
Overlap encodings

Hervé Pagès

Last modified: May 2012; Compiled: August 27, 2012

WARNING (May 8, 2012): This vignette is incomplete and was still a WORK IN PROGRESS at
the time GenomicRanges 1.8 was released (as part of Bioconductor 2.10, released in April 2012).
All the work on overlap encodings is now happening in the devel version of the GenomicRanges
package (GenomicRanges 1.9, part of Bioconductor 2.11, at the time of this writing). To use
overlap encodings and related tools, and to get an updated version of this vignette, it is strongly
recommended that you use Bioconductor 2.11. In particular please make sure that you always
use the latest version of the GenomicRanges package (version 1.9.14 at the time of this writing,
expect frequent updates).
In other words, this vignette is superseded by the vignette found in GenomicRanges 1.9 (part of
Bioconductor 2.11). It won’t be updated.
See ?useDevel in the BiocInstaller package for how to use the devel version of Bioconductor (2.11
at the time of this writing).
See ?biocLite in the BiocInstaller package for how to update all the installed packages.

Contents

1 Introduction 1

2 Example 1: With single-end reads 1
2.1 Load the reads and transcripts . 1
2.2 Find and encode the overlaps . 3
2.3 Detect overlaps showing “compatibility” with the transcript . 4
2.4 Detect overlaps showing “almost compatibility” with the transcript . 6
2.5 Combining results of isCompatibleWithSplicing() and isCompatibleWithSkippedExons() to detect

novel splice junctions . 7

3 Example 2: With paired-end reads 8
3.1 Load the reads and transcripts . 8
3.2 Find and encode the overlaps . 10
3.3 Detect overlaps showing “compatibility” with the transcript . 11

4 sessionInfo() 12

1 Introduction

In the context of an RNA-seq experiment, encoding the overlaps between the aligned reads and the transcripts can be
used for detecting those overlaps that are “compatible” with the splicing of the transcript.

Various tools are provided in the IRanges and GenomicRanges packages for working with overlap encodings. In this
vignette, we illustrate the use of these tools on real RNA-seq data.

2 Example 1: With single-end reads

2.1 Load the reads and transcripts

We start by loading some aligned reads into a GappedAlignments object. The reads are stored in a BAM file (un-
treated1_chr4.bam) located in the pasillaBamSubset data package. This file contains single-end reads from an RNA-seq

1

experiment and aligned against the dm3 genome (see ?untreated1_chr4 in the pasillaBamSubset package for more
information about those reads):

> library(pasillaBamSubset)

> untreated1_chr4()

[1] "/loc/home/biocbuild/bbs-2.10-bioc/R/library/pasillaBamSubset/extdata/untreated1_chr4.bam"

We use the readGappedAlignments function defined in the GenomicRanges package to read the BAM file into a
GappedAlignments object. It’s probably a good idea to get rid of the PCR or optical duplicate (flag bit 0x400 in the
SAM format, see the SAM Spec 1 for the details), as well as reads not passing quality controls (flag bit 0x200 in the SAM
format). We do this by creating a ScanBamParam object that we pass to readGappedAlignments (see ?ScanBamParam

in the Rsamtools package for the details). Note that we also use use.names=TRUE in order to load the query template
names (QNAME field in the SAM format) from the BAM file (readGappedAlignments will use them to set the names
of the returned object):

> library(GenomicRanges)

> library(Rsamtools)

> flag0 <- scanBamFlag(isDuplicate=FALSE, isValidVendorRead=TRUE)

> param0 <- ScanBamParam(flag=flag0)

> gal14 <- readGappedAlignments(untreated1_chr4(), use.names=TRUE, param=param0)

Our reads can have up to 2 gaps (a gap corresponds to an N operation in the CIGAR):

> head(gal14)

GappedAlignments with 6 alignments and 0 elementMetadata cols:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031729.3941844 chr4 - 75M 75 892 966 75 0

SRR031728.3674563 chr4 - 75M 75 919 993 75 0

SRR031729.8532600 chr4 + 75M 75 924 998 75 0

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(ngap(gal14))

0 1 2

184039 20169 147

We also need to retrieve the dm3 transcripts and their exons from UCSC, and extract the exons grouped by transcript
in a GRangesList object. IMPORTANT: The reference genome of the transcripts must be exactly the same as the
reference genome used to align the reads (note that this is a general rule, not only when working with overlap encodings):

> library(GenomicFeatures)

> dm3_refGene_txdb <- makeTranscriptDbFromUCSC(genome="dm3", tablename="refGene")

> exbytx <- exonsBy(dm3_refGene_txdb, by="tx")

We check that all the exons in any given transcript belong to the same chromosome and strand. Knowing that our
set of transcripts is free of this kind of trans-splicing events will allow us some significant simplifications during the
downstream analysis 2. A quick and easy way to check this is to take advantage of the fact that seqnames and strand

return RleList objects. So we can extract the number of Rle runs for each transcript and make sure it’s always 1:

> table(elementLengths(runLength(seqnames(exbytx))))

1http://samtools.sourceforge.net/
2Dealing with trans-splicing events is not covered in this document

2

http://samtools.sourceforge.net/

1

26702

> table(elementLengths(runLength(strand(exbytx))))

1

26702

Therefore the strand of any given transcript is unambiguously defined and can be extracted with:

> exbytx_strand <- unlist(runValue(strand(exbytx)), use.names=FALSE)

2.2 Find and encode the overlaps

We are ready to compute the overlaps with the findOverlaps function. Note that the strand of the queries produced
by the RNA-seq experiment is typically unknown so we use ignore.strand=TRUE:

> ov14 <- findOverlaps(gal14, exbytx, ignore.strand=TRUE)

However, the overlap encodings are strand sensitive so we will compute them twice, once for the original alignments
(i.e. the alignments of the original queries), and once again for the “flipped alignments” (i.e. the alignments of the
flipped queries). We extract the ranges of the original and flipped alignments in 2 GRangesList objects with:

> grl14o <- grglist(gal14, order.as.in.query=TRUE)

> grl14f <- flipQuery(grl14o)

and encode their overlaps with the transcripts:

> ovenc14o <- encodeOverlaps(grl14o, exbytx, hits=ov14)

> ovenc14f <- encodeOverlaps(grl14f, exbytx, hits=ov14)

ovenc14o and ovenc14f are 2 OverlapsEncodings objects of the same length as Hits object ov14. For each hit in ov14,
we have 2 corresponding encodings, one in ovenc14o and one in ovenc14f, but only one of them encodes a hit between
alignment ranges and exon ranges that are on the same strand. We use the selectEncodingWithCompatibleStrand

function to merge them into a single OverlapsEncodings of the same length. For each hit in ov14, this selects the
encoding corresponding to alignment ranges and exon ranges with compatible strand:

> grl14o_strand <- unlist(runValue(strand(grl14o)), use.names=FALSE)

> ovenc14 <- selectEncodingWithCompatibleStrand(ovenc14o, ovenc14f,

+ grl14o_strand, exbytx_strand,

+ hits=ov14)

> ovenc14

OverlapEncodings of length 617431

Loffset Roffset encoding

[1] 0 3 1:i:

[2] 3 0 2:jm:am:

[3] 3 0 2:jm:am:

[4] 3 0 2:jm:am:

[5] 3 0 2:jm:am:

[6] 3 0 2:jm:am:

[7] 3 0 2:jm:am:

[8] 3 0 2:jm:am:

[9] 3 0 2:jm:am:

...

[617423] 24 0 1:i:

[617424] 23 0 1:i:

[617425] 23 0 1:i:

[617426] 24 0 1:i:

[617427] 22 0 1:i:

[617428] 24 0 1:i:

[617429] 23 0 1:i:

[617430] 23 0 1:i:

[617431] 24 0 1:i:

3

As a convenience, the 2 above calls to encodeOverlaps + merging step can be replaced by a single call to en-

codeOverlaps on either grl14f or grl14o with flip.query.if.wrong.strand=TRUE:

> ovenc14_again <- encodeOverlaps(grl14o, exbytx, hits=ov14, flip.query.if.wrong.strand=TRUE)

> stopifnot(identical(ovenc14_again, ovenc14))

Unique encodings in ovenc14:

> unique_ovenc14 <- levels(encoding(ovenc14))

> length(unique_ovenc14)

[1] 118

> head(unique_ovenc14)

[1] "1:c:" "1:d:" "1:e:" "1:f:" "1:h:" "1:i:"

> ovenc14_table <- table(encoding(ovenc14))

> tail(sort(ovenc14_table))

1:f: 1:k:c: 1:k: 1:c: 2:jm:af: 1:i:

1671 1933 14191 17732 82461 487756

Encodings are sort of cryptic but utilities are provided to extract specific meaning from them. Use of these utilities
is covered in the next three subsections.

2.3 Detect overlaps showing “compatibility” with the transcript

We are interested in a particular type of overlap where the read overlaps the transcript in a “compatible” way, that is,
in a way compatible with the splicing of the transcript. The isCompatibleWithSplicing function can be used on an
OverlapEncodings object to detect this type of overlap. Note that isCompatibleWithSplicing can also be used on a
character vector or factor.

ovenc14 contains 7 unique encodings “compatible” with the splicing of the transcript:

> sort(ovenc14_table[isCompatibleWithSplicing(unique_ovenc14)])

2:jm:ag: 2:gm:af: 3:jmm:agm:aaf: 1:j: 1:f: 2:jm:af:

26 84 471 1607 1671 82461

1:i:

487756

Encodings "1:i:" (403826 occurences in ovenc14), "2:jm:af:" (68914 occurences in ovenc14), and "3:jmm:agm:aaf:"

(438 occurences in ovenc14), correspond to the following overlaps:

• "1:i:"

- read (no gap): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

• "2:jm:af:"

- read (1 gap): ooooo---ooo

- transcript: ... >>>>>>>>> >>>>>>>>> ...

• "3:jmm:agm:aaf:"

- read (2 gaps): oo---ooooo---o

- transcript: ... >>>>>>>> >>>>> >>>>>>> ...

For clarity, only the exons involved in the overlap are represented. The transcript can of course have more upstream
and downstream exons, which is denoted by the ... on the left side (5’ end) and right side (3’ end) of each drawing.
Note that the exons represented in the 2nd and 3rd drawings are consecutive in the transcript.

Encodings "1:f:" and "1:j:" are variations of the situation described by encoding "1:i:". For "1:f:", the first
aligned base of the read (or flipped read) is aligned with the first base of the exon. For "1:j:", the last aligned base of
the read (or flipped read) is aligned with the last base of the exon:

4

• "1:f:"

- read (no gap): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

• "1:j:"

- read (no gap): oooooooo

- transcript: ... >>>>>>>>>>>>>> ...

> ov14_is_compat <- isCompatibleWithSplicing(ovenc14)

> table(ov14_is_compat) # 476124 "compatible" overlaps

ov14_is_compat

FALSE TRUE

43355 574076

Number of “compatible” overlaps per alignment in gal14:

> gal14_ncompat <- tabulate(queryHits(ov14)[ov14_is_compat], nbins=length(gal14))

> elementMetadata(gal14)$ncompat <- gal14_ncompat

> head(gal14)

GappedAlignments with 6 alignments and 1 elementMetadata col:

seqnames strand cigar qwidth start end width ngap |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

ncompat

<integer>

SRR031729.3941844 0

SRR031728.3674563 0

SRR031729.8532600 0

SRR031729.2779333 0

SRR031728.2826481 0

SRR031728.2919098 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(gal14_ncompat)

gal14_ncompat

0 1 2 3 4 5 6 7 8 9 10 11 12

57808 26660 23026 19728 14465 37356 9703 789 8881 1124 378 4389 48

Number of alignments in gal14 with at least 1 “compatible” overlap:

> sum(gal14_ncompat != 0)

[1] 146547

Number of “compatible” overlaps per transcript in exbytx:

> exbytx_ncompat14 <- tabulate(subjectHits(ov14)[ov14_is_compat], nbins=length(exbytx))

> names(exbytx_ncompat14) <- names(exbytx)

> tail(table(exbytx_ncompat14))

exbytx_ncompat14

11365 25384 33579 33936 40247 40400

1 1 1 1 1 1

5

2.4 Detect overlaps showing “almost compatibility” with the transcript

In many aspects, “compatible” overlaps correspond to an ideal situation but in practise many overlaps don’t fall into
that category. Here we are interested in a less perfect type of overlap where the read overlaps the transcript in a
way that would be “compatible” if 1 or more exons were removed from the transcript. In that case we say that the
overlap is “almost compatible” with the transcript. The isCompatibleWithSkippedExons function can be used on an
OverlapEncodings object to detect this type of overlap. Note that isCompatibleWithSkippedExons can also be used
on a character vector of factor.

ovenc14 contains 7 unique encodings “almost compatible” with the splicing of the transcript:

> sort(ovenc14_table[isCompatibleWithSkippedExons(unique_ovenc14)])

2:jm:am:am:am:am:af: 2:jm:am:am:am:am:am:af: 2:gm:am:af: 2:jm:am:am:am:af:

1 1 3 7

3:jmm:agm:aam:aam:aaf: 3:jmm:agm:aam:aaf: 2:jm:am:am:af: 2:jm:am:af:

9 18 142 899

Encodings "2:jm:am:af:" (696 occurences in ovenc14), "2:jm:am:am:af:" (114 occurences in ovenc14), and
"3:jmm:agm:aam:aaf:" (18 occurences in ovenc14), correspond to the following overlaps:

• "2:jm:am:af:"

- read (1 gap): ooooo----------ooo

- transcript: ... >>>>>>> >>>> >>>>>>>> ...

• "2:jm:am:am:af:"

- read (1 gap): ooooo------------------ooo

- transcript: ... >>>>>>> >>>> >>>>> >>>>>>>> ...

• "3:jmm:agm:aam:aaf:"

- read (2 gaps): oo---oooo-----------oo

- transcript: ... >>>>>>> >>>> >>>>> >>>>>>>> ...

> ov14_is_almostcompat <- isCompatibleWithSkippedExons(ovenc14)

> table(ov14_is_almostcompat) # 837 "almost compatible" overlaps

ov14_is_almostcompat

FALSE TRUE

616351 1080

Number of “almost compatible” overlaps per alignment in gal14:

> gal14_nalmostcompat <- tabulate(queryHits(ov14)[ov14_is_almostcompat], nbins=length(gal14))

> elementMetadata(gal14)$nalmostcompat <- gal14_nalmostcompat

> head(gal14)

GappedAlignments with 6 alignments and 2 elementMetadata cols:

seqnames strand cigar qwidth start end width ngap |

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer> |

SRR031729.3941844 chr4 - 75M 75 892 966 75 0 |

SRR031728.3674563 chr4 - 75M 75 919 993 75 0 |

SRR031729.8532600 chr4 + 75M 75 924 998 75 0 |

SRR031729.2779333 chr4 + 75M 75 936 1010 75 0 |

SRR031728.2826481 chr4 + 75M 75 949 1023 75 0 |

SRR031728.2919098 chr4 - 75M 75 967 1041 75 0 |

ncompat nalmostcompat

<integer> <integer>

SRR031729.3941844 0 0

SRR031728.3674563 0 0

6

SRR031729.8532600 0 0

SRR031729.2779333 0 0

SRR031728.2826481 0 0

SRR031728.2919098 0 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(gal14_nalmostcompat)

gal14_nalmostcompat

0 1 2 3 4 5 6 7 8 9 11

203851 291 49 96 22 16 11 3 4 8 4

Number of alignments in gal14 with at least 1 “almost compatible” overlap:

> sum(gal14_nalmostcompat != 0)

[1] 504

Number of “almost compatible” overlaps per transcript in exbytx:

> exbytx_nalmostcompat14 <- tabulate(subjectHits(ov14)[ov14_is_almostcompat], nbins=length(exbytx))

> names(exbytx_nalmostcompat14) <- names(exbytx)

> table(exbytx_nalmostcompat14)

exbytx_nalmostcompat14

0 1 2 3 4 6 7 8 9 10 12 13 14 18 20 21

26572 50 8 15 11 3 5 5 12 3 1 1 1 2 1 3

32 34 44 59 77 170

2 1 3 1 1 1

2.5 Combining results of isCompatibleWithSplicing() and isCompatibleWithSkippedEx-

ons() to detect novel splice junctions

An alignment in gal14 with “almost compatible” hits but no “compatible” hits suggests the presence of one or more
transcripts that are not in our annotations.

First we extract the index of those alignments:

> aln_shows_nov_splice_jct <- gal14_nalmostcompat != 0L &

+ gal14_ncompat == 0L

> head(which(aln_shows_nov_splice_jct))

[1] 57972 57974 58321 67251 67266 67267

We make this an index into ov14 (Hits object):

> is_nov_splice_jct <- queryHits(ov14) %in% which(aln_shows_nov_splice_jct)

We intersect with is_almost_compat to keep only the overlaps of interest:

> is_nov_splice_jct <- is_nov_splice_jct & ov14_is_almostcompat

For each overlap of interest, we extract the ranks of the skipped exons (we use a list for this as there might be more
than 1 skipped exon per overlap):

> skpexrk <- extractSkippedExonRanks(ovenc14)[is_nov_splice_jct]

> table(elementLengths(skpexrk))

1 2 3 4 5

242 123 7 1 1

7

Finally, we split skpexrk by transcript TxDb internal id:

> names(skpexrk) <- queryHits(ov14)[is_nov_splice_jct]

> f <- names(exbytx)[subjectHits(ov14)[is_nov_splice_jct]]

> tx2skpexrk <- split(skpexrk, f)

tx2skpexrk is a named list of named lists of integer vectors. The first level of names (outer names) are transcript
TxDb internal ids and the second level of names (inner names) are alignment indices into gal14:

> head(names(tx2skpexrk)) # transcript TxDb internal ids

[1] "1" "10" "106" "107" "116" "117"

Transcript "10" has 7 hits. All of them skip exons 9 and 10:

> tx2skpexrk[["10"]]

$`104549`
[1] 9 10

$`104550`
[1] 9 10

$`104553`
[1] 9 10

$`104557`
[1] 9 10

$`104560`
[1] 9 10

$`104572`
[1] 9 10

$`104577`
[1] 9 10

Transcript "58" has 4 hits. Two of them skip exon 2, one of them skips exons 2 to 6, and one of them skips exon 10:

> tx2skpexrk[["58"]]

NULL

A few words about the interpretation of tx2skpexrk: Because of how we’ve conducted this analysis, the aligments
reported in tx2skpexrk are guaranteed to NOT have any “compatible” overlaps with other known transcripts. All we
can say, for example in the case of transcript "10", is that the 7 reported hits that skip exons 9 and 10 show evidence
of one or more unknown transcripts with a splice junction that corresponds to the gap between exons 8 and 11. But
without further analysis, we can’t make any assumption about the exons structure of those unknown transcripts. In
particular, we cannot assume the existence of an unknown transcript made of the same exons as transcript "10" minus
exons 9 and 10!

3 Example 2: With paired-end reads

3.1 Load the reads and transcripts

We start by loading some aligned paired-end reads into a GappedAlignmentPairs object. The reads are stored in a BAM
file (untreated3_chr4.bam) located in the pasillaBamSubset data package. This file contains paired-end reads from an
RNA-seq experiment and aligned against the dm3 genome (see ?untreated3_chr4 in the pasillaBamSubset package for
more information about those reads):

8

> untreated3_chr4()

[1] "/loc/home/biocbuild/bbs-2.10-bioc/R/library/pasillaBamSubset/extdata/untreated3_chr4.bam"

We use the readGappedAlignmentPairs function to read the BAM file into a GappedAlignmentPairs object:

> galp34 <- readGappedAlignmentPairs(untreated3_chr4(), use.names=TRUE, param=param0)

> head(galp34)

GappedAlignmentPairs with 6 alignment pairs and 0 elementMetadata cols:

seqnames strand : ranges : ranges

<Rle> <Rle> : <IRanges> : <IRanges>

SRR031715.1138209 chr4 + : [169, 205] : [326, 362]

SRR031714.756385 chr4 + : [943, 979] : [1086, 1122]

SRR031714.2355189 chr4 + : [944, 980] : [1119, 1155]

SRR031714.5054563 chr4 + : [946, 982] : [986, 1022]

SRR031715.1722593 chr4 + : [966, 1002] : [1108, 1144]

SRR031715.2202469 chr4 + : [966, 1002] : [1114, 1150]

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

The show method for GappedAlignmentPairs objects displays two ranges columns, one for the first alignment in the
pair (the left column), and one for the last alignment in the pair (the right column). The strand column corresponds
to the strand of the first alignment.

> head(first(galp34))

GappedAlignments with 6 alignments and 0 elementMetadata cols:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031715.1138209 chr4 + 37M 37 169 205 37 0

SRR031714.756385 chr4 + 37M 37 943 979 37 0

SRR031714.2355189 chr4 + 37M 37 944 980 37 0

SRR031714.5054563 chr4 + 37M 37 946 982 37 0

SRR031715.1722593 chr4 + 37M 37 966 1002 37 0

SRR031715.2202469 chr4 + 37M 37 966 1002 37 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> head(last(galp34))

GappedAlignments with 6 alignments and 0 elementMetadata cols:

seqnames strand cigar qwidth start end width ngap

<Rle> <Rle> <character> <integer> <integer> <integer> <integer> <integer>

SRR031715.1138209 chr4 - 37M 37 326 362 37 0

SRR031714.756385 chr4 - 37M 37 1086 1122 37 0

SRR031714.2355189 chr4 - 37M 37 1119 1155 37 0

SRR031714.5054563 chr4 - 37M 37 986 1022 37 0

SRR031715.1722593 chr4 - 37M 37 1108 1144 37 0

SRR031715.2202469 chr4 - 37M 37 1114 1150 37 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

According to the SAM format specifications, the aligner is expected to mark each alignment pair as proper or not
(flag bit 0x2 in the SAM format). The SAM Spec only says that a pair is proper if the first and last alignments in the
pair are “properly aligned according to the aligner”. So the exact criteria used for setting this flag is left to the aligner.

We use isProperPair to extract this flag from the GappedAlignmentPairs object:

9

> table(isProperPair(galp34))

FALSE TRUE

29518 45828

Even though we could do overlap encodings with the full object, we keep only the proper pairs for our downstream
analysis:

> galp34 <- galp34[isProperPair(galp34)]

For the transcript, we’ll reuse the exbytx object obtained previously.

3.2 Find and encode the overlaps

Let’s compute the overlaps:

> ov34 <- findOverlaps(galp34, exbytx, ignore.strand=TRUE)

and encode them:

> grl34 <- grglist(galp34, order.as.in.query=TRUE)

> ovenc34 <- encodeOverlaps(grl34, exbytx, hits=ov34, flip.query.if.wrong.strand=TRUE)

> ovenc34

OverlapEncodings of length 126337

Loffset Roffset encoding

[1] 4 0 1--1:i--k:

[2] 4 0 1--1:i--i:

[3] 4 0 1--1:i--k:

[4] 4 0 1--1:i--k:

[5] 4 0 1--1:i--m:

[6] 4 0 1--1:i--i:

[7] 3 1 1--1:i--i:

[8] 3 1 1--1:i--i:

[9] 2 2 1--1:i--i:

...

[126329] 24 0 1--1:i--i:

[126330] 23 0 1--1:i--i:

[126331] 23 0 1--1:i--i:

[126332] 24 0 1--1:i--i:

[126333] 22 0 1--1:i--i:

[126334] 24 0 1--1:i--i:

[126335] 23 0 1--1:i--i:

[126336] 23 0 1--1:i--i:

[126337] 24 0 1--1:i--i:

Unique encodings in ovenc34:

> unique_ovenc34 <- levels(encoding(ovenc34))

> length(unique_ovenc34)

[1] 132

> head(unique_ovenc34)

[1] "1--1:a--c:" "1--1:a--e:" "1--1:a--f:" "1--1:a--i:" "1--1:a--j:" "1--1:a--k:"

> ovenc34_table <- table(encoding(ovenc34))

> tail(sort(ovenc34_table))

1--1:i--k: 1--1:c--i: 1--1:i--m: 1--2:i--jm:a--af: 2--1:jm--m:af--i:

1695 2090 2458 2500 2924

1--1:i--i:

107102

10

3.3 Detect overlaps showing “compatibility” with the transcript

ovenc34 contains 13 unique encodings “compatible” with the splicing of the transcript:

> sort(ovenc34_table[isCompatibleWithSplicing(unique_ovenc34)])

1--2:f--jm:a--af: 1--1:f--j: 2--1:jm--m:af--j:

3 11 18

2--1:jm--m:af--f: 1--1:i--m:a--f: 1--1:j--m:a--i:

24 46 54

2--2:jm--mm:af--jm:aa--af: 1--1:i--m:a--i: 1--1:i--j:

138 371 433

1--1:f--i: 1--2:i--jm:a--af: 2--1:jm--m:af--i:

795 2500 2924

1--1:i--i:

107102

Encodings "1--1:i--i:" (89039 occurences in ovenc34), "2--1:jm--m:af--i:" (2825 occurences in ovenc34),
"1--2:i--jm:a--af:" (2339 occurences in ovenc34), and "1--1:i--m:a--i:" (342 occurences in ovenc34), correspond
to the following overlaps:

• "1--1:i--i:"

- paired-end read (no gap on the first end, no gap on the

last end): oooo oooo

- transcript: ... >>>>>>>>>>>>>>>> ...

• "2--1:jm--m:af--i:"

- paired-end read (1 gap on the first end, no gap on the

last end): ooo---o oooo

- transcript: ... >>>>>>>> >>>>>>>>>>> ...

• "1--2:i--jm:a--af:"

- paired-end read (no gap on the first end, 1 gap on the

last end): oooo oo---oo

- transcript: ... >>>>>>>>>>>>>> >>>>>>>>> ...

• "1--1:i--m:a--i:"

- paired-end read (no gap on the first end, no gap on the

last end): oooo oooo

- transcript: ... >>>>>>>>> >>>>>>> ...

Note: switch use of “first” and “last” above if the read was flipped.

> ov34_is_compat <- isCompatibleWithSplicing(ovenc34)

> table(ov34_is_compat) # 95801 "compatible" overlaps

ov34_is_compat

FALSE TRUE

11918 114419

Number of “compatible” overlaps per alignment pair in galp34:

> galp34_ncompat <- tabulate(queryHits(ov34)[ov34_is_compat], nbins=length(galp34))

> elementMetadata(galp34)$ncompat <- galp34_ncompat

> head(galp34)

11

GappedAlignmentPairs with 6 alignment pairs and 1 elementMetadata col:

seqnames strand : ranges : ranges | ncompat

<Rle> <Rle> : <IRanges> : <IRanges> | <integer>

SRR031715.1138209 chr4 + : [169, 205] : [326, 362] | 0

SRR031714.756385 chr4 + : [943, 979] : [1086, 1122] | 0

SRR031714.5054563 chr4 + : [946, 982] : [986, 1022] | 0

SRR031715.1722593 chr4 + : [966, 1002] : [1108, 1144] | 0

SRR031715.2202469 chr4 + : [966, 1002] : [1114, 1150] | 0

SRR031714.3544437 chr4 - : [1087, 1123] : [963, 999] | 0

seqlengths:

chr2L chr2R chr3L chr3R chr4 chrM chrX chrYHet

23011544 21146708 24543557 27905053 1351857 19517 22422827 347038

> table(galp34_ncompat)

galp34_ncompat

0 1 2 3 4 5 6 7 8 9 10 11 12

15164 6348 5473 4706 1491 7456 1991 123 2201 105 69 699 2

Number of alignment pairs in galp34 with at least 1 “compatible” overlap:

> sum(galp34_ncompat != 0)

[1] 30664

Number of “compatible” overlaps per transcript in exbytx:

> exbytx_ncompat34 <- tabulate(subjectHits(ov34)[ov34_is_compat], nbins=length(exbytx))

> names(exbytx_ncompat34) <- names(exbytx)

> tail(table(exbytx_ncompat34))

exbytx_ncompat34

2686 4886 5228 5246 7484 7490

1 1 1 1 1 1

4 sessionInfo()

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8

[4] LC_COLLATE=C LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] pasillaBamSubset_0.0.2 BSgenome.Scerevisiae.UCSC.sacCer2_1.3.17

[3] org.Sc.sgd.db_2.7.1 RSQLite_0.11.1

[5] DBI_0.2-5 GenomicFeatures_1.8.3

[7] AnnotationDbi_1.18.1 leeBamViews_0.99.19

[9] BSgenome_1.24.0 Biobase_2.16.0

[11] EatonEtAlChIPseq_0.0.7 rtracklayer_1.16.3

[13] ShortRead_1.14.4 latticeExtra_0.6-24

12

[15] RColorBrewer_1.0-5 lattice_0.20-10

[17] Rsamtools_1.8.6 Biostrings_2.24.1

[19] GenomicRanges_1.8.13 IRanges_1.14.4

[21] BiocGenerics_0.2.0

loaded via a namespace (and not attached):

[1] RCurl_1.91-1 XML_3.9-4 biomaRt_2.12.0 bitops_1.0-4.1 grid_2.15.1 hwriter_1.3

[7] stats4_2.15.1 tools_2.15.1 zlibbioc_1.2.0

13

	Introduction
	Example 1: With single-end reads
	Load the reads and transcripts
	Find and encode the overlaps
	Detect overlaps showing ``compatibility'' with the transcript
	Detect overlaps showing ``almost compatibility'' with the transcript
	Combining results of isCompatibleWithSplicing() and isCompatibleWithSkippedExons() to detect novel splice junctions

	Example 2: With paired-end reads
	Load the reads and transcripts
	Find and encode the overlaps
	Detect overlaps showing ``compatibility'' with the transcript

	sessionInfo()

