lilley, Marcus Macht, Matthias Mann, Dieter MÃijller, Thomas A Neubert, Janice Nickson, Scott D Patterson, Roberto Raso, Kathryn Resing, Sean L Seymour, Akira Tsugita, Ioannis Xenarios, Rong Zeng, and Randall K Julian. Guidelines for reporting the use of mass spectrometry in proteomics. *Nat. Biotechnol.*, 26(8):860–1, 2008. doi: 10.1038/nbt0808-860.
- Andrew Thompson, Jürgen Schäfer, Karsten Kuhn, Stefan Kienle, Josef Schwarz, Günter Schmidt, Thomas Neumann, R Johnstone, A Karim A Mohammed, and Christian Hamon. Tandem mass tags: a novel quantification

strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem., $75(8){:}1895{-}904,\,2003.$