
Introduction To Bioconductor Annotation Packages

Marc Carlson

September 26, 2012

GENE ID

PLATFORM
PKGS

GENE ID

ONTO ID’S

ORG
PKGS

GENE ID

ONTO ID

TRANSCRIPT
PKGS

SYSTEM
BIOLOGY

(GO, KEGG)

GENE ID

HOMOLOGY
PKGS

Figure 1: Annotation Packages: the big picture

Bioconductor provides extensive annotation resources. These can be
gene centric, or genome centric. Annotations can be provided in packages
curated by Bioconductor, or obtained from web-based resources. This vi-
gnette is primarily concerned with describing the annotation resources that
are available as packages. This includes both how to extract data from them
and also what steps are required to expose other databases in a similar fash-
ion.

Gene centric AnnotationDbi packages include:

• Organism level: e.g. org.Mm.eg.db.

• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

• Homology level: e.g. hom.Dm.inp.db.

1

• System-biology level: GO.db or KEGG.db.

Genome centric GenomicFeatures packages include

• Transcriptome level: e.g. TxDb.Hsapiens.UCSC.hg19.knownGene

• Generic genome features: Can generate via GenomicFeatures

One web-based resource accesses biomart, via the biomaRt package:

• Query web-based ‘biomart’ resource for genes, sequence, SNPs, and
etc.

The most popular annotation packages have been modified so that they
can make use of a new set of methods to more easily access their contents.
These four methods are named: cols, keytypes, keys and select. And
they are described in this vignette. They can currently be used with all
chip, organism, and TranscriptDb packages along with the popular GO.db
package.

For the older less popular packages, there are still conventient ways to
retrieve the data. The How to use bimaps from the ”.db”annotation packages
vignette in the AnnotationDbi package is a key reference for learnign about
how to use bimap objects.

Finally, all of the ‘.db’ (and most other Bioconductor annotation pack-
ages) are updated every 6 months corresponding to each release of Biocon-
ductor. Exceptions are made for packages where the actual resources that
the packages are based on have not themselves been updated.

0.1 Organism level packages

An organism level package (an ‘org’ package) uses a central gene identi-
fier (e.g. Entrez Gene id) and contains mappings between this identifier
and other kinds of identifiers (e.g. GenBank or Uniprot accession num-
ber, RefSeq id, etc.). The name of an org package is always of the form
org.<Ab>.<id>.db (e.g. org.Sc.sgd.db) where <Ab> is a 2-letter abbrevi-
ation of the organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is
an abbreviation (in lower-case) describing the type of central identifier (e.g.
sgd for gene identifiers assigned by the Saccharomyces Genome Database,
or eg for Entrez Gene ids).

2

http://www.biomart.org/

0.2 AnnotationDb objects and the select method

As previously mentioned, a new set of methods have been added that allow
a simpler way of extracting identifier based annotations. All the annotation
packages that support these new methods expose an object named exactly
the same way as the package itself. These objects are collectively called
AnntoationDb objects, with more specific classes with names such as OrgDb,
ChipDb or TranscriptDb objects. The methods that can be applied to these
objects are cols, keys, keytypes and select.

Exercise 1
Display the OrgDb object for the org.Hs.eg.db package.

Use the cols method to discover which sorts of annotations can be ex-
tracted from it. Is this the same as the result from the keytypes method?
Use the keytypes method to find out.

Use the keys method to extract UNIPROT identifiers and then pass
those keys in to the select method in such a way that you extract the gene
symbol and KEGG pathway information for each.

Solution:

R> library(org.Hs.eg.db)

R> cols(org.Hs.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR"

[5] "ENZYME" "GENENAME" "MAP" "OMIM"

[9] "PATH" "PMID" "REFSEQ" "SYMBOL"

[13] "UNIGENE" "CHRLOC" "CHRLOCEND" "PFAM"

[17] "PROSITE" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

[21] "UNIPROT" "UCSCKG" "GO"

R> keytypes(org.Hs.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR"

[5] "ENZYME" "MAP" "OMIM" "PATH"

[9] "PMID" "REFSEQ" "SYMBOL" "UNIGENE"

[13] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "UNIPROT"

[17] "UCSCKG" "GO"

R> uniKeys <- head(keys(org.Hs.eg.db, keytype="UNIPROT"))

R> cols <- c("SYMBOL", "PATH")

R> select(org.Hs.eg.db, keys=uniKeys, cols=cols, keytype="UNIPROT")

3

http://bioconductor.org/packages/devel/bioc/html/org.Hs.eg.db.html

UNIPROT SYMBOL PATH

1 P04217 A1BG <NA>

2 P01023 A2M 04610

3 F5H5R8 NAT1 01100

4 F5H5R8 NAT1 00232

5 F5H5R8 NAT1 00983

6 P18440 NAT1 01100

7 P18440 NAT1 00232

8 P18440 NAT1 00983

9 Q400J6 NAT1 01100

10 Q400J6 NAT1 00232

11 Q400J6 NAT1 00983

12 A4Z6T7 NAT2 00232

13 A4Z6T7 NAT2 00983

14 A4Z6T7 NAT2 01100

R>

0.3 TranscriptDb packages

A TranscriptDb package (a ’TxDb’ package) connects a set of genomic co-
ordinates to various transcript oriented features. The package can also con-
tain Identifiers to features such as genes and transcripts, and the internal
schema describes the relationships between these different elements. All
TranscriptDb containing packages follow a specific naming scheme that tells
where the data came from as well as which build of the genome it comes
from.

Exercise 2
Display the TranscriptDb object for the TxDb.Hsapiens.UCSC.hg19.knownGene
package.

As before, use the cols and keytypes methods to discover which sorts
of annotations can be extracted from it.

Use the keys method to extract just a few gene identifiers and then pass
those keys in to the select method in such a way that you extract the
transcript ids and transcript starts for each.

Solution:

4

http://bioconductor.org/packages/devel/bioc/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html

R> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

R> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

R> txdb

TranscriptDb object:

| Db type: TranscriptDb

| Supporting package: GenomicFeatures

| Data source: UCSC

| Genome: hg19

| Genus and Species: Homo sapiens

| UCSC Table: knownGene

| Resource URL: http://genome.ucsc.edu/

| Type of Gene ID: Entrez Gene ID

| Full dataset: yes

| miRBase build ID: GRCh37

| transcript_nrow: 80922

| exon_nrow: 286852

| cds_nrow: 235842

| Db created by: GenomicFeatures package from Bioconductor

| Creation time: 2012-03-12 21:45:23 -0700 (Mon, 12 Mar 2012)

| GenomicFeatures version at creation time: 1.7.30

| RSQLite version at creation time: 0.11.1

| DBSCHEMAVERSION: 1.0

R> cols(txdb)

[1] "CDSID" "CDSNAME" "CDSCHROM" "CDSSTRAND" "CDSSTART"

[6] "CDSEND" "EXONID" "EXONNAME" "EXONCHROM" "EXONSTRAND"

[11] "EXONSTART" "EXONEND" "GENEID" "TXID" "EXONRANK"

[16] "TXNAME" "TXCHROM" "TXSTRAND" "TXSTART" "TXEND"

R> keytypes(txdb)

[1] "GENEID" "TXID" "TXNAME" "EXONID" "EXONNAME" "CDSID"

[7] "CDSNAME"

R> keys <- head(keys(txdb, keytype="GENEID"))

R> cols <- c("TXID", "TXSTART")

R> select(txdb, keys=keys, cols=cols, keytype="GENEID")

GENEID TXID TXSTART

1 1 72180 58858172

5

2 1 72182 58859832

3 10 31373 18248755

4 100 73453 43248163

5 1000 66871 25530930

6 1000 66872 25530930

7 10000 7620 243651535

8 10000 7621 243663021

9 10000 7622 243663021

10 100008586 37647 49217763

R>

As is widely known, in addition to providing access via the select

method, TranscriptDb objects also provide access via the more familiar tran-
scripts, exons, cds, transcriptsBy, exonsBy and cdsBy methods. For those
who do not yet know about these other methods, more can be learned by
seeing the vignette called: Making and Utilizing TranscriptDb Objects in the
GenomicFeatures package.

0.4 Advanced topic: Creating other kinds of Annotation
packages

A few options already exist for generating various kinds of annotation pack-
ages.For users who seek to make custom chip packages, users should see the
SQLForge: An easy way to create a new annotation package with a standard
database schema. in the AnnotationDbi package. And, for users who seek
to make a probe package, there is another vignette called Creating probe
packages that is also in the AnnotationDbi package. And finally, for custom
organism packages users should look at the manual page for makeOrgPack-

ageFromNCBI. This function will attempt to make you an simplified organism
package from NCBI resources. However, this function is not meant as a way
to refresh annotation packages between releases. It is only meant for people
who are working on less popular model organisms (so that annotations can
be made available in this format).

But what if you had another kind of database resource and you wanted
to expose it to the world using something like this new select method
interface? How could you go about this?

The 1st step would be to make a package that contains a SQLite database.
For the sake of expediency, lets look at an existing example of this in the
hom.Hs.inp.db package. If you download this tarball from the website you

6

can see that it contains a .sqlite database inside of the inst/extdata direc-
tory. There are a couple of important details though about this database.
The 1st is that we recommend that the database have the same name as the
package, but end with the extension .sqlite. The second detail is that we
recommend that the metadata table contain some important fields. This is
the metadata from the current hom.Hs.inp.db package.

name

1 INPSOURCEDATE

2 INPSOURCENAME

3 INPSOURCEURL

4 DBSCHEMA

5 ORGANISM

6 SPECIES

7 package

8 Db type

9 DBSCHEMAVERSION

value

1 29-Apr-2009

2 Inparanoid Orthologs

3 http://inparanoid.sbc.su.se/download/current/sqltables/

4 INPARANOID_DB

5 Homo sapiens

6 Human

7 AnnotationDbi

8 InparanoidDb

9 2.1

As you can see there are a number of very useful fields stored in the
metadata table and if you list the equivalent table for other packages you
will find even more useful information than you find here. But the most
important fields here are actually the ones called ”package” and ”Db type”.
Those fields specify both the name of the package with the expected class
definition, and also the name of the object that this database is expected
to be represented by in the R session respectively. If you fail to include this
information in your metadata table, then loadDb will not know what to do
with the database when it is called. In this case, the class definition has
been stored in the AnnotationDbi package, but it could live anywhere you
need it too. By specifying the metadata field, you enable loadDb to find it.

Once you have set up the metadata you will need to create a class
for your package that extends the AnnotationDb class. In the case of the

7

hom.Hs.inp.db package, the class is defined to be a InparanoidDb class. This
code is inside of AnnotationDbi.

R> .InparanoidDb <-

setRefClass("InparanoidDb", contains="AnnotationDb")

Finally the .onLoad call for your package will have to contain code that
will call the loadDb method. This is what it currently looks like in the
Rpackagehom.Hs.inp.db package.

R> sPkgname <- sub(".db$","",pkgname)

R> txdb <- loadDb(system.file("extdata", paste(sPkgname,

".sqlite",sep=""), package=pkgname, lib.loc=libname),

packageName=pkgname)

R> dbNewname <- AnnotationDbi:::dbObjectName(pkgname,"InparanoidDb")

R> ns <- asNamespace(pkgname)

R> assign(dbNewname, txdb, envir=ns)

R> namespaceExport(ns, dbNewname)

When this code is run, the name of the package is used to derive the name
for the object. Then that name, is used by onload to create an InparanoidDb
object. This object is then assigned to the namespace for this package so
that at load time it will be loaded for the user.

0.5 Creating package accessors

At this point, all that remains is to create the means for accessing the data
in the database. This should prove a lot less difficult than it may initially
sound. For the new interface, only the four methods that were described
earlier are really required: cols,keytypes,keys and select.

In order to do this you need to know a small amount of SQL and a few
tricks for accessing the database from R. The point of providing these 4
accessors is to give users of these packages a more unified experience when
retrieving data from the database. But other kinds of accessors (such as
those provided for the TranscriptDb objects) may also be warranted.

0.5.1 Getting a connection

If all you know is the name of the SQLite database, then to get a DB
connection you need to do something like this:

8

R> drv <- SQLite()

R> library("org.Hs.eg.db")

R> con <- dbConnect(drv, dbname=system.file("extdata", "org.Hs.eg.sqlite",

package = "org.Hs.eg.db"))

R> con

But in our case the connection is already here as part of the object:

R> str(hom.Hs.inp.db)

Reference class 'InparanoidDb' [package "AnnotationDbi"] with 2 fields

$ conn :Formal class 'SQLiteConnection' [package "RSQLite"] with 1 slots

.. ..@ Id:<externalptr>

$ packageName: chr "hom.Hs.inp.db"

and 11 methods,

So we can do something like below:

R> hom.Hs.inp.db$conn

<SQLiteConnection: DBI CON (1676, 13)>

R> ## or better we can use a helper function to wrap this

R> AnnotationDbi:::dbConn(hom.Hs.inp.db)

<SQLiteConnection: DBI CON (1676, 13)>

0.5.2 Getting data out

Now we just need to get our data out of the DB. There are several useful
functions for doing this. Most of these come from the RSQLite or DBI pack-
ages. For the sake of simplicity, I will only discuss those that are immediately
useful for exploring and extracting data from a database in this vignette.
One pair of useful methods are the dbListTables and dbListFields which
are useful for exploring the schema of a database.

R> con <- AnnotationDbi:::dbConn(hom.Hs.inp.db)

R> head(dbListTables(con))

[1] "Acyrthosiphon_pisum" "Aedes_aegypti"

[3] "Anopheles_gambiae" "Apis_mellifera"

[5] "Arabidopsis_thaliana" "Aspergillus_fumigatus"

9

R> dbListFields(con, "Mus_musculus")

[1] "inp_id" "clust_id" "species" "score"

[5] "seed_status"

And for actually executing SQL to retrieve data, you probably want to
use something like dbGetQuery. The only caveat is that this will actually
require you to know a little SQL.

R> dbGetQuery(con, "SELECT * FROM metadata")

name

1 INPSOURCEDATE

2 INPSOURCENAME

3 INPSOURCEURL

4 DBSCHEMA

5 ORGANISM

6 SPECIES

7 package

8 Db type

9 DBSCHEMAVERSION

value

1 29-Apr-2009

2 Inparanoid Orthologs

3 http://inparanoid.sbc.su.se/download/current/sqltables/

4 INPARANOID_DB

5 Homo sapiens

6 Human

7 AnnotationDbi

8 InparanoidDb

9 2.1

0.5.3 Some basic SQL

The good news is that SQL is pretty easy to learn. Especially if you are pri-
marily interested in just retrieving data from an existing database. Here is
a quick run-down to get you started on writing simple SELECT statements.
Consider a table that looks like this:

Table sna:

foo bar

1 baz
2 boo

10

This statement:

SELECT bar FROM sna;

Tells SQL to get the ”bar” field from the ”foo” table. If we wanted the other
field called ”sna” in addition to ”bar”, we could have written it like this:

SELECT foo, bar FROM sna;

Or even this (* is a wildcard character here)

SELECT * FROM sna;

Now lets suppose that we wanted to filter the results. We could also have
said something like this:

SELECT * FROM sna where bar=’boo’;

That query will only retrieve records from foo that match the criteria for
bar. But there are two other things to notice. First notice that a single =
was used for testing equality. Second notice that I used single quotes to de-
marcate the string. I could have also used double quotes, but when working
in R this will prove to be less convenient as the whole SQL statement itself
will frequently have to be wrapped as a string.

What if we wanted to be more general? Then you can use LIKE. Like this:

SELECT * FROM sna where bar LIKE ’boo%’;

That query will only return records where bar starts with ”boo”, (the %
character is acting as another kind of wildcard in this context)

You will often find that you need to get things from two or more different
tables at once. Or, you may even find that you need to combine the results
from two different queries. Sometimes these two queries may even come
from the same table. In any of these cases, you want to do a join. The
simplest and most common kind of join is an inner join. Lets suppose that
we have two tables:

11

Table sna:

foo bar

1 baz
2 boo

Table fu:

foo bo

1 hi
2 ca

And we want to join them where the records match in their corresponding
”foo” columns. We can do this query to join them:

SELECT * FROM sna,fu WHERE sna.foo=fu.foo;

Something else we can do is tidy this up by using aliases like so:

SELECT * FROM sna AS s,fu AS f WHERE s.foo=f.foo;

This last trick is not very useful in this particular example since the query
ended up being longer than we started with, but is still great for other cases
where queries can become really long.

0.5.4 Exploring the SQLite database from R

Now that we know both some SQL and also about some of the methods in
DBI and RSQLite we can begin to explore the underlying database from R.
How should we go about this? Well the 1st thing we always want to know
are what tables are present. We already know how to learn this:

R> con <- AnnotationDbi:::dbConn(hom.Hs.inp.db)

R> head(dbListTables(con))

[1] "Acyrthosiphon_pisum" "Aedes_aegypti"

[3] "Anopheles_gambiae" "Apis_mellifera"

[5] "Arabidopsis_thaliana" "Aspergillus_fumigatus"

And we also know that once we have a table we are curious about, we
can then look up it’s fields using dbListFields

R> dbListFields(con, "Apis_mellifera")

[1] "inp_id" "clust_id" "species" "score"

[5] "seed_status"

12

And once we know something about which fields are present in a table,
we can compose a SQL query. perhaps the most straightforward query is
just to get all the results from a given table. We know that the SQL for that
should look like:

SELECT * FROM Apis mellifera;

So we can now call a query like that from R by using dbGetQuery:

R> head(dbGetQuery(con, "SELECT * FROM Apis_mellifera"))

inp_id clust_id species score seed_status

1 XP_623957.2 1 APIME 1 100%

2 ENSP00000262442 1 HOMSA 1 99%

3 ENSP00000300671 1 HOMSA 0.095

4 XP_001121322.1 2 APIME 1 100%

5 ENSP00000265104 2 HOMSA 1 100%

6 ENSP00000333363 2 HOMSA 0.236

Exercise 3
Now use what you have learned to explore the hom.Hs.inp.db database.
The formal scientific name for one of the mosquitos that carry the malaria
parasite is Anopheles gambiae. Now find the table for that organism in the
hom.Hs.inp.db database and extract it into R. How many species are present
in this table? Inparanoid uses a five letter designation for each species that
is composed of the 1st 2 letters of the genus followed by the 1st 3 letters
of the species. Using this fact, write a SQL query that will retrieve only
records from this table that are from humans (Homo sapiens).

Solution:

R> head(dbGetQuery(con, "SELECT * FROM Anopheles_gambiae"))

R> ## Then only retrieve human records

R> ## Query: SELECT * FROM Anopheles_gambiae WHERE species='HOMSA'
R> head(dbGetQuery(con, "SELECT * FROM Anopheles_gambiae WHERE species='HOMSA'"))

0.5.5 Example: creating a cols method

Now lets suppose that we want to define a cols method for our hom.Hs.inp.db
object. And lets also suppose that we want is for it to tell us about the actual
organisms for which we can extract identifiers. How could we do that?

13

R> .cols <- function(x){

con <- AnnotationDbi:::dbConn(x)

list <- dbListTables(con)

drop unwanted tables

unwanted <- c("map_counts","map_metadata","metadata")

list <- list[!list %in% unwanted]

Then just to format things in the usual way

toupper(list)

}

R> ## Then make this into a method

R> setMethod("cols", "InparanoidDb", .cols(x))

R> ## Then we can call it

R> cols(hom.Hs.inp.db)

Notice how I formatted the output to all uppercase characters? This is
just done to make the interface look consistent with what has been done
before for the other select interfaces. But doing this means that we will
have to do a tiny bit of extra work when we implement out other methods.

Exercise 4
Now use what you have learned to try and define a method for keytypes

on hom.Hs.inp.db. The keytypes method should return the same results as
cols (in this case). What if you needed to translate back to the lowercase
table names? Also write an quick helper function to do that.

Solution:

R> setMethod("keytypes", "InparanoidDb", .cols(x))

R> ## Then we can call it

R> keytypes(hom.Hs.inp.db)

R> ## refactor of .cols

R> .getLCcolnames <- function(x){

con <- AnnotationDbi:::dbConn(x)

list <- dbListTables(con)

drop unwanted tables

unwanted <- c("map_counts","map_metadata","metadata")

list <- list[!list %in% unwanted]

}

R> .cols <- function(x){

list <- .getLCcolnames(x)

Then just to format things in the usual way

14

toupper(list)

}

R> ## Test:

R> cols(hom.Hs.inp.db)

R> ## new helper function:

R> .getTableNames <- function(x){

LC <- .getLCcolnames(x)

UC <- .cols(x)

names(UC) <- LC

UC

}

R> .getTableNames(hom.Hs.inp.db)

Exercise 5
Now define a method for keys on hom.Hs.inp.db. The keys method should
return the keys from a given organism based on the appropriate keytype.
Since each table has rows that correspond to both human and non-human
IDs, it will be necessary to filter out the human rows from the result

Solution:

R> .keys <- function(x, keytype){

translate keytype back to table name

tabNames <- .getTableNames(x)

lckeytype <- names(tabNames[tabNames %in% keytype])

get a connection

con <- AnnotationDbi:::dbConn(x)

sql <- paste("SELECT inp_id FROM",lckeytype, "WHERE species!='HOMSA'")
res <- dbGetQuery(con, sql)

as.vector(t(res))

}

R> setMethod("keys", "InparanoidDb", .keys(x, keytype))

R> ## Then we can call it

R> keys(hom.Hs.inp.db, "TRICHOPLAX_ADHAERENS")

15

	Organism level packages
	AnnotationDb objects and the select method
	TranscriptDb packages
	Advanced topic: Creating other kinds of Annotation packages
	Creating package accessors
	Getting a connection
	Getting data out
	Some basic SQL
	Exploring the SQLite database from R
	Example: creating a cols method

