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1 Introduction

The new spliceGraph function included into the GenomicFeatures package
creates splicing graph [3] structures based on TranscriptDb objects. One
use case for this function would be the analysis of an RNA-seq experiment.
As an use case example we compare serious ovarian cancer (SOC) samples
from patients with benign samples of healthy individuals to find evidence
for differential expression of splice variants. Currently available R packages
like DEXSeq offer the capability to identify differentially expressed exons.
Since single exons often contain only a few nucleotides, counting the reads
associated with this rather short sequences could be problematic, especially
if exons overlap each other. This issues also influence steps in the analysis
further downstream like the testing for differential expression. This vignette
describes how to utilize the splicing graph structures to tackle some of those
problems and compares the results of this novel approach to the well estab-
lished methodology of differential exon expression analysis.

2 Splicing graphs

Alternative splicing is a complex biological process for modifying the pri-
mary RNA transcript leading to two or more transcript variants of a certain
gene. These variants can often be plentiful, especially for large genes it is
usually hard to describe the full complexity of the resulting variants in a
formal, logic and short way. To capture the full variety of splice variants
in one data structure Heber at al [2] introduced the term splicing graph
and provided a formal frame work for representing different choices of the
splicing machinery. A splicing graph in general is a directed acyclic graph
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(DAG) and consists of two main structure elements designated as vertices
and edges. Vertices represent sites on the transcript and edges, which con-
nect the vertices, represent exons or introns of a certain transcript. Wether
the edge is representing an exon or an intron is determined by the type
of the flanking vertices. Vertices can be either acceptor splice sites, donor
splice sites, transcript start sites, transcript ends or artificial sites required
for the correctness of the splicing graph frame work. Those artificial sites
are called root vertex and leaf vertex. The root vertex is always the first
vertex of a splicing graph and therefore the origin. The leaf vertex is always
the last vertex and can be seen as the sink of the graph . Root and leaf
vertices never represent real sites on the transcripts coming from a certain
gene locus.

Figure 1 shows the splice graph representation of the transcript variants
of the gene JUNB (entrez gene id 3726). Before the splice graph is con-
structed the exons of the individual genes respectively transcripts get dis-
joint to avoid overlapping sequence parts. The green dashed lines in Figure
1 represent genomic locations where exons get disjoint during the splicing
graph construction.

Each position where exons are disjoint can be considered as an intron
flanked by two vertices, one representing the end of the first part of the
disjoint exon and one representing the start of the second exon part. It is
important to notice that such a position is always described by two vertices
and a zero nucleotide long intron.
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Figure 1: Splice graph representation of the two transcript variants of the
gene 3726 (JUNB). Left: splice graph representation. Right: transcript
representation

In some case vertices can represent two different types of sites, but the
composition of types of this two type vertices is limited. Only splice site
acceptors and transcript end sites or splice site donor and transcript start
sites can occur as a pair of types within one single vertices.

Such a two type vertex occurs when the start of an exon, which is not the
first exon of transcript one, falls together with the transcription start site of
transcript two. The same thing happens when the end of an exon, which is
not the last exon of transcript two, falls together with the transcript end of
transcript one.

As mentioned above the edges can either represent introns or exons de-
pending on the types of the flanking vertices. An edge between a splice site
acceptor and a splice site donor vertex for example would represent an intron
whereas the edge between an splice cite donor and an splice site acceptor
would represent an exon. Exons are also described between transcription
start sites and splice site acceptors or splice site donors and transcript ends.
The edges between the root vertex and the transcription start sites as well
as between the transcript ends and the leaf contain neither an intron nor an
exon. Actually such edges contain no sequence information at all.

Since not all splice sites are alternative splice sites the initial splicing
graph outlined above can be simplified by removing vertices which have in
and out degree equal to one. Those vertices are non informative, because
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no alternative choices of the splicing machinery are recorded in the annota-
tion. Edges associated with such non informative vertices get sequentially
collapsed with the previous ones. The final outcome are edges associated
with one or more exons which do not overlap each other. If on edge consists
of several exons, those exons are put together and form a larger sequence
region which provides advantages in counting reads. The spliceGraph func-
tion returns the collapsed edges with their associated disjoint exons.

The next section describes how such graphs are generated in R and
utilized for differential expression analysis of RNA-seq data.

3 Creating the splicing graph

As outlined in the previous section the splicing graph approach extends the
differential expression analysis of single exons. The starting point for creat-
ing a splice graph is a TranscriptDb object containing all required gene and
transcript annotations. Here the TxDb.Hsapiens.UCSC.hg18.knownGene
package is used, but if other annotations are needed such objects can easily
be created by using functions of the GenomicFeatures package. First we
load the selected TranscriptDb object and assign it to a shorter name.

> library("TxDb.Hsapiens.UCSC.hg18.knownGene")

> txdb <- TxDb.Hsapiens.UCSC.hg18.knownGene

Next we have to load the GenomicFeatures package implementing the
spliceGraph function. Creating a splicing graph for the whole TranscriptDb
object usually takes about 10 minutes on a normal desktop computer. To
save some time we utilize only chromosome 19. To perform spliceGraph on
a subset of the TranscriptDb object the GenomicFeatures package provides
the isActiveSeq function to deactivate chromosomes in the TranscriptDb
object which should not be used. Usually one would deactivate strange
chromosome variants which sometimes can be found in the annotation.

> activeChr <- ! isActiveSeq(txdb)

> activeChr[names(activeChr) == "chr19"] <- TRUE

> isActiveSeq(txdb) <- activeChr

Finally we can execute the spliceGraph function onto the TranscriptDb
object. The function will return a GrangesList object containing the col-
lapsed edges of the splicing graph and their associated exons.
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> library("GenomicFeatures")

> exsByEdges <- spliceGraph(txdb)

Now we can have a look onto the resulting object. We will see that the
object is of class GrangesList and contains the edge IDs as names. The exons
within the Granges object are not the original exons provided by the Tran-
scriptDb object. As mentioned in the previous section during the splicing
graph construction overlapping exons within a gene get disjoint. Disjoining
produces new exons with new exon ids which differ in size compared to the
original exons.

The original exon ids associated with the new exon ids can be found
in the metadata column called exon ids. Each element of the column is a
character list containing the original exon ids The new disjoint exon ids can
be retrieved directly from the metadata column called disJ exon ids. Below
the first edge of the object returned by the spliceGraph function is shown

> exsByEdges[1]

GRangesList of length 1:

$1

GRanges with 1 range and 2 elementMetadata cols:

seqnames ranges strand | disJ_exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr19 [63556582, 63556677] - | 10

exon_ids

<CompressedCharacterList>

[1] 234547

---

seqlengths:

chr19

63811651

To get a mapping of the original exons to the new disjoint exons the
exons by edge object have to be unlisted first. From the flat GrangesList
object we can then easily retrieve the original exon ids from the exon ids
column. For the mapping we utilize a simple data.frame object because
the mapping between the new disjoint exon ids and the original exon ids is
ambiguous.

> exsByEdges.flat <- unlist(exsByEdges, use.names=FALSE)

> orig.Ex <- values(exsByEdges.flat)[["exon_ids"]]
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> disJ.Ex <- values(exsByEdges.flat)[["disJ_exon_id"]]

> newExNames <- rep(disJ.Ex, elementLengths(orig.Ex))

> origExToNewEx <- data.frame(orig.Ex=unlist(orig.Ex),

+ disJ.Ex=newExNames,

+ row.names=NULL)

> head(origExToNewEx)

orig.Ex disJ.Ex

1 234547 10

2 235086 1955

3 235681 1964

4 235092 1963

5 236844 1984

6 236843 1983

The gene ids are directly retrievable from the GrangesList object re-
turned by the spliceGraph function. To get the gene ids the values ac-
cessor function is utilized. The mapping from edges to genes is used further
downstream in the analysis.

> gnIDs <- values(exsByEdges)[["gene_id"]]

> edgeIDs <- names(exsByEdges)

> gnToEdge <- data.frame(gnIDs, edgeIDs, row.names=edgeIDs)

> head(gnToEdge)

gnIDs edgeIDs

1 1 1

10049 126549 10049

10066 126567 10066

10072 1311 10072

10073 1311 10073

10076 1311 10076

4 Counting reads

This section deals with counting the reads associated with the individual
edges. To elucidate later in this vignette some advantages of the splice
graph approach the reads for the original exon structure are also counted.
The reason for obtaining both count tables is that the edges approach will
be later compared to the classic exon approach.
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Counting can be done in different ways. Here we use the summarizeOver-
laps function of the GenomicRanges package with default settings.

As a starting point for counting the aligned reads are required. The
aligned reads used in this example are stored as BAM files. The BAM files
used for counting reads are not provided since they would exceed the usual
size of an R package. The code below is therefore only an example code
which should not be executed since the BAM files are lacking.

First the location of the BAM files used in here is specified . The BAM
files one to three in this directory are the reads of the benign samples and
the BAM files 62 to 64 contain the the selected SOC samples. The summa-

rizeOverlaps function requires a BamFileList object which is created out
of the the file paths to the six selected BAM files.

> if(reCnt) {

+ require("Rsamtools")

+ bamPath <- "/shared/labs/EDI/users/mfitzgib/Solexa"

+ fls <- sub(".bai$", "",

+ list.files(bamPath, recursive=TRUE,

+ pattern="accepted_hits.*bai$",

+ full=TRUE))

+ fls <- fls[c(1:3, 62:64)]

+ bfs <- BamFileList(fls)

+ names(bfs) <-

+ gsub("/shared/labs/EDI/users/mfitzgib/Solexa/tophat_",

+ "",fls)

+ }

4.1 Counting reads per edges

The reads get counted based on the edge model created above. The sum-

marizeOverlaps function reduces first adjacent elements of an edge to one
larger range before the counting is done.

Counting is performed for each BAM file separately and can be paral-
lelized to save computation time. After counting the count table contains
one row for each edge.

> if(reCnt) {

+ library(parallel)

+ resEx.byEdge <-

+ summarizeOverlaps(features = exsByEdges, reads = bfs,
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+ mc.cores = getOption("mc.cores", 3L))

+

+ cD.exByEdge <- assays(resEx.byEdge)$counts

+ colnames(cD.exByEdge) <-

+ sub("/accepted_hits.bam", "", colnames(cD.exByEdge))

+ save(cD.exByEdge, file="cD.exByEdge-SG-Vig.Rda")

+ } else {

+ fn <- system.file("extdata", "cD.exByEdge-SG-Vig.Rda",

+ package="GenomicFeatures")

+ load(fn)

+ }

4.2 Counting reads per exons

Since the properties of the splicing graph structure should be compared to
the properties of the exon structure, reads get also counted for the exon
model. To ensure fairness all exons used in the edge model should be also
present in the exon model. The exon model can be easily retrieved from the
TranscriptDb object and subset to the original exons used for creating the
edge model. Duplicated exons get removed, because they would influence
the exon counting process.

> exsByGenes <- exonsBy(txdb, "gene")

> gnNames <- rep(names(exsByGenes), elementLengths(exsByGenes))

> exsByGenes.flat <- unlist(exsByGenes, use.names=FALSE)

> # remove duplicates

> notDupl <- !duplicated(values(exsByGenes.flat)[["exon_id"]])

> exsByGenes.flat <- exsByGenes.flat[notDupl]

> names(exsByGenes.flat) <- values(exsByGenes.flat)[["exon_id"]]

> gnNames <- gnNames[notDupl]

> names(gnNames) <- names(exsByGenes.flat)

For performing the comparison edge versus exon model a exons to genes
map is required. Such a map was already created above called gnNames.
Now we are ready for counting the reads of the exon model. Counting is
performed in the same way as for the edge model. Last we create a exon
count table.

> if(reCnt) {

+ res.exsByGenes <-

+ summarizeOverlaps(features = exsByGenes.flat, reads = bfs,
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+ mc.cores = getOption("mc.cores", 3L))

+

+ cD.exsByGenes <- assays(res.exsByGenes)$counts

+ colnames(cD.exsByGenes) <-

+ sub("/accepted_hits.bam", "", colnames(cD.exsByGenes))

+ save(cD.exsByGenes, file="cD.exsByGenes-SG-Vig.Rda")

+ } else {

+ fn <- system.file("extdata", "cD.exsByGenes-SG-Vig.Rda",

+ package="GenomicFeatures")

+ load(fn)

+ }

The final result of this section are the two count tables which contain
the read counts per exons and the read counts per edges.

5 Testing for differentially expressed edges

This section deals with testing for differential expression of the individual
edges and exons. In general genes can consist of one edge or of more than one
edge. The same is true for the exons, because there might be also some short
genes containing only one single exon. This facts are crucial for performing
differential expression analysis in the right way. The most obvious strategy
is to use the DEXSeq package for genes with multiple exons or edges and
the DESeq [1] package for genes with only one edge or exon. We would
expect much more single edge genes than single exon genes because edges
can consist of several exons.

Chromosome 19 has 6885 edges and 14262 exons. Now as an initial part
of the comparison of the exons versus the edges approach we want to find
out how many single exon genes and single edge genes we actually have.

> edIds <- names(exsByEdges)

> gnIds.edges <- gnToEdge[rownames(cD.exByEdge),]$gnIDs

> nrOfEdgesPerGns <-

+ elementLengths(split(edIds, factor(gnIds.edges)))

> sglEdgeGns <- nrOfEdgesPerGns == 1

> exIds <- names(exsByGenes.flat)

> gnIds.exs <- gnNames[names(exsByGenes.flat)]

> nrOfExsPerGns <-

+ elementLengths(split(exIds, factor(gnIds.exs)))

> sglExGns <- nrOfExsPerGns == 1
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We have 70 single exon genes and 426 single edge genes. Single element
genes get tested for differential expression by utilizing the DESeq package.
For the other genes with multiple edges and multiple exons DEXSeq is uti-
lized.

> cD.exByEdge <- cD.exByEdge[, colnames(cD.exsByGenes)]

5.1 DEXSeq analysis for multi element genes

The initial step for each differential expression analysis is to set up the design
of the experiment. Basically we are interested in comparing tumor samples
with benign samples. This means we have a three against three design and
therefore for each condition three biological replicates.

> benign <- grepl("Benign",colnames(cD.exByEdge ) )

> design <- factor(ifelse(benign, "Benign", "SOC"),

+ levels=c("Benign", "SOC"))

> names(design) <- ifelse(benign, "Benign", "SOC")

> design

Benign Benign Benign SOC SOC SOC

Benign Benign Benign SOC SOC SOC

Levels: Benign SOC

Below exon and edge count data sets required for the DEXSeq analysis
are created. For details about DEXSeq see the DEXSeq package vignette.
Before the element count data sets are finally created we have to prepare
annotation information which is in principle not needed for performing the
analysis itself, but is essential to create nice plots of top candidate genes
afterwards.

The code below extracts the start and end coordinates of each edge and
orders the edges according to their genomic starting position.

> exsByEdges.flat <- unlist(exsByEdges, use.names=FALSE)

> edgeIDs <- rep(names(exsByEdges), elementLengths(exsByEdges))

> rle <- strand(exsByEdges.flat)

> start <- start(exsByEdges.flat)

> end <- end(exsByEdges.flat)

> temp <- data.frame(start, end, edgeIDs,

+ strand=rep(rle@values, rle@lengths),

+ chr=rep(seqnames(exsByEdges.flat)@values,
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+ seqnames(exsByEdges.flat)@lengths))

> temp <- temp[order(temp$edgeIDs, -temp$end), ]

> end <- temp$end[!duplicated(temp$edgeIDs)]

> names(end) <- temp$edgeIDs[!duplicated(temp$edgeIDs)]

> temp <- temp[order(temp$edgeIDs, temp$start), ]

> T <- temp[!duplicated(temp$edgeIDs),]

> rownames(T) <- T$edgeIDs

> T$end <- end[rownames(T)]

> T <- T[order(gnToEdge[T$edgeIDs,]$gnIDs, T$start), ]

T contains now all required edge annotation information and we can
create a newExonCountSet. The ordering of the edges in the annotation
information data.frame should be the same as in the count table. After
creating the ExonCountSet we subset to genes containing multiple edges.

> library(DEXSeq)

> eData.Edge <-

+ newExonCountSet(countData = cD.exByEdge[T$edgeIDs,] ,

+ design = design,

+ geneIDs = gnToEdge[T$edgeIDs,]$gnIDs,

+ exonIDs = T$edgeIDs,

+ exonIntervals = T)

> eData.Edge <-

+ eData.Edge[! gnToEdge[T$edgeIDs,]$gnIDs %in%

+ names(sglEdgeGns[sglEdgeGns]), ]

The same procedure performed for the edges is also done for the exons.
The code below extracts the start and end coordinates of each exon.

> T <- data.frame(chr=rep(seqnames(exsByGenes.flat)@values,

+ seqnames(exsByGenes.flat)@lengths),

+ start=start(exsByGenes.flat),

+ end=end(exsByGenes.flat),

+ strand=rep(strand(exsByGenes.flat)@values,

+ strand(exsByGenes.flat)@lengths),

+ row.names=values(exsByGenes.flat)[["exon_id"]])

T contains now all required exon annotation information and we can
create a newExonCountSet. The ordering of the exons in the annotation
information data.frame should be the same as in the count table. After
creating the ExonCountSet we subset to genes containing multiple exons.
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> eData.Ex <-

+ newExonCountSet(countData = cD.exsByGenes,

+ design = design,

+ geneIDs = gnNames[rownames(cD.exsByGenes)],

+ exonIDs = rownames(cD.exsByGenes),

+ exonIntervals=T[rownames(cD.exsByGenes),])

> eData.Ex <-

+ eData.Ex[! gnNames[rownames(cD.exsByGenes)] %in%

+ names(sglExGns[sglExGns]), ]

Next we compute the size factors of the individual libraries, estimate the
dispersion and fit the dispersion function for both count data sets. Then we
test for differential expression and estimate the fold changes. Last we create
a top table for both sets. Keep in mind that DEXSeq discards by default
row elements in the count tables which have less than 11 counts across all
samples. DEXSeq also doesn’t test genes which have more than 70 exons or
edges.

Run the analysis for the exon count data set.

> eData.Ex <- estimateSizeFactors(eData.Ex)

> eData.Ex <- estimateDispersions(eData.Ex)

> eData.Ex <- fitDispersionFunction(eData.Ex)

> eData.Ex <- testForDEU(eData.Ex)

> eData.Ex <- estimatelog2FoldChanges(eData.Ex)

> tt.Ex <- DEUresultTable(eData.Ex)

Run the analysis for the edge count data set.

> eData.Edge <- estimateSizeFactors(eData.Edge)

> eData.Edge <- estimateDispersions(eData.Edge)

> eData.Edge <- fitDispersionFunction(eData.Edge)

> eData.Edge <- testForDEU(eData.Edge)

> eData.Edge <- estimatelog2FoldChanges(eData.Edge)

> tt.Edge <- DEUresultTable(eData.Edge)

First we want to compare the estimated dispersion for both cases. Figure
2 shows the resulting plot. The dispersion estimates look quite similar.

> plotDisp <- function(eData, case="") {

+ meanvalues <- rowMeans(counts(eData))

+ plot(meanvalues, fData(eData)$dispBeforeSharing,
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+ main = paste(case, " mean vs CR dispersion", sep=":"),

+ frame.plot=FALSE, pch=16, cex=0.8, log = "xy",

+ ylab="Dispersion", xlab="Mean counts")

+ x <- 0.01:max(meanvalues)

+ y <- eData@dispFitCoefs[1] + eData@dispFitCoefs[2]/x

+ lines(x, y, col = "purple", lwd=2)

+ }

> fn <- "Disp-plots.png"

> png(fn, width=11, height=5.5, res=300, units="in")

> par(mfrow=c(1,2))

> plotDisp(eData.Ex, "Exons")

> plotDisp(eData.Edge, "Edges")

> dev.off()

Figure 2: Dispersion estimates. Left: classic exon model. Right: splicing
graph edge model

5.2 DESeq analysis for single element genes

In this section the DESeq analysis of the single edge and single exon genes is
performed. First we create count data sets and set up the testing conditions
for the differential expression analysis.

> library(DESeq)

> cds.Ex <- newCountDataSet(countData=cD.exsByGenes,
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+ conditions=design)

> cds.Ex <- cds.Ex[sglExGns,]

> cds.Edge <- newCountDataSet(countData=cD.exByEdge[sglEdgeGns,],

+ conditions=design)

> cds.Edge <- cds.Edge[sglExGns,]

Next we compute the size factor, estimate the dispersion and test for
differentially expression for both sets of single elements

Test for differential expression of single exon genes.

> cds.Ex <- estimateSizeFactors( cds.Ex )

> cds.Ex <- estimateDispersions( cds.Ex )

> ttSingle.Ex <- nbinomTest( cds.Ex,"SOC", "Benign" )

Test for differential expression of single edge genes.

> cds.Edge <- estimateSizeFactors( cds.Edge )

> cds.Edge <- estimateDispersions( cds.Edge )

> ttSingle.Edge <- nbinomTest( cds.Edge,"SOC", "Benign" )

Now the differential expression analysis for all elements is completed. As
a last step the results of the DEXSeq and the DESeq analysis are combined
into one common top table containing the fold changes and their associated
p-values.

> int.DEXSeq <- c("exonID", "pvalue", "padjust",

+ "meanBase", "log2fold(SOC/Benign)")

> int.DESeq <- c("id", "pval", "padj", "baseMean",

+ "log2FoldChange")

> temp <- tt.Edge[, int.DEXSeq]

> colnames(temp) <- int.DESeq

> finTT.Edge <- rbind(ttSingle.Edge[, int.DESeq], temp)

> finTT.Edge$gnID <- gnToEdge[finTT.Edge$id,]$gnIDs

> temp <- tt.Ex[, int.DEXSeq]

> colnames(temp) <- int.DESeq

> finTT.Ex <- rbind(ttSingle.Ex[, int.DESeq], temp)

> finTT.Ex$gnID <- gnNames[finTT.Ex$id]

Now we have a look onto the individual top tables to see if there are
some genes in common between the exon model results and the edge model
results.
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6 Comparing the edge and the exon models

This section deals with comparing the results of the exon model approach
with the results of the edge model approach. The aim of utilizing the splicing
graph methodology was to get more robust results and to increase the sta-
tistical power of the tests for differential expression. Remember that before
constructing the splicing graph some of the exons got disjoint in smaller non
overlapping parts, when overlapping exons of the same gene where present.
By just using the original exon structure, still containing overlapping parts
of exons, the counting process would discard reads which map to those parts
because of their ambiguousness. The first indication for which method could
be more appropriate is to retrieve the total number of raw counts of the ex-
ons count table and the edges count table.

> sum(cD.exByEdge)

[1] 1653813

> sum(cD.exsByGenes)

[1] 1142598

> sum(cD.exsByGenes*100)/sum(cD.exByEdge)

[1] 69.08871

The comparison of the raw counts reveals that the exon count table
contains about 30% fewer counts than the edge count table. Regarding
the total number of counts it seems that using the splicing graph approach
leads to some improvement. But what does this mean for the differential
expression analysis. Does more counts provide more robust results? What
about the number of differentially expressed elements?

To gain more insight into this issue mean expression versus fold change
plots are created to visualize the differences in expression of the individual
edges and exons between SOC samples and benign samples. See Figure 3
for the resulting plot. By considering the fold change region about -4 in
both plots it is noticeable that the proportion of significant edges to non
significant edges is higher than the proportion of significant exons to non
significant exons. This in turn could be an indication for more robust results.

> fn <- "MA-plots.png"

> png(fn, width=11, height=5.5, res=300, units="in")
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> par(mfrow=c(1,2))

> plot(finTT.Ex$baseMean, finTT.Ex$log2FoldChange, log = "x",

+ col = ifelse(finTT.Ex$padj < 0.1, "purple", "black"),

+ ylim = c(-5, 5), main = "Exons MvsA", pch=16, cex=0.7,

+ frame.plot=FALSE)

> plot(finTT.Edge$baseMean, finTT.Edge$log2FoldChange,

+ col = ifelse(finTT.Edge$padj < 0.1, "purple", "black"),

+ ylim = c(-5, 5), main = "Edges MvsA", pch=16, cex=0.7,

+ log = "x", frame.plot=FALSE)

> dev.off()

Figure 3: Mean expression vs log2 fold change plot, significant (p < 0.1) hits
are colored in purple. Left: classic exon model. Right: splicing graph edge
model

Next we want to see which percentage of exons and edges is significantly
differentially expressed between SOC samples and benign samples.

> ex.test <- nrow(finTT.Ex)

> edge.test <- nrow(finTT.Edge)

> sig.diff.ex <- sum(finTT.Ex$padj < 0.05, na.rm=TRUE)

> sig.diff.edge <- sum(finTT.Edge$padj < 0.05, na.rm=TRUE)

> sig.diff.ex*100/ex.test

[1] 0.1005699
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> sig.diff.edge*100/edge.test

[1] 0.2431611

To visualize the final results of the edges versus exons comparison we cre-
ate a plot where different p-value cut offs are plotted against the associated
number of significant differentially expressed exons and edges.

> p.cuts <- 10^seq( 0, -6, length.out=100 )

> ps.Ex <- sapply(p.cuts, function(p.cut) {

+ sum(finTT.Ex$pval < p.cut, na.rm=TRUE)*100/

+ length(finTT.Ex$pval)

+ })

> ps.Edge <- sapply(p.cuts, function(p.cut) {

+ sum(finTT.Edge$pval < p.cut, na.rm=TRUE)*100/

+ length(finTT.Edge$pval)

+ })

> fn <- "Comparison-edges-exons.png"

> png(fn, width=7, height=7, res=300, units="in")

> plot(ps.Edge, p.cuts, type="l", col="purple",

+ xlab="% of differentially expressed elements",

+ ylab="P-value cut off", lwd=2, frame.plot=FALSE,

+ log="xy", main="Exons versus edges")

> lines(ps.Ex, p.cuts, lty=2, lwd=2)

> grid(lwd=2)

> legend("bottomright", legend=c("Edges", "Exons"),

+ col=c("purple", "black"), lty=c(1,2), lwd=2,

+ border=NA, box.col=NA, bg=NA)

> dev.off()

Figure 4 shows the comparison of both approaches regarding the per-
centage of significantly differentially expressed elements. By looking onto
the characteristics of the curves it seems that the splice graph edges ap-
proach provides more statistical power than the classic DEXSeq approach.
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Figure 4: Comparison of differential expression results of edges versus exons.

Table 1 and Table 2 show the 10 most significant differentially expressed
edges and exons. The most promising hit common in both tables is entrez
gene id 90522 (YIF1B, Yip1 interacting factor homolog B). This protein
is a multi-pass membrane protein, but there is not much known about its
function. However it just serves as an example in here.
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id pval padj baseMean log2FoldChange gnID

243810 0.00 0.00 202.48 -1.05 259307
239871 0.00 0.00 129.44 3.42 90522
244364 0.00 0.00 12.21 2.80 89790
244365 0.00 0.00 7.11 -4.30 89790
238289 0.00 0.00 5020.36 -0.39 388524
235053 0.00 0.00 88.72 -1.98 1785
245411 0.00 0.00 11.72 -Inf 7138
243917 0.00 0.00 14.39 -5.54 79784
243927 0.00 0.00 72.43 -4.21 79784
238288 0.00 0.01 5.59 4.27 388524

Table 1: Top table of the exon model

id pval padj baseMean log2FoldChange gnID

71269 0.00 0.00 133.59 3.73 90522
70565 0.00 0.00 12.59 3.29 89790
70559 0.00 0.00 7.02 -3.80 89790
6272 0.00 0.00 44.65 -0.83 112703
24343 0.00 0.00 47.09 4.03 2788
38026 0.00 0.00 79.61 1.64 51599
14781 0.00 0.00 89.08 -1.99 1785
38040 0.00 0.00 166.21 -3.32 51599
68408 0.00 0.00 4.32 -4.04 84941
10076 0.00 0.01 123.75 -8.62 1311

Table 2: Top table of the edge model

Last we want to have a look on the individual counts of the elements of
entrez gene 90522 (YIF1B). For visualizing the counts of this gene we use
the plot routines of the DEXSeq package.

> plotExp <- function(fn, eDat) {

+ png(fn, width=11, height=5.5, res=300, units="in")

+ par(mfrow=c(1,2))

+ COL <- c("#3399FF", "#FF3333")

+ plotDEXSeq(eDat, "90522", cex.axis = 1.2, cex = 1.3,

+ lwd = 2, legend = TRUE, color=COL,
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+ color.samples=COL[design], splicing=TRUE)

+ plotDEXSeq(eDat, "90522", expression = FALSE,

+ norCounts = TRUE, cex.axis = 1.2, cex = 1.3,

+ lwd = 2, legend = TRUE,

+ color=COL,

+ color.samples=COL[design], splicing=TRUE)

+ dev.off()

+ }

> fn <- "Edge-plot.png"

> plotExp(fn, eData.Edge)

> fn <- "Ex-plot.png"

> plotExp(fn, eData.Ex)

Figure 5 and 6 show the normalized count data for the splice graph edges
model and for the classic exons model. Also the corresponding edges and
exons model is shown. In the case of gene 90522 (YIF1B) both approaches
come to the similar results, but it is noticeable that in the exon model case
some exons have zero counts, which are indicated by white filled rectangles,
in one condition, whereas in the edges model case we still have counts. This
is another sign for increased robustness in the splice graph edges approach
compared to the classic exon model approach.
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Figure 5: Expression levels of the edges of gene 90522 (YIF1B). The purple
rectangle in the edges model indicate significant (FDR<0.1) differentially
expressed edges. Grey rectangles indicate edges with at least on read count
and white rectangles reflect edges with zero counts.

Figure 6: Expression levels of the exons of gene 90522 (YIF1B). The purple
rectangle in the exons model indicate significant (FDR<0.1) differentially
expressed exons. Grey rectangles indicate exons with at least on read count
and white rectangles reflect exons with zero counts.
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7 Summary

The introduced splice graph approach to identify differential expression of
annotated splice variants based on RNA-seq data seems to be promising.
Especially a higher number of total read counts, increased robustness as well
as increased statistical power for the testing seem to be the most remarkable
advantages of this new methodology.
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