Package ‘phyloseq’
September 24, 2012

Version 1.0.3
Date 2012-09-11
Title Handling and analysis of high-throughput phylogenetic sequence data.

Description phyloseq is a set of classes, and tools to
facilitate the import, storage, analysis, and graphical display of phylogenetic sequencing data.

Maintainer Paul J. McMurdie <mcmurdie@stanford.edu>

Author Paul J. McMurdie <mcmurdie@stanford.edu>, Susan
Holmes <susan@stat.stanford.edu>

License AGPL-3

Imports foreach (>= 1.3), igraphO (>= 0.5), multtest (>= 2.8), plyr
(>=1.7), RISONIO (>= 0.98), vegan (>= 2.0)

Depends R (>=2.15.0), methods, ade4 (>= 1.4), ape (>= 2.8), ggplot2
(>=0.9.2), picante (>= 1.3), reshape (>= 0.8.4)

Suggests genefilter
Enhances doParallel (>= 1.0)

biocViews Clustering, Classification, MultipleComparisons,QualityControl, GeneticVariability, High-
ThroughputSequencing

Collate ’allClasses.R’ ’allPackage.R’ ’allData.R’ *as-methods.R’’show-methods.R’ *plot-
methods.R’ *extract-methods.R’’almostAllAccessors.R’ *otuTable-class.R’ "phyloseq-
class.R’’taxonomyTable-class.R’ *IO-methods.R’ *merge-methods.R’’ multtest-
wrapper.R’ ’ordination-methods.R”’transform_filter-methods.R’ *validity-
methods.R’’assignment-methods.R’ ’sampleData-class.R’ ’extend_vegan.R’ network-
methods.R’ ’distance-methods.R’

R topics documented:

phyloseg-package e 3
ACCESS .+« v o e e e e e e e e e e e e e e e 4
data-enterotypeo e e e 5
data-esophagus L 6
data-GlobalPatterns L 7

R topics documented:

data-soilrep 9
distance e 11
DPCoA . . . e 12
estimate_richness e e 14
export_env_file 15
export_mothur_dist 15
filterfunSample e 16
filter taxa e e s 17
genefilterSample 18
getSamples e e e e e 19
getslots.phyloseq 19
GESPECICS e e 20
getTaxa e e e 21
getVariable 21
IMPOTt o o e e e 22
Import_biom L e e e e e 23
import_env_file 24
import_mothur e e 25
import_mothur_dist L. 26
import_pyrotagger_tabo 27
IMPOrt_qiime o e e e e e e e e 29
import_ RDP_cluster 30
make_sample_network 31
merge_phyloseq e e 32
merge_phyloseq_pair 33
merge_samples e 35
METZE_SPECIES .« « . v v v v v e 36
MU . L e e e e e 37
NSamples e e e e e e e e 38
NSPECIES v i e e e 38
ordinate e e 39
otuTable 41
otuTable-class 42
otuTable<- 43
phylo-class e 43
Phyloseq L 44
phyloseg-class 45
plot_ordination L. e e e e e 45
plot_phyloseq 47
plot_richness_estimates e e e 48
plot_sample_network 50
plot_taxa_bar 51
plot_tree_phyloseq e e e 53
prune_samples 54
PIUNE_SPECIES . . . « o v v v v v i e e e e e e e e e e 55
rank.names oo e e e e e e e 56
rm_outlierf L L e 56
sample.nameso e e 57
sample.variables 58
sampleData 58
sampleData-class 59

sampleData<- 60

phyloseq-package 3

sampleSums L 61
ShOW . . o e 61
show_mothur_list_cutoffs 62
SPECIES.MAIMES . .« . v v v v v e 62
speciesAreROWS L 63
SPECIESATETOWSS- + . v v v v v v v v e e e e e e e e e e e e e e e e e e 63
SPECIESSUIMS .« . . v v v v v v v e 64
subset_ord_plot 65
subset_samples L. e e e e 66
SUDSEL_SPECIES . .« . v v v v e e e e e e e e e e e 67
b e 67
taxglom 68
taxonomyTable-class L 69
taxTab e e e e 70
taxTab<- L 71
threshrank oL 71
threshrankfun 72
tipglom 73
tpsymbols e e e e 74
103 0 P 75
107 o)« 76
103 0] o 76
transformsamplecounts L. L L 77
€ . ot e e e e 78
e . o o o o e e e e e 79
UniFrac e e 80
[e 82
Index 84
phyloseq-package Handling and analysis of high-throughput phylogenetic sequence
data.
Description

There are already several ecology and phylogenetic packages available in R, including the adephylo,
vegan, ade4, picante, ape, phangorn, phylobase, and OTUbase packages. These can already take
advantage of many of the powerful statistical and graphics tools available in R. However, prior
to phyloseq a user must devise their own methods for parsing the output of their favorite OTU
clustering application, and, as a consequence, there is also no standard within Bioconductor (or
R generally) for storing or sharing the suite of related data objects that describe a phylogenetic
sequencing project. The phyloseq package seeks to address these issues by providing a related set
of S4 classes that internally manage the handling tasks associated with organizing, linking, storing,
and analyzing phylogenetic sequencing data. phyloseq additionally provides some convenience
wrappers for input from common clustering applications, common analysis pipelines, and native
implementation of methods that are not available in other R packages.

Author(s)

Paul J. McMurdie II <mcmurdie@stanford.edu>

4 access

References

www.stanford.edu/~mcmurdie

access Universal slot accessor function for phyloseq-class.

Description

This function is used internally by many accessors and in many functions/methods that need to ac-
cess a particular type of component data. If something is wrong, or the slot is missing, the expected
behavior is that this function will return NULL. Thus, the output can be tested by is.null as ver-
ification of the presence of a particular data component. Unlike the component-specific accessors
(e.g. otuTable, or tre), the default behavior is not to stop with an error if the desired slot is empty.
In all cases this is controlled by the errorIfNULL argument, which can be set to TRUE if an error is
desired.

Usage

access(physeq, slot, errorIfNULL=FALSE)

Arguments
physeq (Required). phyloseqg-class.
slot (Required). A character string indicating the slot (not data class) of the compo-
nent data type that is desired.
errorIfNULL (Optional). Logical. Should the accessor stop with an error if the slot is empty
(NULL)? Default FALSE.
Value

Returns the component object specified by the argument slot. Returns NULL if slot does not exist.
Returns physeq as-is if it is a component class that already matches the slot name.

See Also

getslots.phyloseq, merge_phyloseq

Examples

#

data(GlobalPatterns)

access(GlobalPatterns, "taxTab")

access(GlobalPatterns, "tre")

access(otuTable(GlobalPatterns), "otuTable")
Should return NULL:

access(otuTable(GlobalPatterns), "sampleData")
access(otuTree(GlobalPatterns), "sampleData")
access(otuSam(GlobalPatterns), "tre")

www.stanford.edu/~mcmurdie

data-enterotype 5

data-enterotype (Data) Enterotypes of the human gut microbiome (2011)

Description

Published in Nature in early 2011, this work compared (among other things), the faecal microbial
communities from 22 subjects using complete shotgun DNA sequencing. Authors further compared
these microbial communities with the faecal communities of subjects from other studies. A total
of 280 faecal samples / subjects are represented in this dataset, and 553 genera. The authors claim
that the data naturally clumps into three community-level clusters, or “enterotypes”, that are not
immediately explained by sequencing technology or demographic features of the subjects, but with
potential relevance to understanding human gut microbiota.

Details

abstract from research article (quoted):

Our knowledge of species and functional composition of the human gut microbiome is rapidly in-
creasing, but it is still based on very few cohorts and little is known about variation across the world.
By combining 22 newly sequenced faecal metagenomes of individuals from four countries with pre-
viously published data sets, here we identify three robust clusters (referred to as enterotypes here-
after) that are not nation or continent specific. We also confirmed the enterotypes in two published,
larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous.
This indicates further the existence of a limited number of well-balanced host-microbial symbiotic
states that might respond differently to diet and drug intake. The enterotypes are mostly driven by
species composition, but abundant molecular functions are not necessarily provided by abundant
species, highlighting the importance of a functional analysis to understand microbial communities.
Although individual host properties such as body mass index, age, or gender cannot explain the
observed enterotypes, data-driven marker genes or functional modules can be identified for each of
these host properties. For example, twelve genes significantly correlate with age and three func-
tional modules with the body mass index, hinting at a diagnostic potential of microbial markers.

(end quote)

Author(s)

Arumugam, M., Raes, J., et al.

References

Arumugam, M., et al. (2011). Enterotypes of the human gut microbiome.
Nature, 473(7346), 174-180.

http://www.nature.com/doifinder/10.1038/nature09944 See supplemental information for
subject data.

OTU-clustered data was downloaded from the publicly-accessible:

http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html

http://www.nature.com/doifinder/10.1038/nature09944
http://www.bork.embl.de/Docu/Arumugam_et_al_2011/downloads.html

6 data-esophagus

Examples

Try simple network-analysis plot

data(enterotype)

ig <- make_sample_network(enterotype, FALSE, max.dist=0.3)

plot_sample_network(ig, enterotype, color="SeqTech”, shape="Enterotype”, line_weight=0.3, label=NULL)

Filter samples that don’t have Enterotype
X <- subset_samples(enterotype, !is.na(Enterotype))

#

#

#

#

#

#

#

#

Alternatively.

ent.cca <- ordinate(x ~ Enterotype, "CCA")

plot_ordination(x, ent.cca, color="Enterotype")
plot_ordination(x, ent.cca, "biplot")

plot_ordination(x, ent.cca, "split"”, color="Enterotype)

multiple testing of genera correlating with enterotype 2

mt(x, data.frame(sampleData(x))[, "Enterotype"]==2)

Should return a data.frame, with the following head()

index teststat rawp adjp plower

Prevotella 207 11.469961374 0.0001 0.0088 0.0001
Bacteroides 203 -9.015717540 0.0001 0.0088 0.0001
Holdemania 201 -5.810081084 0.0001 0.0088 0.0001
Acetivibrio 156 -5.246137207 0.0001 0.0088 0.0001

data-esophagus (Data) Small example dataset from a human esophageal community
(2004)

Description

Includes just 3 samples, 1 each from 3 subjects. Although the research article mentions 4 subjects,
only 3 are included in this dataset.

Details

abstract from research article (quoted):

The esophagus, like other luminal organs of the digestive system, provides a potential environment
for bacterial colonization, but little is known about the presence of a bacterial biota or its nature.
By using broad-range 16S rDNA PCR, biopsies were examined from the normal esophagus of four
human adults. The 900 PCR products cloned represented 833 unique sequences belonging to 41
genera, or 95 species-level operational taxonomic units (SLOTU); 59 SLOTU were homologous
with culture-defined bacterial species, 34 with 16S rDNA clones, and two were not homologous
with any known bacterial 16S rDNA. Members of six phyla, Firmicutes, Bacteroides, Actinobac-
teria, Proteobacteria, Fusobacteria, and TM7, were represented. A large majority of clones belong
to 13 of the 41 genera (783/900, 87%), or 14 SLOTU (574/900, 64%) that were shared by all four
persons. Streptococcus (39%), Prevotella (17%), and Veilonella (14%) were most prevalent. The
present study identified 56-79% of SLOTU in this bacterial ecosystem. Most SLOTU of esophageal
biota are similar or identical to residents of the upstream oral biota, but the major distinction is that
a large majority (82%) of the esophageal bacteria are known and cultivable. These findings provide
evidence for a complex but conserved bacterial population in the normal distal esophagus.

(end quote)

data-GlobalPatterns 7

A description of the 16S rRNA sequence processing can be found on the mothur-wiki at the link
below. A cutoff of 0.10 was used for OTU clustering in that example, and it is taken here as well to
create example data, esophagus, which was easily imported with the import_mothur () function.

Author(s)

Pei et al. <zhiheng.pei@med.nyu.edu>

References

Pei, Z., Bini, E. J., Yang, L., Zhou, M., Francois, F., & Blaser, M. J. (2004). Bacterial biota in the
human distal esophagus. Proceedings of the National Academy of Sciences of the United States of
America, 101(12), 4250-4255. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384727

mothur-processed files and the sequence data can be downloaded from a zip-file, along with addi-
tional description, from the following URL: http://www.mothur.org/wiki/Esophageal_community_
analysis

Examples

Example using esophagus-data in a UniFrac calculation.

data(esophagus)

UniFrac(esophagus, weighted=TRUE)

UniFrac(esophagus, weighted=FALSE)

unifrac(t(as(otuTable(esophagus), "matrix")), tre(esophagus))

Example importing the mothur example files to create esophagus.
show_mothur_list_cutoffs("~/Dropbox/R/esophagus_example/esophagus.fn.list")
mothlist <- "~/esophagus_example/esophagus.fn.list”

mothgroup <- "~/esophagus_example/esophagus.groups”

mothgroup <- "~/esophagus_example/esophagus.good.groups”

mothtree <- "~/esophagus_example/esophagus.tree”

cutoff <-"0.10"

esophagus <- import_mothur(mothlist, mothgroup, mothtree, cutoff)

data-GlobalPatterns (Data) Global patterns of 16S rRNA diversity at a depth of millions of
sequences per sample (2011)

Description

Published in PNAS in early 2011. This work compared the microbial communities from 25 envi-
ronmental samples and three known “mock communities” — a total of 9 sample types — at a depth
averaging 3.1 million reads per sample. Authors were able to reproduce diversity patterns seen in
many other published studies, while also invesitigating technical issues/bias by applying the same
techniques to simulated microbial communities of known composition.

Details

abstract from research article (quoted):

The ongoing revolution in high-throughput sequencing continues to democratize the ability of small
groups of investigators to map the microbial component of the biosphere. In particular, the coevo-
lution of new sequencing platforms and new software tools allows data acquisition and analysis on
an unprecedented scale. Here we report the next stage in this coevolutionary arms race, using the

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC384727
http://www.mothur.org/wiki/Esophageal_community_analysis
http://www.mothur.org/wiki/Esophageal_community_analysis

8 data-GlobalPatterns

Ilumina GAIIx platform to sequence a diverse array of 25 environmental samples and three known
“mock communities” at a depth averaging 3.1 million reads per sample. We demonstrate excellent
consistency in taxonomic recovery and recapture diversity patterns that were previously reported on
the basis of metaanalysis of many studies from the literature (notably, the saline/nonsaline split in
environmental samples and the split between host-associated and free-living communities). We also
demonstrate that 2,000 Illumina single-end reads are sufficient to recapture the same relationships
among samples that we observe with the full dataset. The results thus open up the possibility of
conducting large-scale studies analyzing thousands of samples simultaneously to survey microbial
communities at an unprecedented spatial and temporal resolution.

(end quote)
Many thanks to J. Gregory Caporaso for directly providing the OTU-clustered data files for inclu-

sion in this package.
Author(s)

Caporaso, J. G., et al.

References

Caporaso, J. G., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of
sequences per sample. PNAS, 108, 4516-4522. PMCID: PMC3063599

The primary article can be viewed/downloaded at: http://www.pnas.org/content/108/suppl.
1/4516.short

Examples
data(GlobalPatterns)
Load the GlobalPatterns dataset into the workspace environment
data(GlobalPatterns)
Look at the different values for SampleType
getVariable(GlobalPatterns, "SampleType")
#HHHHHEHEEE AR A
Reproduce Figure 4 from the article, but using Jaccard distance,
and different clustering methods (UPGMA=="average" used in article)
The default method for hclust() uses complete-linkage clustering (method="complete")
#HHHHEEEEEE AR R R
Calculate the jaccard distance between each sample
jaccdist <- distance(GlobalPatterns, "jaccard")
plot(hclust(jaccdist, "average"), labels=getVariable(GlobalPatterns, "SampleType"))
A different method ("complete-linkage")
plot(hclust(jaccdist), labels=getVariable(GlobalPatterns, "SampleType"), col=cols)
In case you decide to color the tip labels
colorScale <- rainbow(length(levels(getVariable(GlobalPatterns, "SampleType”))))
cols <- colorScale[getVariable(GlobalPatterns, "SampleType”)]
B 2 S
Reproduce Figure 5, but in 2-D
B B R I R i S s
coords <- pcoa(UniFrac(GlobalPatterns))$vectors
DF <- data.frame(sampleData(GlobalPatterns), coords)
ggplot(DF, aes(x=Axis.1, y=Axis.2, color=SampleType)) +
geom_point(size=4) +
geom_line() +
theme(title = "PCoA on unweighted UniFrac distance")

http://www.pnas.org/content/108/suppl.1/4516.short
http://www.pnas.org/content/108/suppl.1/4516.short

data-soilrep 9

HHHEEHEHE AR AR R A
Reproduce Figure 5 (but in 2-D and using jaccard distance / nmMDS)

HHHHEHEE A A A
Choose number of axes for non-metric MDS

N <-2

Perform non-metric multi-dimensional scaling, 3 axes (k=3)

coords <- scores(metaMDS(jaccdist, k=N))

Add the NMDS coordinates to the sample data.frame, DF

DF <- data.frame(sampleData(GlobalPatterns), coords)

plot the MDS of jaccard-distances, and shade points by soil treatments

(two axes only, 3-axes used in Fig 5)

ggplot(DF, aes(x=NMDS1, y=NMDS2, color=SampleType)) +

geom_point(size=4) +

geom_line() +

theme(title = ps(”"nmMDS on Jaccard distance, ", N, " axes"))

B T T I TSI T S T Y

B T T S S
Reproduce Figure 5 (but use Jaccard distance / PCoA)

B e R e g g R i i S s
use principle coordinates analysis (as in article)

coords <- pcoa(jaccdist)$vectors

o o

H+

Add the PCoA coordinates to the sample data.frame, DF
DF <- data.frame(sampleData(GlobalPatterns), coords)

H

plot the PCoA on jaccard-distances, and shade points by soil treatments
(First-two axes only, could show 3 as in Fig 5, if desired)

ggplot(DF, aes(x=Axis.1, y=Axis.2, color=SampleType)) +
geom_point(size=4) +

geom_line() +

theme(title = ps("PCoA on Jaccard distance, two axes"))

% o H W

SHHHHHHHEER R R AR R
Reproduce Figure 5, but using correspondence analysis
B s S S R
gpdca <- ordinate(GlobalPatterns, "DCA")

coords <- scores(gpdca)$sites

DF <- data.frame(sampleData(GlobalPatterns), coords)

ggplot(DF, aes(x=CA1, y=CA2, color=SampleType)) +

geom_point(size=4) +

geom_line() +

theme(title = ps(”"DCA on abundances, first two axes"))

Hod MO H O O O H

data-soilrep (Data) Reproducibility of soil microbiome data (2011)

Description

Published in early 2011, this work compared 24 separate soil microbial communities under four
treatment conditions via multiplexed/barcoded 454-pyrosequencing of PCR-amplified 16S rRNA
gene fragments. The authors found differences in the composition and structure of microbial com-
munities between soil treatments. As expected, the soil microbial communities were highly diverse,
with a staggering 16,825 different OTUs (species) observed in the included dataset. Interestingly,

10 data-soilrep

this study used a larger number of replicates than previous studies of this type, for a total of 56 sam-
ples, and the putatively low resampling rate of species between replicated sequencing trials (“OTU
overlap”) was a major concern by the authors.

Details

This dataset contains an experiment-level (phyloseg-class) object, which in turn contains the
taxa-contingency table and soil-treatment table as otuTable-class and sampleData-class com-
ponents, respectively.

This data was imported from raw files supplied directly by the authors via personal communication
for the purposes of including as an example in the phyloseq-package. As this data is sensitive to
choices in OTU-clustering parameters, attempts to recreate the otuTable from the raw sequencing
data may give slightly different results than the table provided here.

abstract from research article (quoted):

To determine the reproducibility and quantitation of the amplicon sequencing-based detection ap-
proach for analyzing microbial community structure, a total of 24 microbial communities from a
long-term global change experimental site were examined. Genomic DNA obtained from each com-
munity was used to amplify 16S rRNA genes with two or three barcode tags as technical replicates
in the presence of a small quantity (0.1% wt/wt) of genomic DNA from Shewanella oneidensis MR-
1 as the control. The technical reproducibility of the amplicon sequencing-based detection approach
is quite low, with an average operational taxonomic unit (OTU) overlap of 17.2%+/-2.3% between
two technical replicates, and 8.2%+/-2.3% among three technical replicates, which is most likely
due to problems associated with random sampling processes. Such variations in technical repli-
cates could have substantial effects on estimating beta-diversity but less on alpha-diversity. A high
variation was also observed in the control across different samples (for example, 66.7-fold for the
forward primer), suggesting that the amplicon sequencing-based detection approach could not be
quantitative. In addition, various strategies were examined to improve the comparability of ampli-
con sequencing data, such as increasing biological replicates, and removing singleton sequences
and less-representative OTUs across biological replicates. Finally, as expected, various statistical
analyses with preprocessed experimental data revealed clear differences in the composition and
structure of microbial communities between warming and non-warming, or between clipping and
non-clipping. Taken together, these results suggest that amplicon sequencing-based detection is use-
ful in analyzing microbial community structure even though it is not reproducible and quantitative.
However, great caution should be taken in experimental design and data interpretation when the am-
plicon sequencing-based detection approach is used for quantitative analysis of the beta-diversity
of microbial communities.

(end quote)

Author(s)

Jizhong Zhou, et al.

References

Zhou, J., Wu, L., Deng, Y., Zhi, X., Jiang, Y.-H., Tu, Q., Xie, J., et al. Reproducibility and
quantitation of amplicon sequencing-based detection. The ISME Journal. (2011) 5(8):1303-1313.
doi:10.1038/ismej.2011.11

The article can be accessed online at http://www.nature.com/ismej/journal/v5/n8/full/
ismej201111a.html

http://www.nature.com/ismej/journal/v5/n8/full/ismej201111a.html
http://www.nature.com/ismej/journal/v5/n8/full/ismej201111a.html

distance 11

Examples

Load the data

data(soilrep)
B s s
Alpha diversity (richness) example. Accept null hypothesis:

No convincing difference in species richness between warmed/unwarmed soils.
HHHHHHAAHEE A A R
DF <- data.frame(sampleData(soilrep), estimate_richness(soilrep))

Create ggplot2-boxplot comparing the different treatments.

man.col <- c(WC="red", WU="brown", UC="blue", UU="darkgreen")

p <- plot_richness_estimates(soilrep, x="Treatment”, color="Treatment")

p + geom_boxplot() + scale_color_manual(values=man.col)

The treatments do not appear to have affected the

estimated total richness between warmed/unwarmed soil samples
t.test(x=subset(DF, warmed=="yes")[, "S.chao1"], y=subset(DF, warmed=="no")[, "S.chaol1"])
HHHHHHARHE A R AR
A beta diversity comparison.

HHHHHHERHEEEE AR AR AR
Perform non-metric multidimensional scaling, using Bray-Curtis distance
soil.NMDS <- ordinate(soilrep, "NMDS", "bray")

p <- plot_ordination(soilrep, soil.NMDS, "samples”, color="Treatment")

(p <~ p + geom_point(size=5, alpha=0.5) + facet_grid(warmed ~ clipped))

distance General distance / dissimilarity index calculator

Description

Takes a phyloseq-class object and method option, and returns a distance object suitable for cer-

tain ordination methods and other distance-based analyses. There are currently 44 explicitly sup-

ported method options, as well as user-provided arbitrary methods via an interface to designdist.

For the complete list of currently supported options/arguments to the method parameter, type distance("1list")
at the command-line. Only sample-wise distances are currently supported (the type argument), but

eventually species-wise (OTU-wise) distances will be supported as well.

Usage
distance(physeq, method="unifrac”, type="samples”, ...)
Arguments
physeq (Required). A phyloseg-class or an otuTable-class object. The latter is
only appropriate for methods that do not require any additional data (one-table).
For example, the “unifrac” option (UniFrac) requires phyloseg-class that
contains both an otuTable and a phylogenetic tree (phylo).
method (Optional). A character string. Default is "unifrac"”. Provide one of the 44 cur-

rently supported options. To see a list of supported options, enter the following
into the command line:

distance(”list")

For further details and additional arguments, see the documentation for the sup-
prting functions, linked below under “See Also”.

12 DPCoA

In particular, there are three methods included by the phyloseqg-package, and
accessed by the following method options:

"unifrac”, for UniFrac based distances, UniFrac;

"dpcoa”, sample-wise distance from Double Principle Coordinate Analysis,
DPCoA;

"jsd", for Jensen-Shannon Divergence, JSD;

and it is recommended that you see their documentation for details, references,
background and examples for use.

Alternatively, you can provide a character string that defines a custom distance
method, if it has the form described in designdist.

type (Optional). A character string. The type of pairwise comparisons being calcu-
lated: sample-wise or species-wise. The default is c("samples”).

Additional arguments passed on to the appropriate distance function, determined
by the method argument.

Details

Depending on the method argument, distance() wraps one of UniFrac, DPCoA, JSD, vegdist,
betadiver, designdist, or dist.

Value

An object of class “dist” suitable for certain ordination methods and other distance-based analyses.

See Also

plot_ordination, UniFrac, DPCoA, JSD, vegdist, betadiver, designdist, dist.

Examples

data(esophagus)

distance(esophagus) # Unweighted UniFrac
distance(esophagus, weighted=TRUE) # weighted UniFrac
distance(esophagus, "jaccard") # vegdist jaccard
distance(esophagus, "gower”) # vegdist option "gower”
distance(esophagus, "g") # designdist method option "g"

distance(esophagus, "minkowski") # invokes a method from the base dist() function.
distance(esophagus, "(A+B-2%J)/(A+B)") # designdist custom distance
distance("help")

distance("list")

help("distance”)

DPCoA Calculate Double Principle Coordinate Analysis (DPCoA) using phy-
logenetic distance

Description

Function uses abundance (otuTable-class) and phylogenetic (phylo) components of a phyloseq-class
experiment-level object to perform a Double Principle Coordinate Analysis (DPCoA), relying heav-

ily on the underlying (and more general) function, dpcoa. The distance object ultimately provided

as the cophenetic/patristic (cophenetic.phylo) distance between the species.

DPCoA 13

Usage

DPCoA(physeq, correction=cailliez, scannf=FALSE, ...)

Arguments

physeq (Required). A phyloseq-class object containing, at a minimum, abundance
(otuTable-class) and phylogenetic (phylo) components. As a test, the acces-
sors otuTable and tre should return an object without error.

correction (Optional). A function. The function must be able to take a non-Euclidean
distance object, and return a new distance object that is Euclidean. If testing
a distance object, try is.euclid.
In most real-life, real-data applications, the phylogenetic tree will not provide
a Euclidean distance matrix, and so a correction will be needed. Two recom-
mended correction methods are cailliez and lingoes. The defaultis cailliez,
but not for any particularly special reason. If the patristic distance matrix turns
out to be Euclidian, no correction will be performed, regardless of the value of
the correction argument.

scannf (Optional). Logical. Default is FALSE. This is passed directly to dpcoa, and
causes a barplot of eigenvalues to be created if TRUE. This is not included in . . .
because the default for dpcoa is TRUE, although in many expected situations we
would want to suppress creating the barplot.

Additional arguments passed to dpcoa.

Details
In most real-life, real-data applications, the phylogenetic tree will not provide a Euclidean distance
matrix, and so a correction will be performed, if needed. See correction argument.

Value

A dpcoa-class object (see dpcoa).

Author(s)

Julia Fukuyama <julia.fukuyama@gmail.com>. Adapted for phyloseq by Paul J. McMurdie.

References

Pavoine, S., Dufour, A.B. and Chessel, D. (2004) From dissimilarities among species to dissimilar-
ities among communities: a double principal coordinate analysis. Journal of Theoretical Biology,
228, 523-537.

See Also

dpcoa

Examples

Esophagus

data(esophagus)

eso.dpcoa <- DPCoA(esophagus)

plot_ordination(esophagus, eso.dpcoa, "samples")
plot_ordination(esophagus, eso.dpcoa, "species”)

14 estimate_richness

plot_ordination(esophagus, eso.dpcoa, "biplot")

#

#

GlobalPatterns

data(GlobalPatterns)

subset GP to top-150 taxa (to save computation time in example)
keepTaxa <- names(sort(speciesSums(GlobalPatterns), TRUE)[1:150])
GP <- prune_species(keepTaxa, GlobalPatterns)

Perform DPCoA

GP.dpcoa <- DPCoA(GP)

plot_ordination(GP, GP.dpcoa, color="SampleType")

estimate_richness Summarize richness estimates

Description

Performs a number of standard richness estimates, and returns the results as a data.frame. Can
operate on the cumulative population of all samples in the dataset, or by repeating the richness
estimates for each sample individually. NOTE: You must use untrimmed datasets for meaningful
results, as these estimates (and even the “observed” richness) are highly dependent on the number
of singletons. You can always trim the data later on if needed, just not before using this function.

Usage

estimate_richness(physeq, split=TRUE)

Arguments
physeq (Required). phyloseq-class, or alternatively, an otuTable-class. The data
about which you want to estimate the richness.
split (Optional). Logical. Should a separate set of richness estimates be performed
for each sample? Or alternatively, pool all samples and estimate richness of the
entire set.
Value

A data. frame of the richness estimates, and their standard error.

See Also

Check out the custom plotting function, plot_richness_estimates, for easily showing the re-
sults of different estimates, with method-specific error-bars. Also check out the internal functions
borrowed from the vegan package: estimateR, diversity

Examples

data(GlobalPatterns)

(S.GP <- estimate_richness(GlobalPatterns))

Make the plots

plot_richness_estimates(GlobalPatterns, "SampleType")

plot_richness_estimates(GlobalPatterns, "SampleType", "SampleType")
For more plotting examples, see plot_richness_estimates()

export_env_file 15

export_env_file Export environment (ENV) file for UniFrac Server.

Description

Creates the environment table that is needed for the original UniFrac algorithm. Useful for cross-
checking, or if want to use UniFrac server. Optionally the EN'V-formatted table can be returned to
the R workspace, and the tree component can be exported as Nexus format (Recommended).

Usage

export_env_file(physeq, file = "", writeTree = TRUE,
return = FALSE)

Arguments
physeq (Required). Experiment-level (phyloseq-class) object. Ideally this also con-
tains the phylogenetic tree, which is also exported by default.
file (Optional). The file path for export. If not-provided, the expectation is that you
will want to set return to TRUE, and manipulate the ENV table on your own.
Default is "", skipping the ENV file from being written to a file.
writeTree (Optional). Write the phylogenetic tree as well as the the ENV table. Default is
TRUE.
return (Optional). Should the ENV table be returned to the R workspace? Default is
FALSE.
Examples

Load example data
data(esophagus)
export_env_file(esophagus, "~/Desktop/esophagus.txt"”)

export_mothur_dist Export a distance object as .names and .dist files for mothur

Description

The purpose of this function is to allow a user to easily export a distance object as a pair of files that
can be immediately imported by mothur for OTU clustering and related analysis. A distance object
can be created in R in a number of ways, including via cataloguing the cophentic distances of a tree
object.

Usage

export_mothur_dist(x, out=NULL,
makeTrivialNamesFile=NULL)

16 filterfunSample

Arguments
X (Required). A "dist"” object, or a symmetric matrix.
out (Optional). The desired output filename for the . dist file, OR left NULL, the de-
fault, in which case the mothur-formated distance table is returned to R standard
out.

makeTrivialNamesFile
(Optional). Default NULL. The desired name of the .names file. If left NULL, the
file name will be a modified version of the out argument.

Value

A character vector of the different cutoff values contained in the file. For a given set of arguments
to the cluster() command from within mothur, a number of OTU-clustering results are returned
in the same list file. The exact cutoff values used by mothur can vary depending on the input data.
This simple function returns the cutoffs that were actually included in the mothur output. This an
important extra step prior to importing the OTUs with the import_mothur_otulist() function.

Examples

#

data(GlobalPatterns)

myDistObject <- as.dist(cophenetic(tre(GlobalPatterns)))
export_mothur_dist(myDistObject, "myfilepathname.dist")

filterfunSample A sample-wise filter function builder, analogous to filterfun.

Description
See the filterfun, from the Bioconductor repository, for a taxa-/gene-wise filter (and further ex-
amples).

Usage

filterfunSample(...)

Arguments

A comma-separated list of functions.

Value

An enclosure (function) that itself will return a logical vector, according to the functions provided
in the argument list, evaluated in order. The output of filterfunSample is appropriate for the ‘flist’
argument to the genefilterSample method.

See Also

filterfun, genefilterSample

filter taxa 17

Examples

Use simulated abundance matrix

set.seed(711)

testOTU <- otuTable(matrix(sample(1:50, 25, replace=TRUE), 5, 5), speciesAreRows=FALSE)
f1 <- filterfunSample(topk(2))

wh1l <- genefilterSample(testOTU, f1, A=2)

wh2 <- (T, T, T, F, F)

prune_species(whl, testOTU)

prune_species(wh2, testOTU)

filter_taxa Filter taxa based on abundance criteria

Description
This is analogous to genefilter for microarray filtering. Basically an extension of genefilter
(from the Bioconductor repository) for phyloseq objects.

Usage

filter_taxa(physeq, flist, prune=FALSE)

Arguments
physeq (Required). A phyloseg-class object that you want to trim/filter.
flist (Required). A function or list of functions that take a vector of abundance values
and return a logical. Some canned useful function types are included in the
genefilter-package.
prune (Optional). A logical. Default FALSE. If TRUE, then the function returns the
pruned phyloseq-class object, rather than the logical vector of taxa that passed
the filter.
Value

A logical vector equal to the number of species (taxa) in physeq. This can be provided directly
to prune_species as first argument. Alternatively, if prune==TRUE, the pruned phyloseq-class
object is returned instead.

See Also

filterfun, genefilterSample, filterfunSample

Examples

library("genefilter")

data("enterotype”)

flist <- filterfun(kOverA(5, 2e-08), allNA)

ans <- filter_taxa(enterotype, flist)
trimmed.enterotype <- prune_species(ans, enterotype)
sum(!ans); nspecies(trimmed.enterotype)
filter_taxa(enterotype, flist, TRUE)

T TR T

18 genefilterSample

genefilterSample Filter OTUs with arbitrary function, sample-wise.

Description

A general OTU trimming function for selecting OTUs that satisfy some criteria within the distri-
bution of each sample, and then also an additional criteria for number of samples that must pass.
This is a genefilter-like function that only considers sample-wise criteria. The number of accept-
able samples is used as the final criteria (set by the argument A) to determine whether or not the taxa
should be retained (TRUE) or not (FALSE). Just like with genefilter, a logical having length equal to
nrow()/nspecies is returned, indicating which should be kept. This output can be provided directly
to OTU trimming function, prune_species. By contrast, genefilter, of the genefilter package
in Bioconductor, works only on the rows of a matrix. Note that, because otuTable-class inherits
directly from the matrix-class, an unmodified otuTable can be provided to genefilter, but be
mindful of the orientation of the otuTable (use speciesAreRows), and transpose (t) if needed.

Usage

genefilterSample(X, flist, A=1)

Arguments
X The object that needs trimming. Can be matrix, otuTable, or higher- order phy-
loseq classes that contain an otuTable.
flist An enclosure object, typically created with filterfunSample
A An integer. The number of samples in which a taxa / species passed the filter for
it to be labeled TRUE in the output logical vector.
Value

A logical vector with names equal to species.names (or rownames, if matrix).

See Also

genefilter, filterfunSample, t, prune_species

Examples

#

testOTU <- otuTable(matrix(sample(1:50, 25, replace=TRUE), 5, 5), speciesAreRows=FALSE)
f1 <- filterfunSample(topk(2))

wh1l <- genefilterSample(testOTU, f1, A=2)
wh2 <- (T, T, T, F, F)

prune_species(wh1l, testOTU)

prune_species(wh2, testOTU)

##

taxtabl <- taxTab(matrix("abc", 5, 5))

prune_species(wh1l, taxtab1)

prune_species(wh2, taxtab1)

getSamples 19

getSamples Returns all abundance values for species 1.

Description

This is a simple accessor function for investigating a single species-of-interest.

Usage

getSamples(physeq, i)

Arguments
physeq (Required). otuTable-class, or phyloseq-class.
i (Required). A single taxa/species/OTU ID for which you want to know the
abundance in each sample.
Value

An integer vector of the abundance values for each sample in physeq for species i

See Also

getSpecies species.names sample.names

Examples

data(esophagus)
species.names(esophagus)
getSamples(esophagus, "59_5_19")

getslots.phyloseq Return the non-empty slot names of a phyloseq object.

Description

Like getSlots, but returns the class name if argument is component data object.

Usage

getslots.phyloseq(physeq)

Arguments

physeq A phyloseq-class object. If physeq is a component data class, then just re-
turns the class of physeq.

20 getSpecies

Value

identical to getSlots. A named character vector of the slot classes of a particular S4 class, where
each element is named by the slot name it represents. If physeq is a component data object, then a
vector of length (1) is returned, named according to its slot name in the phyloseq-class.

See Also

merge_phyloseq

Examples

#

data(GlobalPatterns)
getslots.phyloseq(GlobalPatterns)
data(esophagus)
getslots.phyloseq(esophagus)

getSpecies Returns all abundance values of sample 1.

Description

This is a simple accessor function for investigating a single sample-of-interest.

Usage

getSpecies(physeq, i)

Arguments
physeq (Required). otuTable-class, or phyloseq-class.
i (Required). A single sample for which you want to know the abundance of each
species. Can be integer for index value, or sample name.
Value

An integer vector of the abundance values for each species in physeq for sample i

See Also

getSpecies species.names sample.names

Examples

data(esophagus)
sample.names(esophagus)
getSpecies(esophagus, "B")

getTaxa 21

getTaxa Get a unique vector of the observed taxa at a particular taxonomic
rank

Description

This is a simple accessor function to make it more convenient to determine the different taxa present
for a particular taxonomic rank in a given phyloseq-class object.

Usage

getTaxa(physeq, taxonomic.rank=rank.names(physeq)[1])

Arguments

physeq (Required). taxonomyTable-class, or phyloseq-class.

taxonomic.rank (Optional). Character. The taxonomic rank to use. Must select from the set
indicated by getTaxa. Default is to take the first column of the taxonomyTable
component.

Value

Character vector. Unique vector of the observed taxa at a particular taxonomic rank

See Also

getSpecies species.names sample.names getTaxa

Examples

data(enterotype)
getTaxa(enterotype)
data(GlobalPatterns)
getTaxa(GlobalPatterns, "Family")

getVariable Get the values for a particular variable in sampleData

Description

This is a simple accessor function for streamlining access to values/vectors/factors/etc contained in
the sampleData.

Usage

getVariable(physeq, varName)

22 import

Arguments
physeq (Required). sampleData-class, or phyloseq-class.
varName (Required). Character string of the variable name in sampleData. Use sample.variables(physeq)
for available variables in your object.
Value

Data. The clas of the data depends on what the contents of sampleData.

See Also

getSpecies species.names sample.names getTaxa sample.variables

Examples

Load the GlobalPatterns dataset into the workspace environment
data(GlobalPatterns)

Look at the different values for SampleType
getVariable(GlobalPatterns, "SampleType")

import Universal import method (wrapper) for phyloseq-package

Description

A user must still understand the additional arguments required for each type of import data. Those
arguments are described in detail at the tool-specific import_# links below. Each clustering tool /
package / pipeline has its own idiosyncratic set of file names / types, and it remains the responsibility
of the user to understand which file-path should be provided to each argument for the particular
importing submethod. This method merely provides a central documentation and method-name,
and the arguments are passed along as-is.

Usage

import(pipelineName, ...)

Arguments

pipelineName (Required). Character string. The name of the analysis tool / pipeline / package
that created the OTU-cluster data or other data that you now want to import. Cur-
rent options are c("mothur”, "pyrotagger”, "QIIME"”, "RDP"), and only
the first letter is necessary.

(Required). Additional arguments providing file paths, and possible other para-
maters to the desired tool-specific import function.

Value

In most cases a phyloseq-class will be returned, though the included component data will vary
by pipeline/tool, and also by the types of data files provided. The expected behavior is to return the
most-comprehensive object possible, given the provided arguments and pipeline/tool.

import_biom 23

References

mothur: http://www.mothur.org/wiki/Main_Page
PyroTagger: http://pyrotagger.jgi-psf.org/
QIIME: http://qiime.org/

BIOM: http://www.biom-format.org/

RDP pipeline: http://pyro.cme.msu.edu/index. jsp

See Also

For mothur, see: import_mothur

Separate tools for mothur are also: show_mothur_list_cutoffs import_mothur_dist export_mothur_dist
For PyroTagger, see: import_pyrotagger_tab

For QIIME, see: import_qgiime

For BIOM format, see: import_biom

For RDP pipeline, see: import_RDP_cluster

Examples

import("QIIME", otufilename=myOtuTaxFilePath, mapfilename=myMapFilePath)

import_biom Import phyloseq data from BIOM file

Description

New versions of QIIME produce a more-comprehensive and formally-defined JSON file format.
From the QIIME website:

Usage

import_biom(BIOMfilename, taxaPrefix=NULL,
parallel=FALSE, version=0.9)

Arguments

BIOMfilename (Required). A character string indicating the file location of the BIOM formatted
file. This is a JSON formatted file, specific to biological datasets, as described
in

http://www.qgiime.org/svn_documentation/documentation/biom_format.
html

taxaPrefix (Optional). Character string. What category of prefix precedes the taxonomic
label at each taxonomic rank. Currently only “greengenes” is a supported option,
and implies that the first letter indicates the taxonomic rank, followed by two
underscores and then the actual taxonomic assignment at that rank. The default
value is NULL, meaning that no prefix or rank identifier will be interpreted.

http://www.mothur.org/wiki/Main_Page
http://pyrotagger.jgi-psf.org/
http://qiime.org/
http://www.biom-format.org/
http://pyro.cme.msu.edu/index.jsp
http://www.qiime.org/svn_documentation/documentation/biom_format.html
http://www.qiime.org/svn_documentation/documentation/biom_format.html

24 import_env_file

parallel (Optional). Logical. Wrapper option for . parallel parameter in plyr-package
functions. If TRUE, apply parsing functions in parallel, using parallel back-
end provided by foreach and its supporting backend packages. One caveat,
plyr-parallelization currently works most-cleanly with multicore-like back-
ends (Mac OS X, Unix?), and may throw warnings for SNOW-like backends.
See the example below for code invoking multicore-style backend within the
doParallel package.

Finally, for many datasets a parallel import should not be necessary because a
serial import will be just as fast and the import is often only performed one time;
after which the data should be saved as an RData file using the save function.

version (Optional). Numeric. The expected version number of the file. As the BIOM
format evolves, version-specific importers will be available by adjusting the ver-
sion value. Default is 0. 9. Not implemented. Has no effect (yet).

Details

“The biom file format (canonically pronounced ‘biome’) is designed to be a general-use format for
representing counts of observations in one or more biological samples.”

http://www.qiime.org/svn_documentation/documentation/biom_format.html

Value

A phyloseqg-class object.

References

http://www.qiime.org/svn_documentation/documentation/biom_format.html

See Also

import, import_qgiime

Examples

import with default parameters, specify a file

import_BIOM(myBIOMfile)

Example code for importing large file with parallel backend

library("doParallel”)

registerDoParallel(cores=6)

import_biom("my/file/path/file.biom”, taxaPrefix="greengenes", parallel=TRUE)

import_env_file Read a UniFrac-formatted ENV file.

Description

Convenience wrapper function to read the environment-file, as formatted for input to the UniFrac
server (http://bmf2.colorado.edu/unifrac/). The official format of these files is that each row
specifies (in order) the sequence name, source sample, and (optionally) the number of times the
sequence was observed.

http://www.qiime.org/svn_documentation/documentation/biom_format.html
http://www.qiime.org/svn_documentation/documentation/biom_format.html
http://bmf2.colorado.edu/unifrac/

import_mothur 25

Usage
import_env_file(envfilename, tree=NULL, sep="\t", ...)

Arguments

envfilename (Required). A charater string of the ENV filename (relative or absolute)

tree (Optional). phylo-class object to be paired with the output otuTable.

sep A character string indicating the delimiter used in the file. The defaultis "\t".

Additional parameters passed on to read. table.

Value

An otuTable-class, or phyloseq-class if a phylo-class argument is provided to tree.

References

http://bmf2.colorado.edu/unifrac/

See Also

import, tipglom

Examples

import_env_file(myEnvFile, myTree)

import_mothur General function for importing mothur files into phyloseq.

Description

General function for importing mothur files into phyloseq.

Usage

import_mothur(mothur_list_file, mothur_group_file=NULL,
mothur_tree_file=NULL, cutoff=NULL)

Arguments

mothur_list_file
Required. The list file name / location produced by mothur.

mothur_group_file
Optional. The name/location of the group file produced by mothur’s make . group ()
function. It contains information about the sample source of individual se-
quences, necessary for creating a species/taxa abundance table (otuTable). See
http://www.mothur.org/wiki/Make.group

mothur_tree_file
Optional. The tree file name produced by mothur. Probably a file that ends with
the suffix ". tree".

http://bmf2.colorado.edu/unifrac/

26 import_mothur_dist

cutoff A character string indicating the cutoff value, (or "unique”), that matches one
of the cutoff-values used to produce the OTU clustering results contained within
the list-file created by mothur (and specified by the mothur_list_file argu-
ment). The default is to take the largest value among the cutoff values contained
in the list file. If only one cutoff is included in the file, it is taken and this argu-
ment does not need to be specified. Note that the cluster () function within the
mothur package will often produce a list file with multiple cutoff values, even if
a specific cutoff is specified. It is suggested that you check which cutoff values
are available in a given list file using the show_mothur_list_cutoffs function.

Value

The object class depends on the provided arguments. If the first three arguments are provided,
then an otuTree object should be returned, containing both an OTU-only tree and its associated
otuTable-class abundance table. If only a list and group file are provided, then an otuTable object
is returned. Similarly, if only a list and tree file are provided, then only a tree is returned ("phylo”
class).

References

http://www.mothur.org/wiki/Main_Page

Schloss, P.D., et al., Introducing mothur: Open-source, platform-independent, community-supported
software for describing and comparing microbial communities. Appl Environ Microbiol, 2009.
75(23):7537-41.

Examples
The following example assumes you have downloaded the esophagus example
dataset from the mothur wiki:
"http://www.mothur.org/wiki/Esophageal_community_analysis”
"http://www.mothur.org/w/images/5/55/Esophagus.zip”
The path on your machine may (probably will) vary
mothur_list_file <- "~/Downloads/mothur/Esophagus/esophagus.an.list”
mothur_group_file <- "~/Downloads/mothur/Esophagus/esophagus.good.groups”
mothur_tree_file <- "~/Downloads/mothur/Esophagus/esophagus.tree”
Actual examples follow:
show_mothur_list_cutoffs(mothur_list_file)
testl <- import_mothur(mothur_list_file, mothur_group_file, mothur_tree_file)
test2 <- import_mothur(mothur_list_file, mothur_group_file, mothur_tree_file, cutoff="0.02")
Returns just a tree
import_mothur(mothur_list_file, mothur_tree_file=mothur_tree_file)
Returns just an otuTable
import_mothur(mothur_list_file, mothur_group_file=mothur_group_file)
Returns an error
import_mothur(mothur_list_file)
Should return an "OMG, you must provide the list file"” error
import_mothur()

import_mothur_dist Import mothur-formatted distance file

http://www.mothur.org/wiki/Main_Page

import_pyrotagger_tab 27

Description

The mothur application will produce a file containing the pairwise distances between all sequences
in a dataset. This distance matrix can be the basis for OTU cluster designations. R also has many
built-in or off-the-shelf tools for dealing with distance matrices.

Usage

import_mothur_dist(mothur_dist_file)

Arguments

mothur_dist_file
Required. The distance file name / location produced by mothur.

Value

A distance matrix object describing all sequences in a dataset.

See Also

import_mothur

Examples

Take a look at the dataset shown here as an example:

"http://www.mothur.org/wiki/Esophageal_community_analysis”

find the file ending with extension ".dist", download to your system
The location of your file may vary

mothur_dist_file <- "~/Downloads/mothur/Esophagus/esophagus.dist”
myNewDistObject <- import_mothur_dist(mothur_dist_file)

ERE N

import_pyrotagger_tab Imports a tab-delimited version of the pyrotagger output file.

Description

PyroTagger is a web-server that takes raw, barcoded 16S rRNA amplicon sequences and returns
an excel spreadsheet (".x1s") with both abundance and taxonomy data. It also includes some
confidence information related to the taxonomic assignment.

Usage

import_pyrotagger_tab(pyrotagger_tab_file,
strict_taxonomy=FALSE, keep_potential_chimeras=FALSE)

28 import_pyrotagger_tab

Arguments

pyrotagger_tab_file
(Required). A character string. The name of the tab-delimited pyrotagger output
table.

strict_taxonomy
(Optional). Logical. Default FALSE. Should the taxonomyTable component be
limited to just taxonomic data? Default includes all fields from the pyrotagger
file.

keep_potential_chimeras
(Optional). Logical. Default FALSE. The pyrotagger output also includes OTUs
that are tagged by pyrotagger as likely chimeras. These putative chimeric OTUs
can be retained if set to TRUE. The putative chimeras are excluded by default.

Details

PyroTagger is created and maintained by the Joint Genome Institute at "http://pyrotagger. jgi-psf.org/"

The typical output form PyroTagger is a spreadsheet format " . x1s", which poses additional import
challenges. However, virtually all spreadsheet applications support the ".x1s" format, and can
further export this file in a tab-delimited format. It is recommended that you convert the xlIs-file
without any modification (as tempting as it might be once you have loaded it) into a tab-delimited
text file. Deselect any options to encapsulate fields in quotes, as extra quotes around each cell’s
contents might cause problems during file processing. These quotes will also inflate the file-size, so
leave them out as much as possible, while also resisting any temptation to modify the xlIs-file “by
hand”.

A highly-functional and free spreadsheet application can be obtained as part of the cross-platform
OpenOffice suite. It works for the above required conversion. Goto "http://www.openoffice.org/".

It is regrettable that this importer does not take the xls-file directly as input. However, because of the
moving-target nature of spreadsheet file formats, there is limited support for direct import of these
formats into R. Rather than add to the dependency requirements of emphphyloseq and the relative
support of these xIs-support packages, it seems more efficient to choose an arbitrary delimited text
format, and focus on the data structure in the PyroTagger output. This will be easier to support in
the long-run.

Value

An otuTax object containing both the otuTable and TaxonomyTable data components, parsed from
the pyrotagger output.

References

http://pyrotagger.jgi-psf.org/

Examples

New_otuTaxObject <- import_pyrotagger_tab(pyrotagger_tab_file)

http://pyrotagger.jgi-psf.org/

import_giime 29

import_qgiime Import function to read files created by the QIIME pipeline.

Description

QIIME produces several files that can be analyzed in the phyloseq-package, including especially
an OTU file that typically contains both OTU-abundance and taxonomic identity information. The
map-file is also an important input to QIIME that stores sample covariates, converted naturally to
the sampleData-class component data type in the phyloseq-package. QIIME may also produce a
phylogenetic tree with a tip for each OTU, which can also be imported by this function.

Usage
import_giime(otufilename=NULL, mapfilename=NULL,
treefilename=NULL, biotaxonomy=NULL, ...)
Arguments

otufilename (Optional). A character string indicating the file location of the OTU file. The
combined OTU abundance and taxonomic identification file, tab-delimited, as
produced by QIIME under default output settings. Default value is NULL.

mapfilename (Optional). The QIIME map file required for processing pyrosequencing tags in
QIIME as well as some of the post-clustering analysis. This is a required input
file for running QIIME. Its strict formatting specification should be followed for
correct parsing by this function. Default value is NULL.

treefilename (Optional). A phylogenetic tree in NEXUS format. For the QIIME pipeline this
is typically a tree of the representative 16S rRNA sequences from each OTU
cluster, with the number of leaves/tips equal to the number of taxa/species/OTUs.
Default value is NULL. ALTERNATIVELY, this argument can be a tree object
(phylo-class), in case the tree has already been imported, or is in a different
format than NEXUS.

biotaxonomy (Optional). A character vector indicating the name of each taxonomic level in
the taxonomy-portion of the otu-file, which may not specify these levels explic-
itly. Default value is NULL.

Additional arguments passed to read.nexus, as necessary. Make sure that your
phylogenetic tree file is readable by read.nexus prior to calling this function.

Details

See "http://www.qgiime.org/" for details on using QIIME. While there are many complex de-
pendencies, QIIME can be downloaded as a pre-installed linux virtual machine that runs “off the
shelf”.

The different files useful for import to phyloseq are not collocated in a typical run of the QIIME
pipeline. See the main phyloseq vignette for an example of where ot find the relevant files in the
output directory.

Value

A phyloseq-class object.

30 import RDP_cluster

References

http://qiime.org/

“QIIME allows analysis of high-throughput community sequencing data.” J Gregory Caporaso,
Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D Bushman, Elizabeth K Costello,
Noah Fierer, Antonio Gonzalez Pena, Julia K Goodrich, Jeffrey I Gordon, Gavin A Huttley, Scott
T Kelley, Dan Knights, Jeremy E Koenig, Ruth E Ley, Catherine A Lozupone, Daniel McDonald,
Brian D Muegge, Meg Pirrung, Jens Reeder, Joel R Sevinsky, Peter J Turnbaugh, William A Wal-
ters, Jeremy Widmann, Tanya Yatsunenko, Jesse Zaneveld and Rob Knight; Nature Methods, 2010;
doi:10.1038/nmeth.f.303

See Also

phyloseq, merge_phyloseq, read. tree, read.nexus

Examples

import_qgiime(myOtuTaxFilePath, myMapFilePath)

import_RDP_cluster Import RDP cluster file and return otuTable (abundance table).

Description

The RDP cluster pipeline (specifically, the output of the complete linkage clustering step) has no
formal documentation for the ”.clust” file or its apparent sequence naming convention.

Usage
import_RDP_cluster(RDP_cluster_file)

Arguments

RDP_cluster_file
A character string. The name of the " . clust" file produced by the the complete
linkage clustering step of the RDP pipeline.

Details

http://pyro.cme.msu.edu/index. jsp

The cluster file itself contains the names of all sequences contained in input alignment. If the
upstream barcode and aligment processing steps are also done with the RDP pipeline, then the
sequence names follow a predictable naming convention wherein each sequence is named by its

non

sample and sequence ID, separated by a "_" as delimiter:
"sampleName_sequenceIDnumber”

This import function assumes that the sequence names in the cluster file follow this convention, and
that the sample name does not contain any "_". It is unlikely to work if this is not the case. It is
likely to work if you used the upstream steps in the RDP pipeline to process your raw (barcoded,
untrimmed) fasta/fastq data.

This function first loops through the " . clust” file and collects all of the sample names that appear.
It secondly loops through each OTU ("cluster”; each row of the cluster file) and sums the number
of sequences (reads) from each sample. The resulting abundance table of OTU-by-sample is trivially
coerced to an otuTable object, and returned.

http://qiime.org/

make_sample_network

Value

31

An otuTable object parsed from the ".clust” file.

References

http://pyro.cme

.msu.edu/index. jsp

make_sample_network Make sample-wise microbiome network (igraph0)

Description

A specialized function for creating graphical models of microbiome samples based on a user-defined
ecological distance and threshold. The graph is ultimately built with tools from the igraph-package.

Usage
make_sample_network(physeq, dist.fun="jaccard”, max.dist
= 0.4, keep.isolates=FALSE, ...)
Arguments
physeq (Required). Default NULL. A phyloseg-class object, or otuTable-class ob-

dist.fun

max.dist

keep.isolates

Value

ject, on which g is based. phyloseq-class recommended.

(Optional). Default "jaccard". Any supported argument to the method param-
eter of the distance function is supported here. Some distance methods, like
"unifrac”, may take a non-trivial amount of time to calculate, in which case
you probably want to calculate the distance matrix separately, save, and then
provide it as the argument to dist. fun instead. See below for alternatives).

Alternatively, if you have already calculated the sample-wise distance object, the
resulting dist-class object can be provided as dist. fun instead (see examples).

A third alternative is to provide a function that takes a sample-by-species matrix
(typical vegan orientation) and returns a sample-wise distance matrix.

(Optional). Default 0.4. The maximum ecological distance (as defined by
dist.fun) allowed between two samples to still consider them “connected” by
an edge in the graphical model.

(Optional). Default FALSE. Logical. Whether to keep isolates (un-connected
samples, not microbial isolates) in the graphical model that is returned. Default
results in isolates being removed from the object.

(Optional). Additional parameters passed on to distance.

A igraph-class object.

See Also

plot_sample_network

http://pyro.cme.msu.edu/index.jsp

32 merge_phyloseq

Examples

Example plots with Enterotype Dataset

data(enterotype)

ig <- make_sample_network(enterotype, max.dist=0.3)

plot_sample_network(ig, enterotype, color="SeqTech”, shape="Enterotype”, line_weight=0.3, label=NULL)
#

ig <- make_sample_network(enterotype, max.dist=0.2)

plot_sample_network(ig, enterotype, color="SeqTech”, shape="Enterotype"”, line_weight=0.3, label=NULL)
#

Three methods of choosing/providing distance/distance-method

Provide method name available to distance

ig <- make_sample_network(enterotype, max.dist=0.3, dist.fun="jaccard")

Provide distance object, already computed

jaccdist <- distance(enterotype, "jaccard")

ih <- make_sample_network(enterotype, max.dist=0.3, dist.fun=jaccdist)

Provide "custom” function.

ii <- make_sample_network(enterotype, max.dist=0.3, dist.fun=function(x){vegdist(x, "jaccard")})
The have equal results:

all.equal(ig, ih)

all.equal(ig, ii)

#

Try out making a trivial "network” of the 3-sample esophagus data,

with weighted-UniFrac as distance

data(esophagus)

ij <- make_sample_network(esophagus, "unifrac”, weighted=TRUE)

merge_phyloseq Merge arguments into one phyloseq object.

Description

Takes a comma-separated list of phyloseq objects as arguments, and returns the most-comprehensive
single phyloseq object possible.

Usage
merge_phyloseq(...)

Arguments

a comma-separated list of phyloseq objects.

Details

Higher-order objects can be created if arguments are appropriate component data types of different
classes, and this should mirror the behavior of the phyloseq method, which is the suggested method
if the goal is simply to create a higher-order phyloseq object from different data types (1 of each
class) describing the same experiment.

By contrast, this method is intended for situations in which one wants to combine multiple higher-
order objects, or multiple core component data objects (e.g. more than one otuTable) that should
be combined into one object.

Merges are performed by first separating higher-order objects into a list of their component objects;
then, merging any component objects of the same class into one object according to the behavior

merge_phyloseq_pair 33

desribed in merge_phyloseq_pair; and finally, building back up a merged-object according to the
constructor behavior of the phyloseq method. If the arguments contain only a single component
type — several otuTable objects, for example — then a single merged object of that component type
is returned.

Value

Merges are performed by first separating higher-order objects into a list of their component objects;
then, merging any component objects of the same class into one object according to the behavior
desribed in merge_phyloseq_pair; and finally, re-building a merged-object according to the con-
structor behavior of the phyloseq method. If the arguments contain only a single component type —
several otuTable objects, for example — then a single merged object of the relevant component type
is returned.

Merges between 2 or more tree objects are ultimately done using consensus from the ape package.
This has the potential to limit somewhat the final data object, because trees don’t merge with other
trees in the same granular manner as data tables, and ultimately the species/taxa in higher-order
phyloseq objects will be clipped to what is contained in the tree. If this an issue, the tree component
should be ommitted from the argument list.

Examples

#

Make a random complex object

OTUT <- otuTable(matrix(sample(0:5,250,TRUE),25,10), speciesAreRows=TRUE)
tax1 <- taxTab(matrix("abc", 30, 8))

mapl <- data.frame(matrix(sample(0:3,250,TRUE),25,10),
matrix(sample(c(”a”,"b","c"),150,TRUE), 25, 6))

map1 <- sampleData(map1)

examl <- phyloseq(0TU1, mapl, tax1)

x <- examl

x <- phyloseq(examl)

y <- taxTab(examl)

merge_phyloseq(x, y)

merge_phyloseq(y, vy, V¥, Y)

merge_phyloseq_pair Merge pair of phyloseq component data objects of the same class.

Description

Internal S4 methods to combine pairs of objects of classes specified in the phyloseq package. These
objects must be component data of the same type (class). This is mainly an internal method, pro-
vided to illustrate how merging is performed by the more general merge_phyloseq function.

Usage

merge_phyloseq_pair(x, y)

34 merge_phyloseq_pair

Arguments
X A character vector of the species in object x that you want to keep — OR al-
ternatively — a logical vector where the kept species are TRUE, and length is
equal to the number of species in object x. If species is a named logical, the
species retained is based on those names. Make sure they are compatible with
the species.names of the object you are modifying (x).
y Any phyloseq object.
Details

The merge_phyloseq function is recommended in general.

Special note: trees are merged using consensus.

Value

A single component data object that matches x and y arguments. The returned object will contain
the union of the species and/or samples of each. If there is redundant information between a pair of
arguments of the same class, the values in x are used by default. Abundance values are summed for
otuTable objects for those elements that describe the same species and sample in x and y.

See Also

merge_phyloseq merge_species

Examples

#

merge two simulated otuTable objects.

x <- otuTable(matrix(sample(0:5,200,TRUE),20,10), speciesAreRows=TRUE)
y <- otuTable(matrix(sample(0:5,300,TRUE),30,10), speciesAreRows=FALSE)
xy <- merge_phyloseq_pair(x, y)

yx <- merge_phyloseq_pair(y, x)

merge two simulated taxTab objects

x <- taxTab(matrix("abc", 20, 6))

y <- taxTab(matrix("def"”, 30, 8))

xy <- merge_phyloseq_pair(x, y)

merge two simulated sampleData objects

x <- data.frame(matrix(sample(0:3,250,TRUE),25,10),

matrix(sample(c(”a","b","c"),150,TRUE),25,6))

x <- sampleData(x)

y <- data.frame(matrix(sample(4:6,200,TRUE),20,10),

matrix(sample(c("d"”,"e","f"),120,TRUE),20,8))

y <- sampleData(y)

merge_phyloseq_pair(x, y)

data.frame(merge_phyloseq_pair(x, y))

data.frame(merge_phyloseq_pair(y, x))

merge_samples 35

merge_samples Merge samples based on a sample variable or factor.

Description

The purpose of this method is to merge/agglomerate the sample indices of a phyloseq object ac-
cording to a categorical variable contained in a sampleData or a provided factor.

Usage

merge_samples(x, group, fun=mean)

Arguments
X (Required). An instance of a phyloseq class that has sample indices. This in-
cludes sampleData-class, otuTable-class, and phyloseq-class.
group (Required). Either the a single character string matching a variable name in the
corresponding sampleData of x, or a factor with the same length as the number
of samples in x.
fun (Optional). The function that will be used to merge the values that correspond to
the same group for each variable. It must take a numeric vector as first argument
and return a single value. Default is mean. Note that this is (currently) ignored
for the otuTable, where the equivalent function is sum, but evaluated via rowsum
for efficiency.
Details

NOTE: (phylo) trees and taxonomyTable-class are not modified by this function, but returned in
the output object as-is.

Value

A phyloseq object that has had its sample indices merged according to the factor indicated by the
group argument. The output class matches x.

See Also

merge_species, codemerge_phyloseq

Examples

#

data(GlobalPatterns)

t1 <- merge_samples(sampleData(GlobalPatterns), "SampleType")
t4 <- merge_samples(GlobalPatterns, "SampleType")

identical(t1, sampleData(t4))

36 merge_species

merge_species Merge a subset of the species in x into one species/taxa/OTU.

Description

Takes as input an object that describes species/taxa (e.g. phyloseq-class, otuTable-class,
phylo-class, taxonomyTable-class), as well as a vector of species that should be merged. It
is intended to be able to operate at a low-level such that related methods, such as tipglom and
taxglom can both reliably call merge_species for their respective purposes.

Usage

merge_species(x, eqspecies, archetype=1)

Arguments
X (Required). An object that describes species (taxa). This includes phyloseq-class,
otuTable-class, taxonomyTable-class, phylo.
egspecies (Required). The species names, or indices, that should be merged together. If
length(egspecies) < 2, then the object x will be returned safely unchanged.
archetype The index of eqspecies indicating the species that should be kept (default is
1) to represent the summed/merged group of species/taxa/OTUs. If archetype is
not an index or index-name in eqspecies, the first will be used, and the value
in archetype will be used as the index-name for the new species.
Value

The object, x, in its original class, but with the specified species merged into one entry in all relevant
components.

See Also

tipglom, taxglom, merge_phyloseq, merge_samples

Examples

data(phylocom)

tree <- phylocom$phylo

otu <- otuTable(phylocom$sample, speciesAreRows=FALSE)
otutree0 <- phyloseq(otu, tree)

plot(otutree0)

otutreel <- merge_species(otutree0, tree$tip.label[1:8], 2)
plot(otutreel)

T E E EEE
R E E

mt 37
mt Multiple testing of taxa abundance acccording to sample cate-
gories/classes
Description

Multiple testing of taxa abundance acccording to sample categories/classes

Usage

mt (physeq, classlabel, minPmaxT="minP", ...)

Arguments

physeq

classlabel

minPmaxT

Value

(Required). otuTable-class or phyloseq-class. In this multiple testing
framework, different taxa correspond to variables (hypotheses), and samples to
observations.

(Required). A single character index of the sample-variable in the sampleData
of physeq that will be used for multiple testing. Alternatively, classlabel can
be a custom integer (or numeric coercable to an integer), character, or factor
with length equal to nsamples(physeq).

NOTE: the default test applied to each taxa is a two-sample two-sided t. test,
WHICH WILL FAIL with an error if you provide a data variable (or custom
vector) that contains MORE THAN TWO classes. One alternative to consider
is an F-test, by specifying test="f" as an additional argument. See the first
example below, and/or further documentation of mt.maxT or mt.minP for other
options and formal details.

(Optional). Character string. "mt.minP" or "mt.maxT". Default is to use
mt.minP.

(Optional). Additional arguments, forwarded to mt.maxT or mt.minP

A dataframe with components specified in the documentation for mt . maxT or mt . minP, respectively.

See Also

mt.maxT, mt.minP

Examples

#

Simple example, testing genera that sig correlate with Enterotypes

data(enterotype)

Filter samples that don’t have Enterotype

x <- subset_samples(enterotype, !is.na(Enterotype))

(the taxa are at the genera level in this dataset)

mt(x, "Enterotype”, test="f")

Not surprisingly, Prevotella and Bacteroides top the list.

Different test, multiple-adjusted t-test, whether samples are ent-2 or not.
mt(x, getVariable(x, "Enterotype")==2)

38

nspecies

nsamples Get the number of samples.

Description

Get the number of samples.

Usage
nsamples(physeq)
Arguments
physeq A phyloseqg-class, sampleData, or otuTable-class.
Value

An integer indicating the total number of samples.

See Also

species.names, sample.names, nspecies

Examples

#

From "picante"” package

data("phylocom™)

tree <- phylocom$phylo

OTU1 <- otuTable(phylocom$sample, speciesAreRows=FALSE)

nsamples(0TUT)

physeql <- phyloseq(0TU1, tree)

nsamples(physeql)

nspecies Get the number of taxa/species.

Description

Get the number of taxa/species.

Usage

nspecies(physeq)

Arguments

physeq phyloseqg-class, otuTable-class, taxonomyTable-class, or phylo

ordinate 39

Value

An integer indicating the number of taxa / species.

See Also

species.names

Examples

#

From "picante” package
data("phylocom")

tree <- phylocom$phylo
nspecies(tree)

ordinate Perform an ordination on phyloseq data

Description

This function wraps several commonly-used ordination methods. The type of ordination depends
upon the argument to method. Try ordinate("help”) or ordinate("”list") for the currently
supported method options.

Usage

ordinate(physeq, method="DCA", distance="unifrac”, ...)

Arguments

physeq (Required). Phylogenetic sequencing data (phyloseq-class). The data on
which you want to perform the the ordination. In general, these methods will be
based in some fashion on the abundance table ultimately stored as a contingency
matrix (otuTable-class). If you’re able to import data into phyloseq-class
format, than you don’t need to worry, as an otuTable is a required component
of this class. In addition, some ordination methods require additional data, like
a constraining variable or phylogenetic tree. If that is the case, the relevant data
should be included in physeq prior to running. Integrating the data in this way
also results in these different data components being checked for validity and
completeness by the method.

method (Optional). A character string. Default is "DCA".
Currently supported method options are: c("DCA", "CCA", "RDA", "DPCoA", "NMDS", "MDS",

DCA Performs detrended correspondence analysis using decorana

CCA Performs correspondence analysis, or optionally, constrained correspon-
dence analysis (a.k.a. canonical correspondence analysis), via cca

RDA Performs redundancy analysis, or optionally principal components anal-
ysis, via rda

DPCoA Performs Double Principle Coordinate Analysis using a (corrected, if
necessary) phylogenetic/patristic distance between species. The calculation
is performed by DPCoA(), which ultimately uses dpcoa after making the
appropriate accessions/corrections of the data.

40 ordinate

NMDS Performs Non-metric MultiDimenstional Scaling of a sample-wise eco-
logical distance matrix onto a user-specified number of axes, k. By default,
k=2, but this can be modified as a supplementary argument. This method
is ultimately carried out by metaMDS after the appropriate accessions and
distance calculations. Because metaMDS includes its own distance calcu-
lation wrappers to vegdist, and these provide additional functionality in
the form of species scores, ordinate will pass-on the distance argument
to metaMDS if it is among the supported vegdist methods. However, all
distance methods supported by distance are supported here, including
"unifrac"” (the default) and "DPCoA".

MDS/PCoA Performs principal coordinate analysis (also called principle coor-
dinate decomposition, multidimensional scaling (MDS), or classical scal-
ing) of a distance matrix (Gower 1966), including two correction methods
for negative eigenvalues. See pcoa for further details.

distance (Optional). A character string matching a distance method; or, alternatively,
a pre-computed dist-class object. This argument is only utilized if a distance
matrix is required by the ordination method specified by the method argument
(above).
Any supported distance methods are supported arguments to distance here.
Try distance("list") for a explicitly supported distance method abbrevia-
tions. User-specified custom distance equations should also work, e.g. " (A+B-2xJ)/(A+B)".
See distance for more details, examples.

(Optional). Additional arguments to supporting functions. For example, the ad-
ditional argument weighted=TRUE would be passed on to UniFrac if "unifrac”
were chosen as the distance option and "MDS" as the ordination method option.
Alternatively, if "DCA" were chosen as the ordination method option, additional
arguments would be passed on to the relevant ordination function, decorana,
for example.

Value

An ordination object. The specific class of the returned object depends upon the ordination method,
as well as the function/package that is called internally to perform it. As a general rule, any of the
ordination classes returned by this function will be recognized by downstream tools in the phyloseq
package, for example the ordination plotting function, plot_ordination.

See Also

Related component ordination functions described within phyloseq:
DPCoA

Described/provided by other packages:

ccal/rda, decorana, metaMDS, pcoa

NMDS and MDS/PCoA both operate on distance matrices, typically based on some pairwise com-
parison of the microbiomes in an experiment/project. There are a number of common methods to
use to calculate these pairwise distances, and the most convenient function (from a phyloseq point
of view) for calculating these distance matrices is the

distance

function. It can be thought of as a distance / dissimilarity-index companion function for ordinate,
and indeed the distance options provided to ordinate simply passed on to distance.

A good quick summary of ordination is provided in the introductory vignette for vegan:

otuTable 41

vegan introductory vignette
The following R task views are also useful for understanding the available tools in R:
Analysis of Ecological and Environmental Data

Multivariate Statistics

Examples

Take a subset of the GP dataset for quicker computation of examples
data(GlobalPatterns)

Keep top 200 species

topsp <- names(sort(speciesSums(GlobalPatterns), TRUE)[1:200])
GP <- prune_species(topsp, GlobalPatterns)
Subset further to top 5 phyla

topbph <- sort(tapply(speciesSums(GP), taxTab(GP)[, "Phylum"], sum), decreasing=TRUE)[1:5]
GP <- subset_species(GP, Phylum %in% names(top5ph))
#

Examples performing ordination with NMDS. Default distance is unweighted UniFrac
GP.NMDS.UF.ord <- ordinate(GP, "NMDS")

GP.NMDS.wUF.ord <- ordinate(GP, "NMDS"”, "unifrac"”, weighted=TRUE)
GP.NMDS.Bray.ord <- ordinate(GP, "NMDS", "bray")
#

An example plot with default, or manually-defined shapes
(p <- plot_ordination(GP, GP.NMDS.Bray.ord, "biplot", color="SampleType", shape="Phylum"))
define manual shape scale:

man.shapes <- 21:25

names(man.shapes) <- c(getTaxa(GP, "Phylum"))
man.shapes <- c(samples=19, man.shapes)

p + scale_shape_manual(value=man.shapes)

#

An example of constrained ordination

GP.cca <- ordinate(GP~SampleType, "CCA")

#

Run-through "quick” plot examples of the other ordination options currently supported

Only showing "samples” in these examples, but "species” options supported for some methods
plot_ordination(GP, ordinate(GP, "DCA"), "samples"”, color="SampleType")

plot_ordination(GP, ordinate(GP, "CCA"), "samples”, color="SampleType")

plot_ordination(GP, ordinate(GP~SampleType, "CCA"), "samples"”, color="SampleType")

plot_ordination(GP, ordinate(GP, "RDA"), "samples”, color="SampleType")

plot_ordination(GP, ordinate(GP~SampleType, "RDA"), "samples"”, color="SampleType")

plot_ordination(GP, ordinate(GP, "DPCoA"), "samples", color="SampleType")

plot_ordination(GP, ordinate(GP, "MDS"), "samples”, color="SampleType")

plot_ordination(GP, ordinate(GP, "PCoA"), "samples", color="SampleType")

plot_ordination(GP, ordinate(GP, "NMDS"), "samples"”, color="SampleType")

plot_ordination(GP, ordinate(GP, "NMDS", "w"), "samples"”, color="SampleType")

otuTable Build or access the otuTable.

Description

This is the suggested method for both constructing and accessing Operational Taxonomic Unit
(OTU) abundance (otuTable-class) objects. When the first argument is a matrix, otuTable() will
attempt to create and return an otuTable-class object, which further depends on whether or not

http://cran.r-project.org/web/packages/vegan/vignettes/intro-vegan.pdf
http://cran.r-project.org/web/views/Environmetrics.html
http://cran.r-project.org/web/views/Multivariate.html

42 otuTable-class

speciesAreRows is provided as an additional argument. Alternatively, if the first argument is an
experiment-level (phyloseq-class) object, then the corresponding otuTable is returned.

Usage

otuTable(object, speciesAreRows, errorIfNULL=TRUE)

Arguments

object (Required). An integer matrix, otuTable-class, or phyloseq-class.

speciesAreRows (Conditionally optional). Logical; of length 1. Ignored unless object is a ma-
trix, in which case it is is required.

errorIfNULL (Optional). Logical. Should the accessor stop with an error if the slot is empty
(NULL)? Default TRUE. Ignored if object argument is a matrix (constructor in-
voked instead).

Value

An otuTable-class object.

See Also

tre, sampleData, taxTab phyloseq, merge_phyloseq

Examples

#
data(GlobalPatterns)
otuTable(GlobalPatterns)

otuTable-class The S4 class for storing taxa-abundance information.

Description

Because orientation of these tables can vary by method, the orientation is defined explicitly in the
speciesAreRows slot (a logical). The otuTable class inherits the matrix class to store abundance
values. Various standard subset and assignment nomenclature has been extended to apply to the
otuTable class, including square-bracket, t, etc.

Details

speciesAreRows A single logical specifying the orientation of the abundance table.

Data This slot is inherited from the matrix class.

otuTable<- 43

otuTable<- Assign a new OTU Table to x

Description

Assign a new OTU Table to x

Usage

otuTable(x) <- value

Arguments
X (Required). phyloseq-class

value (Required). otuTable-class or phyloseqg-class.

Examples

data(GlobalPatterns)

An example of pruning to just the first 100 taxa in GlobalPatterns.
ex2a <- prune_species(species.names(GlobalPatterns)[1:100], GlobalPatterns)
The following 3 lines produces an ex2b that is equal to ex2a

ex2b <- GlobalPatterns

OTU <- otuTable(GlobalPatterns)[1:100,]

otuTable(ex2b) <- OTU

identical (ex2a, ex2b)

print(ex2b)

Relace otuTable by implying the component in context.

ex2c <- GlobalPatterns

otuTable(ex2c) <- ex2b

identical (ex2a, ex2c)

B Y E

phylo-class An §4 copy of the main phylogenetic tree class from the ape package.

Description

See the ape package for details about this type of representation of a phylogenetic tree. It is used
throught ape.

See Also

phylo, setOldClass

44 phyloseq

phyloseq Build phyloseq-class objects from their components.

Description

phyloseq() is a constructor method, This is the main method suggested for constructing an experiment-
level (phyloseq-class) object from its component data (component data classes: otuTable-class,
sampleData-class, taxonomyTable-class, phylo-class).

Usage

phyloseq(...)

Arguments

One or more component objects among the set of classes defined by the phy-
loseq package, as well as phylo-class (defined by the ape-package). Each ar-
gument should be a different class. For combining multiple components of the
same class, or multiple phyloseq-class objects, use the merge_phyloseq func-
tion. Unlike in earlier versions, the arguments to phyloseq do not need to be
named, and the order of the arguments does not matter.

Value
The class of the returned object depends on the argument class(es). For an experiment-level object,
two or more component data objects must be provided. Otherwise, if a single component-class is
provided, it is simply returned as-is. The order of arguments does not matter.

See Also

merge_phyloseq

Examples
#
data(GlobalPatterns)
GP <- GlobalPatterns
phyloseq(sampleData(GP), otuTable(GP))
phyloseq(otuTable(GP), tre(GP))
phyloseq(taxTab(GP), otuTable(GP))
phyloseq(tre(GP), otuTable(GP), sampleData(GP))
phyloseq(otuTable(GP), taxTab(GP), sampleData(GP))
phyloseq(otuTable(GP), tre(GP), taxTab(GP), sampleData(GP))

phyloseq-class 45

phyloseq-class The main experiment-level class for phyloseq data

Description

Contains all component classes: otuTable-class, sampleData-class, taxonomyTable-class
("taxTab" slot), and phylo-class ("tre" slot). There are several advantages to storing your phy-
logenetic sequencing experiment as an instance of the phyloseq class, not the least of which is that
it is easy to return to the data later and feel confident that the different data types “belong” to one
another. Furthermore, the phyloseq constructor ensures that the different data components have
compatible indices (e.g. species and samples), and performs the necessary trimming automatically
when you create your “experiment-level” object. Downstream analyses are aware of which data
classes they require — and where to find them — often making your phyloseq-class object the only
data argument to analysis and plotting functions (although there are many options and parameter
arguments waiting for you).

Details

In the case of missing component data, the slots are set to NULL. As soon as a phyloseg-class
object is to be updated with new component data (previously missing/NULL or not), the indices
of all components are re-checked for compatibility and trimmed if necessary. This is to ensure
by design that components describe the same taxa/samples, and also that these trimming/validity
checks do not need to be repeated in downstream analyses.

slots:

otuTable a single object of class otuTable.
samData a single object of class sampleData.
taxTab a single object of class taxonomyTable.

tre a single object of class phylo, from the package ape

See Also

The constructor, phyloseq, the merger merge_phyloseq, and also the component constructor/accessors
otuTable, sampleData, taxTab, and tre.

plot_ordination General ordination plotter based on ggplot2.

Description
Convenience wrapper for plotting ordination results as a ggplot2-graphic, including additional
annotation in the form of shading, shape, and/or labels of sample variables.

Usage

plot_ordination(physeq, ordination, type="samples”,
axes=c(1, 2), color=NULL, shape=NULL, label=NULL,
title=NULL, justDF=FALSE)

46 plot_ordination

Arguments

physeq (Required). phyloseq-class, or alternatively, an sampleData-class. The data
about which you want to plot and annotate the ordination.

ordination (Required). An ordination object. Many different classes of ordination are de-
fined by R packages. The supported classes should be listed explicitly, but in the
meantime, all ordination classes currently supported by the scores function are
supported here. There is no default, as the expectation is that the ordination will
be performed and saved prior to calling this plot function.

type (Optional). The plot type. Default is "samples”. The currently supported op-
tions are c("samples”, "sites"”, "species”, "taxa", "biplot”, "split").
The option “taxa” is equivalent to “species” in this case, and similarly, “sam-
ples” is equivalent to “sites”. The options "sites” and "species” result in
a single-plot of just the sites/samples or species/taxa of the ordination, respec-
tively. The "biplot” and "split” options result in a combined plot with both
taxa and samples, either combined into one plot (“biplot”) or separated in two
facet panels (“split”), respectively.

axes (Optional). A 2-element vector indicating the axes of the ordination that should
be used for plotting. Can be character-class or integer-class, naming the
index name or index of the desired axis for the horizontal and vertical axes,
respectively, in that order. The default value, c(1, 2), specifies the first two
axes of the provided ordination.

color (Optional). Default NULL. Character string. The name of the variable to map
to colors in the plot. This can be a sample variable (among the set returned by
sample.variables(physeq)) or taxonomic rank (among the set returned by
rank.names(physeq)).

Alternatively, if type indicates a single-plot ("samples” or "species”), then
it is also possible to supply a custom vector with length equal to the relevant
number of samples or species (nsamples(physeq) or nspecies(physeq)).

Finally, The color scheme is chosen automatically by 1ink{ggplot}, but it can
be modified afterward with an additional layer using scale_color_manual.

shape (Optional). Default NULL. Character string. The name of the variable to map to
different shapes on the plot. Similar to color option, but for the shape if points.

The shape scale is chosen automatically by 1ink{ggplot}, but it can be modi-
fied afterward with an additional layer using scale_shape_manual.

label (Optional). Default NULL. Character string. The name of the variable to map to
text labels on the plot. Similar to color option, but for plotting text.

title (Optional). Default NULL. Character string. The title to include over the plot.

justDF (Optional). Default FALSE. Logical. Instead of returning a ggplot2-object, do
you just want the relevant data. frame that was used to build the plot? This is
a user-accessible option for obtaining the data. frame, in in principal to make
a custom plot that isn’t possible with the available options in this function. For
contributing new functions (developers), the phyloseqg-package provides/uses
an internal function to build the key features of the data.frame prior to plot-
build.

Value

A ggplot plot object, graphically summarizing the ordination result for the specified axes.

plot_phyloseq 47

See Also

plot_phyloseq

Examples

++
++

data(GlobalPatterns)

Define a human-associated versus non-human binary variable:

human.levels <- levels(getVariable(GlobalPatterns, "SampleType"”)) %in%

c("Feces”, "Mock”, "Skin", "Tongue")

human <- human.levels[getVariable(GlobalPatterns, "SampleType")]

names(human) <- sample.names(GlobalPatterns)

Need to clean the zeros from GlobalPatterns:

GP <- prune_species(speciesSums(GlobalPatterns)>0, GlobalPatterns)

Get the names of the most-abundant

top.TaxaGroup <- sort(

tapply(speciesSums(GP), taxTab(GP)[, "Phylum”], sum, na.rm = TRUE),

decreasing = TRUE)

top.TaxaGroup <- top.TaxaGroup[top.TaxaGroup > 1x10%6]

Now prune further, to just the most-abundant phyla

GP <- subset_species(GP, Phylum %in% names(top.TaxaGroup))

topsp <- names(sort(speciesSums(GP), TRUE)[1:200])

GP1 <- prune_species(topsp, GP)

GP.dpcoa <- ordinate(GP1, "DPCoA")

plot_ordination(GP1, GP.dpcoa, type="taxa", color="Phylum")

plot_ordination(GP1, GP.dpcoa, type="samples”, color="SampleType"”) + geom_line() + geom_point(size=5)
plot_ordination(GP1, GP.dpcoa, type="samples"”, color="SampleType", shape=human) +

geom_line() + geom_point(size=5)

plot_ordination(GP1, GP.dpcoa, type="species”, color="Phylum”) + geom_line() + geom_point(size=5)
plot_ordination(GP1, GP.dpcoa, type="biplot"”, shape="Phylum”, label="SampleType")
plot_ordination(GP1, GP.dpcoa, type="biplot"”, shape="Phylum")

plot_ordination(GP1, GP.dpcoa, type="biplot"”, color="Phylum")

plot_ordination(GP1, GP.dpcoa, type="biplot"”, label="Phylum")

plot_ordination(GP1, GP.dpcoa, type="split”, color="Phylum”, label="SampleType")
plot_ordination(GP1, GP.dpcoa, type="split”, color="SampleType"”, shape="Phylum”, label="SampleType")

Y E E E E E E E E E E E E E E E E E T E E E E E E TS

plot_phyloseq Generic plot defaults for phyloseq.

Description

The specific plot type is chosen according to available non-empty slots. This is mainly for syntactic
convenience and quick-plotting. See links below for some examples of available graphics tools
available in the phyloseq-package.

Usage
plot_phyloseq(physeq, ...)
Arguments
physeq (Required). phyloseg-class. The actual plot type depends on the available

(non-empty) component data types contained within.

48 plot_richness_estimates

(Optional). Additional parameters to be passed on to the respective specific
plotting function. See below for different plotting functions that might be called
by this generic plotting wrapper.
Value
A plot is created. The nature and class of the plot depends on the physeq argument, specifically,
which component data classes are present.
See Also

plot_ordinationplot_taxa_bar plot_sample_network plot_tree_phyloseqplot_richness_estimates

Examples

data(esophagus)
plot_phyloseq(esophagus)

plot_richness_estimates
Plot richness estimates, flexibly with ggplot2

Description

Performs a number of standard richness estimates using the estimate_richness function, and
returns a ggplot plotting object. This plot shows the individual richness estimates for each sample,
as well as the observed richness. You must use untrimmed datasets for meaningful results, as these
estimates (and even the “observed” richness) are highly dependent on the number of singletons.
You can always trim the data later on if needed, just not before using this function.

Usage

plot_richness_estimates(physeq, x, color=NULL,
shape=NULL)

Arguments

physeq (Required). phyloseqg-class, or alternatively, an otuTable-class. The data
about which you want to estimate the richness.

X (Optional). A variable to map to the horizontal axis. The vertical axis will be
mapped to richness estimates and have units of total species. This parameter
(x) can be either a character string indicating a variable in sampleData (among
the set returned by sample.variables(physeq)); or a custom supplied vector
with length equal to the number of samples in the dataset (nsamples(physeq)).
The default value is "sample.names”, which will map each sample’s name to a
separate horizontal position in the plot.

color (Optional). Default NULL. The sample variable to map to different colors. Like x,
this can be a single character string of the variable name in sampleData (among
the set returned by sample.variables(physeq)); or a custom supplied vector
with length equal to the number of samples in the dataset (nsamples(physeq)).
The color scheme is chosen automatically by 1ink{ggplot}, but it can be mod-
ified afterward with an additional layer using scale_color_manual.

plot_richness_estimates 49

shape (Optional). Default NULL. The sample variable to map to different shapes. Like x
and color, this can be a single character string of the variable name in sampleData
(among the set returned by sample.variables(physeq)); or a custom sup-
plied vector with length equal to the number of samples in the dataset (nsam-
ples(physeq)). The shape scale is chosen automatically by link{ggplot}, butit
can be modified afterward with an additional layer using scale_shape_manual.

Details

NOTE: Because this plotting function incorporates the output from estimate_richness, the vari-
able names of that output should not be used as x or color (even if it works, the resulting plot might
be kindof strange, and not the intended behavior of this function). The following are the names you
will want to avoid using in x or color:

c("S.obs", "S.chao1”, "se.chaol”, "S.ACE", "se.ACE"”, "shannon", "simpson")

Value

A ggplot plot object summarizing the richness estimates, and their standard error.

See Also

estimate_richness, estimateR, diversity

Examples

data(GlobalPatterns)
plot_richness_estimates(GlobalPatterns, "SampleType")
plot_richness_estimates(GlobalPatterns, "SampleType"”, "SampleType")

Define a human-associated versus non-human categorical variable:
GP <- GlobalPatterns

human.levels <- levels(getVariable(GP, "SampleType"”)) %in%
c("Feces”, "Mock”, "Skin", "Tongue")

human <- human.levels[getVariable(GP, "SampleType")]

names(human) <- sample.names(GP)

Replace current SD with new one that includes human variable:
sampleData(GP) <- sampleData(data.frame(sampleData(GP), human))

Can use new "human” variable within GP as a discrete variable in the plot
plot_richness_estimates(GP, "human”, "SampleType")
plot_richness_estimates(GP, "SampleType”, "human")

Can also provide custom factor directly:
plot_richness_estimates(GP, "SampleType"”, human)
plot_richness_estimates(GP, human, "SampleType")

Not run: Should cause an error:
plot_richness_estimates(GP, "value", "value")
#

R E E E E E E R E E E E E E E E E E T E

50

plot_sample_network

plot_sample_network Plot sample-wise microbiome network (ggplot2)

Description

A custom plotting function for displaying graph objects created by igraph from a phylogenetic
sequencing experiment (phyloseq-class), using advanced ggplot2 formatting.

Usage

plot_sample_network(g, physeg=NULL, color=NULL,
shape=NULL, point_size=4, alpha=1, label="value”, hjust =
1.35, line_weight=0.5, line_color=color, line_alpha=0.4,
layout.method=1layout.fruchterman.reingold)

Arguments

g

physeq

color

shape

point_size

alpha

label

hjust

line_weight

line_color

line_alpha
layout.method

Value

A ggplot2 plot.

(Required). An igraph-class object created either by the convenience wrapper
make_sample_network, or directly by the tools in the igraphO-package.

(Optional). Default NULL. A phyloseg-class object on which g is based.

(Optional). Default NULL. The name of the sample variable in physeq to use for
color mapping of points (graph vertices).

(Optional). Default NULL. The name of the sample variable in physeq to use for
shape mapping. of points (graph vertices).
(Optional). Default 4. The size of the vertex points.

(Optional). Default 1. A value between 0 and 1 for the alpha transparency of the
vertex points.

(Optional). Default "value”. The name of the sample variable in physeq to use
for labelling the vertex points.

(Optional). Default 1.35. The amount of horizontal justification to use for each
label.

(Optional). Default 0. 3. The line thickness to use to label graph edges.

(Optional). Default color. The name of the sample variable in physeq to use
for color mapping of lines (graph edges).

(Optional). Default 0. 4. The transparency level for graph-edge lines.

(Optional). Default layout . fruchterman.reingold. A function (closure) that
determines the placement of the vertices for drawing a graph. Should be able
to take an igraph-class as sole argument, and return a two-column coordinate
matrix with nrow equal to the number of vertices. For possible options already
included in igraphO-package, see the others also described in the help file:

layout. fruchterman.reingold

plot_taxa_bar 51

References
Code modified from code now hosted on GitHub by Scott Chamberlain: https://github.com/
SChamberlain/gggraph
The code most directly used/modified was first posted here: http://www.r-bloggers.com/basic-ggplot2-network-

See Also

make_sample_network

Examples

data(enterotype)

ig <- make_sample_network(enterotype, max.dist=0.3)

plot_sample_network(ig, enterotype, color="SeqTech”, shape="Enterotype”, line_weight=0.3, label=NULL)
Change distance parameter

ig <- make_sample_network(enterotype, max.dist=0.2)

plot_sample_network(ig, enterotype, color="SeqTech”, shape="Enterotype”, line_weight=0.3, label=NULL)

plot_taxa_bar Create a structured barplot graphic of the taxonomic groups.

Description

This function wraps ggplot2 plotting, and returns a ggplot2 graphic object that can be saved or
further modified with additional layers, options, etc. The main purpose of this function is to quickly
and easily create informative summary graphics of the differences in taxa abundance between sam-
ples in an experiment.

Usage

plot_taxa_bar(otu, taxavec="Domain",
showOnlyTheseTaxa=NULL, threshold=NULL,
x_category="sample"”, fill_category=x_category,
facet_formula = . ~ TaxaGroup, OTUpoints=FALSE,
labelOTUs=FALSE)

taxaplot(otu, taxavec = "Domain”, showOnlyTheseTaxa =
NULL, threshold = NULL, x_category = "sample”,
fill_category = x_category, facet_formula = . ~
TaxaGroup, OTUpoints = FALSE, 1labelOTUs = FALSE)

Arguments
otu (Required). An otuTable object, or higher-order object that contains an otuTable
and sampleData (e.g. “otuSam” class and its superclasses.). If otu does not con-
tain a taxTab slot (is a class that does not have “Tax” in its title), then the second
argument, taxavec, is required and should have length equal to the number of
species/taxa in otu.
taxavec A character vector of the desired taxonomic names to categorize each species in

otu. If otu is a higher-order object that contains a taxonomyTable, then taxavec
can alternatively specify the desired taxonomic level as a character string of
length 1. E.g. taxavec = "Phylum”. Default value is "Domain”.

https://github.com/SChamberlain/gggraph
https://github.com/SChamberlain/gggraph
http://www.r-bloggers.com/basic-ggplot2-network-graphs/

52

plot_taxa_bar

showOnlyTheseTaxa

threshold

x_category

fill_category

facet_formula

OTUpoints

labelOTUs

Details

A vector of the taxonomic labels that you want included. If NULL, the default,

then all taxonomic labels are used, except for the empty character string, “”,
which is trimmed away.

A [0,1] numeric. Fraction of abundance of the taxonomic groups to keep for
each sample. The higher the value, the larger the diversity of taxonomica groups
included. That is, a greater number of the rare groups are included. If NULL (or
1), the default, all taxonomic groups are included.

A character string indicating which sampleData column should be used to define
the horizontal axis categories. Default is "sample”. Note that a few column-
names are added by default and are available as options. They are “sample”,
“Abundance”, and “TaxaGroup”.

A character string indicating which sampleData column should be used to define
the fill color of the bars. This does not have to match x_category, but does so
by default. Note that a few column-names are added by default and are available
as options. They are “sample”, “Abundance”, and “TaxaGroup”.

A formula object as used by facet_grid in ggplot or gplot commands The
defaultis: . ~ TaxaGroup. Note that a few column-names are added by de-
fault and are available as options. They are “sample”, “Abundance”, and “Taxa-
Group”. E.g. An alternative facet_grid could be sample ~ TaxaGroup.

(Optional). Logical. Default FALSE. Whether to add small grey semi-transparent
points for each OTU. Helps convey the relative distribution within each bar if
it combines many different OTUs. For datasets with large numbers of samples
and for complicated plotting arrangements, this might be too cluttered to be
meaningful.

(Optional). Logical. Default FALSE. Whether to add a label over the top few
OTUs within each bar. As with 0TUpoints, this is probably not a good idea for
plots with large complexity. For low numbers of total OTUs this can be infor-
mative, and help display multiple layers of information on the same graphic.

The vertical axis is always relative abundance, but the data can be further organized at the horizontal
axis and faceting grid by any combination of variates present in the sampleData component of otu.

Value

A ggplot2 graphic object.

See Also

otu2df, gplot, ggplot

Examples

#it

data(enterotype)

TopNOTUs <- names(sort(speciesSums(enterotype), TRUE)[1:10])

ent10 <- prune_species(TopNOTUs, enterotype)

(p <- plot_taxa_bar(ent10, "Genus”, x="SeqTech”, fill="TaxaGroup") +
facet_wrap(~Enterotype))

plot_tree_phyloseq

53

plot_tree_phyloseq Plot tree with easy tip annotation.

Description

Requires a phyloseg-class that contains a tree (tre), sample data (sampleData), and abundance

table (otuTable).

Usage

plot_tree_phyloseq(physeq, color_factor=NULL,
shape_factor=NULL, base_size=1, size_scaling_factor =
0.2, opacity=2/3, custom_color_scale=NULL,
custom_shape_scale=NULL, type_abundance_value=FALSE,

printTheseTaxa=NULL, treeTitle="Annotated Tree", ...)
Arguments
physeq (Required). phyloseq-class with non-empty tree, sampleData, and otuTable

color_factor

shape_factor

base_size

components.

A character string specifying the column of the sampleData that will be used for
setting the color of symbols.

A character string specifying the column of the sampleData that will be used for
setting the shape of symbols.

The minimum size expansion factor of symbols plotted next to tips. The default
value is 1.

size_scaling_factor

opacity

A numeric, greater than or equal to 0, that is multiplied by the logl0 of taxa
abundance; the product of which is summed with the base_size argument to
determine the size scaling factor provided to tipsymbols. The default value is
0.15. The larger the value, the larger the symbols representing sites with many
idividuals of a particular taxa. A value of zero means there will be no scaling
symbol size by the abundance value.

The opacity (or alpha value). Numeric between 0, 1. Defaul value is 2/3.

custom_color_scale

A character vector of the desired custom color scale. This should be a scale, not
an aesthetic map. Therefore, it will in most-cases contain only unique elements,
unless two different categories of data are supposed to have the same color.
Default value is NULL, which invokes a default color scale using the rainbow
function.

custom_shape_scale

An integer vector of values in the categorical scale of symbol shapes, analo-
gous to custom_color_scale. Default value is NULL, which uses the fill-able
symbols described in points, beginning with 21.

type_abundance_value

Logical. Whether or not the otuTable value (the number of individuals, typi-
cally) should be added to the center of symbols when the value is greater than
one. Default is FALSE, indicating no labels.

54 prune_samples

printTheseTaxa a character vector of the taxa names in physeq that should be labeled on the tree
plot adjacent to the right. Default is NULL. Not yet implemented.

treeTitle (Optional). Character string, for the title of the graphic. Default is "Annotated
Tree”.

Additional parameters passed on to tipsymbols.

Value

Creates a phylogenetic tree, with additional symbols annotated on each tip to indicate in which
samples the particular taxa was observed.

Examples

data(GlobalPatterns)

GP <- GlobalPatterns

GP.chl <- subset_species(GP, Phylum=="Chlamydiae")

plot_tree_phyloseq(GP.chl, color_factor="SampleType",
type_abundance_value=TRUE,

treeTitle="Chlamydiae in Global Patterns Data")

prune_samples Prune unwanted samples from a phyloseq object.

Description

An S4 Generic method for removing (pruning) unwanted samples.

Usage

prune_samples(samples, x)

Arguments
samples A character vector of the samples in object x that you want to keep.
X A phyloseq object.

Value

The class of the object returned by prune_samples matches the class of the phyloseq object, x.

See Also

subset_samples

prune_species 55

Examples
#
data(GlobalPatterns)
GP <- GlobalPatterns
B_only_sample_names <- sample.names(sampleData(GP)[(sampleData(GP)[, "Gender"]=="B"),1)
ex2 <- prune_samples(B_only_sample_names, GP)
ex3 <- subset_samples(GP, Gender=="B")
This should be TRUE.
identical(ex2, ex3)
Here is a simpler example: Make new object with only the first 5 samples
ex4 <- prune_samples(sample.names(GP)[1:5], GP)

prune_species Prune unwanted species / taxa from a phylogenetic object.

Description

An S4 Generic method for removing (pruning) unwanted taxa from phylogenetic objects, including
phylo-class trees, as well as native phyloseq package objects. This is particularly useful for pruning
a phyloseq object that has more than one component that describes species. The phylo-class version
is adapted from picante: :prune.samples.

Arguments

species (Required). A character vector of the species in object x that you want to keep —
OR alternatively — a logical vector where the kept species are TRUE, and length
is equal to the number of species in object x. If species is a named logical, the
species retained is based on those names. Make sure they are compatible with
the species.names of the object you are modifying (x).

X (Required). A phylogenetic object, including phylo trees, as well as all phyloseq
classes that represent taxa / species. If the function species.names returns a
non-NULL value, then your object can be pruned by this function.

Value

The class of the object returned by prune_species matches the class of the argument, x.

Examples

#

testOTU <- otuTable(matrix(sample(1:50, 25, replace=TRUE), 5, 5), speciesAreRows=FALSE)
f1 <- filterfunSample(topk(2))

wh1 <- genefilterSample(testOTU, f1, A=2)
wh2 <- (T, T, T, F, F)

prune_species(wh1l, testOTU)

prune_species(wh2, testOTU)

##

taxtabl <- taxTab(matrix("abc”, 5, 5))

prune_species(whl, taxtab1)

prune_species(wh2, taxtab1)

56 rm_outlierf

rank.names Get the names of the taxonomic ranks

Description
This is a simple accessor function to make it more convenient to determine the taxonomic ranks that
are available in a given phyloseq-class object.

Usage

rank.names(physeq)

Arguments

physeq (Required). taxonomyTable-class, or phyloseq-class.

Value

Character vector. The names of the available taxonomic ranks.

See Also

getSpecies species.names sample.names getTaxa

Examples

data(enterotype)
rank.names(enterotype)

rm_outlierf Set to FALSE any outlier species greater than f fractional abundance.

Description

This is for removing overly-abundant outlier taxa, not for trimming low-abundance taxa.

Usage
rm_outlierf(f, na.rm=TRUE)

Arguments
f Single numeric value between O and 1. The maximum fractional abundance
value that a taxa will be allowed to have in a sample without being marked for
trimming.
na.rm Logical. Should we remove NA values. Default TRUE.
Value

A function (enclosure), suitable for filterfunSample.

sample.names 57

See Also

topk, topf, topp, rm_outlierf

Examples

t1 <- 1:10; names(t1)<-paste("t"”, 1:10, sep="")

rm_outlierf(0.15)(t1)

Use simulated abundance matrix

set.seed(711)

testOTU <- otuTable(matrix(sample(1:50, 25, replace=TRUE), 5, 5), speciesAreRows=FALSE)
speciesSums(testOTU)

f1 <- filterfunSample(rm_outlierf(0.1))

(wh1 <- genefilterSample(testOTU, f1, A=1))

wh2 <- c(T, T, T, F, F)

prune_species(whl, testOTU)

#
#
#
#
#
#
#
prune_species(wh2, testOTU)

sample.names Get sample names.

Description

Get sample names.

Usage

sample.names(physeq)

Arguments

physeq (Required). A phyloseqg-class, sampleData, or otuTable-class.

Value

A character vector. The names of the samples in physeq.

See Also

species.names, nsamples

Examples

#

From "picante"” package

data(GlobalPatterns)

sample.names(GlobalPatterns)

58 sampleData

sample.variables Get the sample variables present in sampleData

Description
This is a simple accessor function to make it more convenient to determine the sample variable
names of a particular phyloseq-class object.

Usage

sample.variables(physeq)

Arguments

physeq (Required). sampleData-class, or phyloseq-class.

Value

Character vector. The names of the variables in the sampleData data.frame. Essentially the column
names. Useful for selecting model and graphics parameters that interact with sampleData.

See Also

getSpecies species.names sample.names getTaxa

Examples

data(enterotype)
sample.variables(enterotype)

sampleData Build or access sampleData.

Description

This is the suggested method for both constructing and accessing a table of sample-level variables
(sampleData-class), which in the phyloseg-package is represented as a special extension of the
data.frame-class. When the argument is a data.frame, sampleData() will create a sampleData-
class object. In this case, the rows should be named to match the sample.names of the other objects
to which it will ultimately be paired. Alternatively, if the first argument is an experiment-level
(phyloseq-class) object, then the corresponding sampleData is returned. Like other accessors
(see See Also, below), the default behavior of this method is to stop with an error if object is a
phyloseqg-class but does not contain a sampleData.

Usage

sampleData(object, errorIfNULL=TRUE)
samData(object, errorIfNULL=TRUE)

sampleMap(object, errorIfNULL=TRUE)

sampleData-class 59

Arguments
object (Required). A data.frame-class, or a phyloseq-class object.
errorIfNULL (Optional). Logical. Should the accessor stop with an error if the slot is empty
(NULL)? Default TRUE.
Details

Note that the samData() and sampleMap() functions are provided for convenience and backward
compatibility, respectively, but should provide the exact same behavior as sampleData().

Value

A sampleData-class object representing the sample variates of an experiment.

See Also

tre, taxTab, otuTable phyloseq, merge_phyloseq

Examples

#

data(GlobalPatterns)

sampleData(GlobalPatterns)

shorter (convenience) wrapper of sampleData()
samData(GlobalPatterns)

sampleData-class The S$4 for storing sample variables.

Description

Row indices represent samples, while column indices represent experimental categories, variables
(and so forth) that describe the samples.

Details
Data data-frame data, inherited from the data.frame class.
row.names Also inherited from the data.frame class; it should contain the sample names.

names Inherited from the data.frame class.

60 sampleData<-

sampleData<- Assign (new) sampleData to x

Description

This replaces the current sampleData component of x with value, if value is a sampleData-class.
However, if value is a data. frame, then value is first coerced to a sampleData-class, and then
assigned. Alternatively, if value is phyloseqg-class, then the sampleData component will first be
accessed from value and then assigned. This makes possible some concise assignment/replacement
statements when adjusting, modifying, or building subsets of experiment-level data. See some ex-
amples below.

Usage

sampleData(x) <- value

samData(x) <- value

Arguments
X (Required). phyloseq-class. The object to modify.
value (Required). Either a sampleData-class, a data. frame that can be coerced into
sampleData-class, or a phyloseqg-class that contains a suitable sampleData
component to assign to x. If unsure, try sampleData(value), which should
return a sampleData-class object without error.
Details

Internally, this re-builds the phyloseq-class object using the standard phyloseq constructor.
Thus, index mismatches between sample-describing components will not be allowed, and subset-
ting will occurr automatically such that only the intersection of sample IDs are included in any
components. This has the added benefit of re-checking (internally) for any other issues.

Value

No return. This is an assignment statement.

Examples
#
data(GlobalPatterns)
An example of pruning to just the first 10 samples in GlobalPatterns
ex2a <- prune_samples(sample.names(GlobalPatterns)[1:10], GlobalPatterns)
The following 3 lines produces an ex2b that is equal to ex2a
ex2b <- GlobalPatterns
SD <- sampleData(GlobalPatterns)[1:10,]
sampleData(ex2b) <- SD
identical(ex2a, ex2b)
print(ex2b)
Example restoring the original sampleData component. ex2c lacks sampleData
ex2c <- phyloseq(otuTable(GlobalPatterns), taxTab(GlobalPatterns), tre(GlobalPatterns))
sampleData(ex2c) <- GlobalPatterns

sampleSums 61

identical(ex2c, GlobalPatterns)

Can try on ex2b, but other components have only 10 samples. No change.
sampleData(ex2b) <- GlobalPatterns

identical(ex2a, ex2b) # still true.

sampleSums Returns the total number of individuals observed from each sample.

Description
A convenience function equivalent to rowSums or colSums, but where the orientation of the otuTable
is automatically handled.

Usage

sampleSums(x)

Arguments

X otuTable-class, or phyloseg-class.

Value
A named numeric-class length equal to the number of samples in the x, name indicating the
sample ID, and value equal to the sum of all individuals observed for each sample in x.

See Also

speciesSums, rowSums, colSums

Examples

data(enterotype)
sampleSums (enterotype)
data(esophagus)
sampleSums (esophagus)

show method extensions to show for phyloseq objects.

Description

See the general documentation of show method for expected behavior.

See Also

show

Examples

data(GlobalPatterns)
show(GlobalPatterns)
GlobalPatterns

62 species.names

show_mothur_list_cutoffs
Show cutoff values available in a mothur list file

Description

This is a helper function to report back to the user the different cutoff values available in a given /list
file created by the OTU clustering and analysis package called mothur

Usage

show_mothur_list_cutoffs(mothur_list_file)

Arguments

mothur_list_file
The list file name and/or location as produced by mothur.

Value

A character vector of the different cutoff values contained in the file. For a given set of arguments
to the cluster() command from within mothur, a number of OTU-clustering results are returned
in the same list file. The exact cutoff values used by mothur can vary depending on the input data.
This simple function returns the cutoffs that were actually included in the mothur output. This an
important extra step prior to importing the OTUs with the import_mothur_otulist() function.

See Also

import_mothur

species.names Get species / taxa names.

Description

Get species / taxa names.

Usage

species.names(physeq)

Arguments

physeq phyloseqg-class, otuTable-class, taxonomyTable-class, or phylo

Value

A character vector of the names of the species in physeq.

speciesAreRows

See Also

nspecies
Examples

From "picante” package

data("phylocom™)

tree <- phylocom$phylo

0TUT <- otuTable(phylocom$sample, speciesAreRows=FALSE)
species.names(tree)

species.names(0TU1)

physeql <- phyloseq(0TU1, tree)

species.names(physeql)

T E N

63

speciesAreRows Access speciesAreRows slot from otuTable objects.

Description

Access speciesAreRows slot from otuTable objects.

Usage

speciesarerows(physeq)

Arguments

physeq (Required). phyloseq-class, or otuTable-class.

Value

A logical indicating the orientation of the otuTable.

See Also

otuTable

speciesarerows<- Manually change speciesAreRows through assignment.

Description

The speciesAreRows slot is a logical indicating the orientation of the abundance table contained in

object x.

Usage

speciesarerows(x) <- value

64 speciesSums

Arguments
X otuTable-class or phyloseg-class
value A logical of length equal to 1. If 1length(value) > 1, the additional elements
will be ignored. Only the first element is assigned to the speciesAreRows slot.
Examples
#

data(GlobalPatterns)
speciesarerows(GlobalPatterns)
speciesarerows(otuTable(GlobalPatterns))

speciesSums Returns the total number of individuals observed from each
species/taxa/OTU.

Description

A convenience function equivalent to rowSums or colSums, but where the orientation of the otuTable
is automatically handled.

Usage
speciesSums(x)
Arguments
X otuTable-class, or phyloseqg-class.
Value

A numeric-class with length equal to the number of species in the table, name indicated the taxa
ID, and value equal to the sum of all individuals observed for each taxa in x.

See Also

sampleSums, rowSums, colSums

Examples

data(enterotype)
speciesSums(enterotype)
data(esophagus)
speciesSums(esophagus)

subset_ord_plot 65

subset_ord_plot Subset points from an ordination-derived ggplot

Description

Easily retrieve a plot-derived data.frame with a subset of points according to a threshold and
method. The meaning of the threshold depends upon the method. See argument description below.

Usage
subset_ord_plot(p, threshold=0.05, method="farthest")

Arguments

p (Required). A ggplot object created by plot_ordination. It contains the
complete data that you want to subset.

threshold (Optional). A numeric scalar. Default is 0.05. This value determines a coordi-
nate threshold or population threshold, depending on the value of the method ar-
gument, ultimately determining which points are included in returned data. frame.

method (Optional). A character string. One of c("farthest”, "radial”, "square").
Default is "farthest”. This determines how threshold will be interpreted.

farthest Unlike the other two options, this option implies removing a certain
fraction or number of points from the plot, depending on the value of
threshold. If threshold is greater than or equal to 1, then all but threshold

number of points farthest from the origin are removed. Otherwise, if threshold

is less than 1, all but threshold fraction of points farthests from origin are
retained.

radial Keep only those points that are beyond threshold radial distance from
the origin. Has the effect of removing a circle of points from the plot,
centered at the origin.

square Keep only those points with at least one coordinate greater than threshold.

Has the effect of removing a “square” of points from the plot, centered at
the origin.

Value

A data.frame suitable for creating a ggplot plot object, graphically summarizing the ordination
result according to previously-specified parameters.

See Also

plot_ordination

Examples

#H#

data(GlobalPatterns)

Need to clean the zeros from GlobalPatterns:

GP <- prune_species(speciesSums(GlobalPatterns)>0, GlobalPatterns)
sampleData(GP)$human <- factor(human)

Get the names of the most-abundant phyla

66 subset_samples

top.TaxaGroup <- sort(
tapply(speciesSums(GP), taxTab(GP)[, "Phylum"], sum, na.rm = TRUE),
decreasing = TRUE)
top.TaxaGroup <- top.TaxaGroup[top.TaxaGroup > 1x10%6]
Prune to just the most-abundant phyla
GP <- subset_species(GP, Phylum %in% names(top.TaxaGroup))
Perform a correspondence analysis
gpca <- ordinate(GP, "CCA")
Make species topo with a subset of points layered
First, make a basic plot of just the species
p1 <- plot_ordination(GP, gpca, "species”, color="Phylum")
Re-draw this as topo without points, and facet
pl <- ggplot(pls$data, pI$mapping) + geom_density2d() + facet_wrap(~Phylum)
Add a layer of a subset of species-points that are furthest from origin.
p53 <- p1 + geom_point(data=subset_ord_plot(pl, 1.0, "square"), size=1)
print(p53)
subset_samples Subset samples by sampleData expression
Description

This is a convenience wrapper around the subset function. It is intended to allow subsetting com-
plex experimental objects with one function call. The subsetting will be based on an expression
related to the columns and values within the sampleData.

Usage
subset_samples(physeq, ...)
Arguments
physeq A sampleData-class, or a phyloseq-class object with a sampleData. If the

sampleData slot is missing in physeq, then physeq will be returned as-is, and
a warning will be printed to screen.
The subsetting expression that should be applied to the sampleData. This is
passed on to subset, see its documentation for more details.

Value

A subsetted object with the same class as physeq.

See Also

subset_species

Examples

data(GlobalPatterns)
subset_samples(GlobalPatterns, SampleType=="Ocean")

subset_species 67

subset_species Subset species by taxonomic expression

Description

This is a convenience wrapper around the subset function. It is intended to speed subsetting com-
plex experimental objects with one function call. In the case of subset_species, the subsetting will
be based on an expression related to the columns and values within the taxTab (taxonomyTable
component) slot of physeq.

Usage
subset_species(physeq, ...)
Arguments
physeq A taxonomyTable-class, or phyloseq-class that contains a taxonomyTable.

If the taxTab slot is missing in physeq, then physeq will be returned as-is and
a warning will be printed to screen.
The subsetting expression that should be applied to the taxonomyTable. This is
passed on to subset, and more details and examples about how it functions can
be found in its documentation.

Value

A subsetted object with the same class as physeq.

See Also

subset_samples

Examples

ex3 <- subset_species(GlobalPatterns, Phylum=="Bacteroidetes")

t Transpose otuTable-class or phyloseq-class

Description

Extends the base transpose method, t.

Usage
t(x)

Arguments

X An otuTable or phyloseq-class.

68 taxglom

Value

The class of the object returned by t matches the class of the argument, x. The otuTable is trans-
posed, and speciesAreRows value is toggled.

Examples

data(GlobalPatterns)
otuTable(GlobalPatterns)
t(otuTable(GlobalPatterns))

taxglom Agglomerate taxa of the same type.

Description

This method merges species if, at a certain taxaonomic rank, their taxonomy is the same. Its ap-
proach is analogous to tipglom, but uses categorical data instead of a tree. In principal, other
categorical data known for all taxa could also be used in place of taxonomy.

Usage

taxglom(physeq, tax=NULL, taxlevel="Phylum", NArm=TRUE,
bad_empty:C(NA, ”ll’ n M’ H\t”))

Arguments

physeq (Required). phyloseq-class or otuTable.

tax (Optional). Either a link{taxonomyTable-class}, or alternatively, a character
vector specifying the desired taxonomic group of each taxa in physeq. If tax is
a character vector, it must have length equal to the (original) number of taxa in
physeq (nspecies(physeq)), and each element must be named according to the
taxa ID (that is, the result of species.names(physeq)). If tax is a character
vector, than the taxlevel argument is ignored. If physeq already contains a
taxonomyTable component in its taxTab slot, then the tax argument is ignored.

taxlevel A single-element character specifying the taxonomic level (column name) in
tax, the taxonomyTable, that you want to agglomerate over. The default value
is "Phylum”. Note that this default may agglomerate too broadly for a given
experiment, and the user is strongly encouraged to try different taxonomic levels.

NArm (Optional). Logical, length equal to one. Default is TRUE. CAUTION. The deci-
sion to prune (or not) taxa for which you lack categorical data could have a large
effect on downstream analysis. You may want to re-compute your analysis un-
der both conditions, or at least think carefully about what the effect might be and
the reasons explaining the absence of information for certain taxa. In the case
of taxonomy, it is often a result of imprecision in taxonomic designation based
on short phylogenetic sequences and a patchy system of nomenclature. If this
seems to be an issue for your analysis, think about also trying the nomenclature-
agnostic tipglom method if you have a phylogenetic tree available.

taxonomyTable-class 69

bad_empty (Optional). Character vector. Default: c(NA, "", " ", "\t"). Defines the
bad/empty values that should be ignored and/or considered unknown. They
will be removed from the internal agglomeration vector derived from the ar-
gument to tax, and therefore agglomeration will not combine taxa according to
the presence of these values in tax. Furthermore, the corresponding taxa can be
optionally pruned from the output if NArm is set to TRUE.

Value

A taxonomically-agglomerated, optionally-pruned, object with class matching the class of physeq.

See Also

tipglom, prune_species, merge_species

Examples

data(GlobalPatterns)

print the available taxonomic ranks
colnames(taxTab(GlobalPatterns))

agglomerate at the Family taxonomic rank

(x1 <- taxglom(GlobalPatterns, taxlevel="Family"))
How many taxa before/after agglomeration?
nspecies(GlobalPatterns); nspecies(x1)

Look at enterotype dataset...

data(enterotype)

print the available taxonomic ranks. Shows only 1 rank available, not useful for taxglom
colnames(taxTab(enterotype))

e E E

taxonomyTable-class An S$4 class that holds taxonomic classification data as a character
matrix.

Description

Row indices represent taxa, columns represent taxonomic classifiers.

Details

.Data This slot is inherited from the matrix class.

70 taxTab

taxTab Build or access the taxonomyTable.

Description

This is the suggested method for both constructing and accessing a table of taxonomic names,
organized with ranks as columns (taxonomyTable-class). When the argument is a character ma-
trix, taxTab() will create and return a taxonomyTable-class object. In this case, the rows should
be named to match the species.names of the other objects to which it will ultimately be paired.
Alternatively, if the first argument is an experiment-level (phyloseq-class) object, then the cor-
responding taxonomyTable is returned. Like other accessors (see See Also, below), the default
behavior of this method is to stop with an error if object is a phyloseq-class but does not con-
tain a taxonomyTable.

Usage

taxTab(object, errorIfNULL=TRUE)

taxtab(object, errorIfNULL = TRUE)

Arguments
object An object among the set of classes defined by the phyloseq package that contain
taxonomyTable.
errorIfNULL (Optional). Logical. Should the accessor stop with an error if the slot is empty
(NULL)? Default TRUE.
Value

A taxonomyTable object. It is either grabbed from the relevant slot if object is complex, or built
anew if object is a character matrix representing the taxonomic classification of species in the
experiment.

See Also

tre, sampleData, otuTable phyloseq, merge_phyloseq

Examples

#

tax1 <- taxTab(matrix("abc”, 30, 8))
data(GlobalPatterns)

taxTab(GlobalPatterns)

taxTab<- 71

taxTab<- Assign a (new) Taxonomy Table to x

Description

Assign a (new) Taxonomy Table to x

Usage

taxTab(x) <- value

Arguments

X (Required). phyloseq-class

value (Required). taxonomyTable-class. Alternatively, value can be a phyloseq-class
that has a taxTab component, or a matrix-class that can be coerced to a
taxonomyTable-class with row indices that match at least some of the species.names
of x.

Examples

#

data(GlobalPatterns)

An example of pruning to just the first 100 taxa in GlobalPatterns.

ex2a <- prune_species(species.names(GlobalPatterns)[1:100], GlobalPatterns)

The following 3 lines produces an ex2b that is equal to ex2a

ex2b <- GlobalPatterns

TT <- taxTab(GlobalPatterns)[1:100, 1]

taxTab(ex2b) <- TT

identical(ex2a, ex2b)

print(ex2b)

2 examples adding a taxTab component from phyloseq or matrix classes

ex2c <- phyloseq(otuTable(ex2b), sampleData(ex2b), tre(ex2b))

taxTab(ex2c) <- ex2b

identical(ex2a, ex2c)

ex2c <- phyloseq(otuTable(ex2b), sampleData(ex2b), tre(ex2b))

taxTab(ex2c) <- as(taxTab(ex2b), "matrix")

identical(ex2a, ex2c)

threshrank Thresholded rank transformation.

Description

The lowest thresh values in x all get the value ’thresh’.

Usage

threshrank(x, thresh, keepOs=FALSE, ...)

72 threshrankfun

Arguments
X (Required). Numeric vector to transform.
thresh A single numeric value giving the threshold.
keepOs A logical determining whether 0’s in x should remain a zero-value in the output.
If FALSE, zeros are treated as any other value.
Further arguments passes to the rank function.
Value

A ranked, (optionally) thresholded numeric vector with length equal to x. Default arguments to
rank are used, unless provided as additional arguments.

See Also

transformsamplecounts, rank, threshrankfun

Examples

#

(a_vector <- sample(0:10, 100, TRUE))

threshrank(a_vector, 5, keep0s=TRUE)

data(GlobalPatterns)

GP <- GlobalPatterns

These three approaches result in identical otuTable

(x1 <- transformsamplecounts(otuTable(GP), threshrankfun(500)))

(x2 <- otuTable(apply(otuTable(GP), 2, threshrankfun(500)), speciesAreRows(GP)))
identical (x1, x2)

(x3 <- otuTable(apply(otuTable(GP), 2, threshrank, thresh=500), speciesAreRows(GP)))
identical(x1, x3)

threshrankfun A closure version of the threshrank function.

Description

Takes the same arguments as threshrank, except for x, because the output is a single-argument
function rather than a rank-transformed numeric. This is useful for higher-order functions that
require a single-argument function as input, like transformsamplecounts.

Usage
threshrankfun(thresh, keepOs=FALSE, ...)
Arguments
thresh A single numeric value giving the threshold.
keepOs A logical determining whether O’s in x should remain a zero-value in the output.

If FALSE, zeros are treated as any other value.

Further arguments passes to the rank function.

tipglom 73

Value

A single-argument function with the options to threshrank set.

See Also

transformsamplecounts, threshrankfun, threshrank

Examples

data(GlobalPatterns)

GP <- GlobalPatterns

These three approaches result in identical otuTable

(x1 <- transformsamplecounts(otuTable(GP), threshrankfun(500)))

(x2 <- otuTable(apply(otuTable(GP), 2, threshrankfun(500)), speciesAreRows(GP)))
identical (x1, x2)

(x3 <- otuTable(apply(otuTable(GP), 2, threshrank, thresh=500), speciesAreRows(GP)))
identical (x1, x3)

tipglom Agglomerate closely-related taxa using single-linkage clustering.

Description
All tips of the tree separated by a cophenetic distance smaller than speciationMinLength will be
agglomerated into one taxa using merge_species.

Usage

tipglom(tree, OTU, speciationMinLength=0.02)

Arguments
tree phyloseq-class, containing an OTU Table and phylogenetic tree. If, alterna-
tively, tree is a phylo-class, then OTU is required.
0TU An otuTable object. Optional. Ignored if tree is a phyloseq-class object. If
tree is a phylo object and OTU is provided, then return will be an phyloseq
object.
speciationMinLength
The minimum branch length that separates taxa. All tips of the tree separated
by a cophenetic distance smaller than speciationMinLength will be agglom-
erated. Default is 0.02
Details

Can be used to create a non-trivial OTU Table, if a phylogenetic tree is available.

For now, a simple, “greedy”, single-linkage clustering is used. In future releases it should be possi-
ble to specify different clustering approaches available in R, in particular, complete-linkage cluster-
ing appears to be used more commonly for OTU clustering applications.

74 tipsymbols

Value

An object of class phyloseq. Output class matches the class of tree, unless it is a phylo object, in
which case tipglom returns an phyloseq object.

Examples

data(phylocom)

otu <- otuTable(phylocom$sample, speciesAreRows=FALSE)

x1 <- phyloseq(otu, phylocom$phylo)

print(x1); par(mfrow=c(2, 1)); plot(tre(x1))

x2 <- tipglom(x1, speciationMinLength = 2.5)

plot(tre(x2))

Try on example datset 1

data(GlobalPatterns); nspecies(GlobalPatterns)

ex7 <- tipglom(GlobalPatterns, speciationMinLength = 0.05)
nspecies(ex7)

data(esophagus); nspecies(esophagus); par(mfrow=c(2, 1)); plot(tre(esophagus))
tre(esophagus)$edge. length

x3 <- tipglom(esophagus, speciationMinLength = 0.20)
nspecies(x3); plot(tre(x3))

e E E E E R E E R
e E R E E E
T E EE R

tipsymbols Annotate tips on a tree with symbols or text.

Description

There were some unexpected behavior from the tiplabels function in ape. These functions are
intended to act as simplified versions that act as a convenience wrapper for points() or text()
functions, respectively, but where the tip coordinates are specified by giving the tip ID (integer) as
input. For tiptext(), make sure to include a 1labels= argument, which will be passed on to text.

Usage
tipsymbols(tip, adj=c(0.5, 0.5), ...)
tiptext(tip, adj = ¢(0.5, 0.5), ...)
Arguments
tip An integer specifying the tip ID in a tree that for which the base plot has already
been generated and is still available to R.
adj A 2 element numeric vector specifying a position adjustment.
Additional plotting parameters that are passed to points or text in the R base
graphics. Again, for tiptext(), make sure to include a 1abels= argument.
Value

No objects returned. Symbol or text is plotted on the available graphic device.

topf 75

See Also

tiplabels, points, text

Examples

#

data(GlobalPatterns)

for reproducibility

set.seed(711)

ex2 <- prune_species(sample(species.names(GlobalPatterns), 50), GlobalPatterns)
plot(tre(ex2))

tipsymbols(pch=19)

tipsymbols(1, pch=22, cex=3, col="red"”, bg="blue")

tiptext(2, labels="my.label")

topf Make filter fun. that returns the top f fraction of taxa in a sample.

Description

As opposed to topp, which gives the most abundant p fraction of observed taxa (richness, instead
of cumulative abundance. Said another way, topf ensures a certain fraction of the total sequences
are retained, while topp ensures that a certain fraction of taxa/species/OTUs are retained.

Usage
topf (f, na.rm=TRUE)

Arguments

f Single numeric value between 0 and 1.

na.rm Logical. Should we remove NA values. Default TRUE.
Value

A function (enclosure), suitable for filterfunSample, that will return TRUE for each element in the
taxa comprising the most abundant f fraction of individuals.

See Also

topk, topf, topp, rm_outlierf

Examples

t1 <- 1:10; names(t1)<-paste(”"t", 1:10, sep="")

topf(0.6)(t1)

Use simulated abundance matrix

set.seed(711)

testOTU <- otuTable(matrix(sample(1:50, 25, replace=TRUE), 5, 5), speciesAreRows=FALSE)
f1 <- filterfunSample(topf(0.4))

(wh1 <- genefilterSample(testOTU, f1, A=1))

wh2 <- (T, T, T, F, F)

prune_species(whl, testOTU)

prune_species(wh2, testOTU)

% ¥ O OH H W

76 topp

topk Make filter fun. the most abundant k taxa

Description

Make filter fun. the most abundant k taxa

Usage

topk(k, na.rm=TRUE)

Arguments
k An integer, indicating how many of the most abundant taxa should be kept.
na.rm A logical. Should NAs be removed. Default is TRUE.

Value

Returns a function (enclosure) that will return TRUE for each element in the most abundant k
values.

See Also

topk, topf, topp, rm_outlierf

Examples

Use simulated abundance matrix

set.seed(711)

testOTU <- otuTable(matrix(sample(1:50, 25, replace=TRUE), 5, 5), speciesAreRows=FALSE)
f1 <- filterfunSample(topk(2))

wh1l <- genefilterSample(testOTU, f1, A=2)

wh2 <- (T, T, T, F, F)

prune_species(wh1, testOTU)

prune_species(wh2, testOTU)

*od ¥ O OH H M

topp Make filter fun. that returns the most abundant p fraction of taxa

Description

Make filter fun. that returns the most abundant p fraction of taxa

Usage

topp(p, na.rm=TRUE)

transformsamplecounts 77

Arguments
p A numeric of length 1, indicating what fraction of the most abundant taxa should
be kept.
na.rm A logical. Should NAs be removed. Default is TRUE.
Value

A function (enclosure), suitable for filterfunSample, that will return TRUE for each element in the
most abundant p fraction of taxa.

See Also
topk, topf, topp, rm_outlierf

Examples

Use simulated abundance matrix

set.seed(711)

testOTU <- otuTable(matrix(sample(1:50, 25, replace=TRUE), 5, 5), speciesAreRows=FALSE)
sampleSums(testOTU)

f1 <- filterfunSample(topp(0.2))

(wh1l <- genefilterSample(testOTU, f1, A=1))

wh2 <- (T, T, T, F, F)

prune_species(whl, testOTU)

prune_species(wh2, testOTU)

transformsamplecounts Transform the abundance count data in an otuTable, sample-by-
sample.

Description

This function transforms the sample counts of a species abundance matrix according to a user-
provided function. The counts of each sample will be transformed individually. No sample-sample
interaction/comparison is possible by this method.

##
##

Usage

transformsamplecounts(physeq, fun)
TransformSampleCounts(physeq, fun)

transformSampleCounts(physeq, fun)

Arguments
physeq (Required). phyloseq-class of otuTable-class.
fun (Required). A single-argument function that will be applied to the abundance

counts of each sample. Can be an anonymous function.

78 tre

Value

A transformed otuTable — or phyloseq object with its transformed otuTable. In general, trim-
ming is not expected by this method, so it is suggested that the user provide only functions that
return a full-length vector. Filtering/trimming can follow, for which the genefilterSample and
prune_species functions are suggested.

See Also

threshrankfun, rank, log

Examples

#

data(GlobalPatterns)

GP <- GlobalPatterns

transformsamplecounts can work on phyloseg-class, modifying otuTable only

(GPr <- transformsamplecounts(GP, rank))

These two approaches result in identical otuTable

(x1 <- transformsamplecounts(otuTable(GP), threshrankfun(500)))

(x2 <- otuTable(apply(otuTable(GP), 2, threshrankfun(500)), speciesAreRows(GP)))
identical(x1, x2)

tre Get phylogenetic tree from object.

Description

This is the main method suggested for accessing the phylogenetic tree, (phylo-class) from a phyloseq-class.
Like other accessors (see See Also, below), the default behavior of this method is to stop with an
error if physeq is a phyloseq-class but does not contain a phylogenetic tree.

Usage

tre(physeq, errorIfNULL=TRUE)

Arguments

physeq (Required). An instance of phyloseq-class that contains a phylogenetic tree. If
physeq is a phylogenetic tree (a component data class), then it is returned as-is.

errorIfNULL (Optional). Logical. Should the accessor stop with an error if the slot is empty
(NULL)? Default TRUE.

Details

Note that the tip labels should be named to match the species.names of the other objects to which
it is going to be paired. The phyloseq constructor automatically checks for exact agreement in
the set of species described by the phlyogenetic tree and the other components (taxonomyTable,
otuTable), and trims as-needed. Thus, the tip.labels in a phylo object must be named to match the
results of species.names of the other objects to which it will ultimately be paired.

tre<-

Value

The phylo-class object contained within physeq; or NULL if physeq does not have a tree. This
method stops with an error in the latter NULL case be default, which can be over-ridden by changing

the value of errorIfNULL to FALSE.

See Also

otuTable, sampleData, taxTab phyloseq, merge_phyloseq

Examples

data(GlobalPatterns)
tre(GlobalPatterns)

tre<- Assign a (new) phylogenetic tree to x

Description

Assign a (new) phylogenetic tree to x

Usage

tre(x) <- value

Arguments
X (Required). phyloseq-class
value (Required). phylo-class, or phyloseq-class
Examples
#
data(GlobalPatterns)
An example of pruning to just the first 100 taxa in GlobalPatterns.
ex2a <- prune_species(species.names(GlobalPatterns)[1:100], GlobalPatterns)
The following 3 lines produces an ex2b that is equal to ex2a
ex2b <- GlobalPatterns
tree <- prune_species(species.names(GlobalPatterns)[1:100], tre(GlobalPatterns))
tre(ex2b) <- tree
identical(ex2a, ex2b)
print(ex2b)
Example adding a phylo tree from phyloseq class
ex2c <- phyloseq(otuTable(ex2b), sampleData(ex2b), taxTab(ex2b))
tre(ex2c) <- ex2b
identical(ex2b, ex2c)

80 UniFrac

UniFrac Calculate weighted or unweighted (Fast) UniFrac distance for all
sample pairs.

Description

This function calculates the (Fast) UniFrac distance for all sample-pairs in a phyloseg-class ob-
ject.

Usage

UniFrac(physeq, weighted=FALSE, normalized=TRUE,
parallel=FALSE, fast=TRUE)

Arguments

physeq (Required). phyloseq-class, containing at minimum a phylogenetic tree (phylo-class)
and contingency table (otuTable-class). See examples below for coercions
that might be necessary.

weighted (Optional). Logical. Should use weighted-UniFrac calculation? Weighted-
UniFrac takes into account the relative abundance of species/taxa shared be-
tween samples, whereas unweighted-UniFrac only considers presence/absence.
Default is FALSE, meaning the unweighted-UniFrac distance is calculated for all
pairs of samples.

normalized (Optional). Logical. Should the output be normalized such that values range
from O to 1 independent of branch length values? Default is TRUE. Note that
(unweighted) UniFrac is always normalized by total branch-length, and so this
value is ignored when weighted == FALSE.

parallel (Optional). Logical. Should execute calculation in parallel, using multiple CPU
cores simultaneously? This can dramatically hasten the computation time for
this function. However, it also requires that the user has registered a parallel
“backend” prior to calling this function. Default is FALSE. If FALSE, UniFrac
will register a serial backend so that foreach: : %dopar% does not throw a warn-
ing.

fast (Optional). Logical. Do you want to use the “Fast UniFrac” algorithm? Imple-
mented natively in the phyloseq-package. This is the default and the recom-
mended option. There should be no difference in the output between the two
algorithms. Moreover, the original UniFrac algorithm only outperforms this
implementation of fast-UniFrac if the datasets are so small (approximated by
the value of nspecies(physeq) * nsamples(physeq)) that the difference
in time is inconsequential (less than 1 second). In practice it does not appear
that this parameter should ever be set to FALSE, but the option is nevertheless
included in the package for comparisons and instructional purposes.

Details

UniFrac() accesses the abundance (otuTable-class) and a phylogenetic tree (phylo-class) data
within an experiment-level (phyloseq-class) object. If the tree and contingency table are separate
objects, suggested solution is to combine them into an experiment-level class using the phyloseq
function. For example, the following code

UniFrac 81

phyloseq(myOTUtable, myTree)

returns a phyloseg-class object that has been pruned and comprises the minimum arguments nec-
essary for UniFrac().

Parallelization is possible for UniFrac calculated with the phyloseq-package, and is encouraged
in the instances of large trees, many samples, or both. Parallelization has been implemented via the
foreach-package. This means that parallel calls need to be preceded by 2 or more commands that
register the parallel “backend”. This is acheived via your choice of helper packages. One of the
simplest seems to be the doParallel package.

For more information, see the following links on registering the “backend”:
foreach package manual:
http://cran.r-project.org/web/packages/foreach/index.html

Notes on parallel computing in R. Skip to the section describing the foreach Framework. It gives
off-the-shelf examples for registering a parallel backend using the doMC, doSNOW, or doMPI pack-
ages:

http://trg.apbionet.org/euasiagrid/docs/parallelR.notes.pdf

Furthermore, as of R version 2. 14. 0 and higher, a parallel package is included as part of the core in-
stallation, parallel-package, and this can be used as the parallel backend with the foreach-package
using the adaptor package “doParallel”. http://cran.r-project.org/web/packages/doParallel/
index.html

See the vignette for some simple examples for using doParallel. http://cran.r-project.org/
web/packages/doParallel/vignettes/gettingstartedParallel.pdf

UniFrac-specific examples for doParallel are provided in the example code below.

Value

a sample-by-sample distance matrix, suitable for NMDS, etc.

References

http://bmf.colorado.edu/unifrac/
The main implementation (Fast UniFrac) is adapted from the algorithm’s description in:

Hamady, Lozupone, and Knight, “Fast UniFrac: facilitating high-throughput phylogenetic analyses
of microbial communities including analysis of pyrosequencing and PhyloChip data.” The ISME
Journal (2010) 4, 17-27.

http://www.nature.com/ismej/journal/v4/n1/full/ismej200997a.html
See also additional descriptions of UniFrac in the following articles:

Lozupone, Hamady and Knight, “UniFrac - An Online Tool for Comparing Microbial Community
Diversity in a Phylogenetic Context.”, BMC Bioinformatics 2006, 7:371

Lozupone, Hamady, Kelley and Knight, “Quantitative and qualitative (beta) diversity measures lead
to different insights into factors that structure microbial communities.” Appl Environ Microbiol.
2007

Lozupone C, Knight R. “UniFrac: a new phylogenetic method for comparing microbial communi-
ties.” Appl Environ Microbiol. 2005 71 (12):8228-35.

See Also

distance, unifrac

http://cran.r-project.org/web/packages/foreach/index.html
http://trg.apbionet.org/euasiagrid/docs/parallelR.notes.pdf
http://cran.r-project.org/web/packages/doParallel/index.html
http://cran.r-project.org/web/packages/doParallel/index.html
http://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
http://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf
http://bmf.colorado.edu/unifrac/
http://www.nature.com/ismej/journal/v4/n1/full/ismej200997a.html

82

Examples

e E E E E R E E E E E E E E E E E E R E E E E E E E E E R E E R E E E R T T T

SHHHHHHHEH A R R A
Perform UniFrac on esophagus data

HHHHHHHHHHHHEEHHHHH AR
data("esophagus")

(y <- UniFrac(esophagus, TRUE))

UniFrac(esophagus, TRUE, FALSE)

UniFrac(esophagus, FALSE)

picante::unifrac(as(t(otuTable(esophagus)), "matrix"”), tre(esophagus))
HHHHHHHEHAHEEHHHHHEHEHH AR
Try phylocom example data from picante package

It comes as a list, so you must construct the phyloseq object first.
HHAHHHHHHHEEE AR AR
data("phylocom™)

(x1 <= phyloseq(otuTable(phylocom$sample, FALSE), phylocom$phylo))

UniFrac(x1, TRUE)

UniFrac(x1, TRUE, FALSE)

UniFrac(x1, FALSE)

picante::unifrac(phylocom$sample, phylocom$phylo)

HHHEEEEEE AR AR R A
Now try a parallel implementation using doParallel, which leverages the

new ’parallel’ core package in R 2.14.0+

Note that simply loading the ’doParallel’ package is not enough, you must

call a function that registers the backend. In general, this is pretty easy
with the ’doParallel package’ (or one of the alternative ’do*’ packages)

++

Also note that the esophagus example has only 3 samples, and a relatively small
tree. This is fast to calculate even sequentially and does not warrant
parallelized computation, but provides a good quick example for using UniFrac()
in a parallel fashion. The number of cores you should specify during the
backend registration, using registerDoParallel(), depends on your system and
needs. 3 is chosen here for convenience. If your system has only 2 cores, this
will probably fault or run slower than necessary.

HHHHHEEE AR A
library(doParallel)

data(esophagus)

For SNOW-like functionality (works on Windows):

cl <- makeCluster(3)

registerDoParallel(cl)

UniFrac(esophagus, TRUE)

Force to sequential backed:

registerDoSEQ()

For multicore-like functionality (will probably not work on windows),

register the backend like this:

registerDoParallel(cores=3)

UniFrac(esophagus, TRUE)

e E E E E E R TS

I

Extract parts of otuTable

Description

Extract parts of otuTable

extract parts of sampleData
extract parts of taxonomyTable

Generic extraction from higher-order object

83

Index

xTopic OTU
genefilterSample, 18
xTopic agglomerate
genefilterSample, 18
xTopic cluster
genefilterSample, 18
xTopic data
data-enterotype, 5
data-esophagus, 6
data-GlobalPatterns, 7
data-soilrep, 9
+Topic package
phyloseq-package, 3
+Topic tree
genefilterSample, 18
[, 82
[,otuTable-method ([), 82
[,phyloseg-method ([), 82
[,sampleData-method ([), 82
[, taxonomyTable-method ([), 82

access, 4

ape, 43

assign-otuTable (otuTable<-), 43

assign-sampleData (sampleData<-), 60

assign-speciesarerows
(speciesarerows<-), 63

assign-taxTab (taxTab<-), 71

assign-tre (tre<-), 79

betadiver, 12

cailliez, 13

cca, 39, 40
colSums, 61, 64
consensus, 33, 34
cophenetic.phylo, 12

data-enterotype, 5
data-esophagus, 6
data-GlobalPatterns, 7
data-soilrep, 9
data.frame, 65
decorana, 39, 40

84

designdist, 11, 12
dist, 11-13, 40
distance, 11, 31, 40, 81
diversity, 14,49
DPCoA, 12, 12, 39, 40
dpcoa, 12, 13, 39

enterotype (data-enterotype), 5
esophagus (data-esophagus), 6
estimate_richness, 14, 48, 49
estimateR, /4, 49
export_env_file, 15
export_mothur_dist, 15,23

facet_grid, 52

filter_taxa, 17

filterfun, 16, 17
filterfunSample, 16, 17, 18, 56, 75,77
foreach, 24

function, 77

genefilter, 17, 18
genefilterSample, 16, 17, 18, 78
genefilterSample,matrix-method
(genefilterSample), 18
genefilterSample,otuTable-method
(genefilterSample), 18
genefilterSample, phyloseg-method
(genefilterSample), 18
getSamples, 19
getSamples,otuTable-method
(getSamples), 19
getSamples, phyloseg-method
(getSamples), 19
getSlots, 19
getslots.phyloseq, 4, 19
getSpecies, 20
getSpecies,otuTable-method
(getSpecies), 20
getSpecies,phyloseq-method
(getSpecies), 20
getTaxa, 21
getVariable, 21
ggplot, 46, 49, 50, 52, 65

INDEX

GlobalPatterns (data-GlobalPatterns), 7

igraph, 31, 50
import, 22, 24, 25
import_biom, 23,23
import_env_file, 24
import_mothur, 23, 25, 27, 62
import_mothur_dist, 23, 26
import_pyrotagger_tab, 23, 27
import_qgiime, 23, 24, 29
import_RDP_cluster, 23, 30
is.euclid, /3

is.null, 4

JSD, 12

layout. fruchterman.reingold, 50
lingoes, I3
log, 78

make_sample_network, 31, 50, 51

matrix, 42, 69

mean, 35

merge_phyloseq, 4, 30, 32, 33-36, 42, 44, 45,
59, 70,79

merge_phyloseq_pair, 33, 33

merge_phyloseq_pair,otuTable,otuTable-method

(merge_phyloseq_pair), 33
merge_phyloseq_pair,phylo,phylo-method
(merge_phyloseq_pair), 33

85

mt, 37

mt,otuTable, character-method (mt), 37
mt,otuTable, factor-method (mt), 37
mt,otuTable,integer-method (mt), 37
mt,otuTable,logical-method (mt), 37
mt,otuTable, numeric-method (mt), 37
mt, phyloseq, ANY-method (mt), 37
mt.maxT, 37

mt.minP, 37

nsamples, 38, 57

nsamples,ANY-method (nsamples), 38

nsamples,otuTable-method (nsamples), 38

nsamples,phyloseq-method (nsamples), 38

nsamples, sampleData-method (nsamples),
38

nspecies, 18, 38, 38

nspecies, ANY-method (nspecies), 38

nspecies,otuTable-method (nspecies), 38

nspecies,phylo-method (nspecies), 38

nspecies,phyloseq-method (nspecies), 38

nspecies, taxonomyTable-method
(nspecies), 38

ordinate, 39

otu2df, 52

otuTable, 4, 13, 30, 31,41, 45,53, 59, 63, 68,
70,79

otuTable,data.frame-method (otuTable),
41

merge_phyloseq_pair, sampleData, sampleData-metbedrable,matrix-method (otuTable), 41

(merge_phyloseq_pair), 33

otuTable,otuTable-method (otuTable), 41

merge_phyloseq_pair, taxonomyTable, taxonomyTabdeaMethegdbhyloseq-method (otuTable), 41

(merge_phyloseq_pair), 33
merge_samples, 35, 36
merge_samples,otuTable-method

(merge_samples), 35
merge_samples, phyloseq-method

(merge_samples), 35
merge_samples, sampleData-method

(merge_samples), 35
merge_species, 34, 35, 36, 69
merge_species,otuTable-method

(merge_species), 36
merge_species, phylo-method

(merge_species), 36
merge_species, phyloseq-method

(merge_species), 36
merge_species, sampleData-method

(merge_species), 36
merge_species, taxonomyTable-method

(merge_species), 36
metaMDS, 40

otuTable-class, 42, 67

otuTable<-, 43

otuTable<-,otuTable,otuTable-method
(otuTable<-), 43

otuTable<-,phyloseq,otuTable-method
(otuTable<-), 43

otuTable<-,phyloseq, phyloseq-method
(otuTable<-), 43

pcoa, 40

phylo, 12, 13, 29, 35, 36, 38, 43,45, 62,78, 79

phylo-class, 43

phyloseq, 30, 32, 33,42, 44, 45, 59, 60, 70,
78-80

phyloseqg-class, 45, 67

phyloseqg-package, 3

plot_ordination, 12, 40, 45, 48, 65

plot_phyloseq, 47, 47

plot_phyloseq, phyloseq-method
(plot_phyloseq), 47

86

plot_richness_estimates, 14, 48, 48
plot_sample_network, 31, 48, 50
plot_taxa_bar, 48, 51
plot_tree_phyloseq, 48, 53
points, 53, 74, 75
prune_samples, 54
prune_samples,character,otuTable-method
(prune_samples), 54
prune_samples,character,phyloseq-method
(prune_samples), 54
prune_samples,character, sampleData-method
(prune_samples), 54
prune_species, 17, 18,55, 69, 78
prune_species,character,otuTable-method
(prune_species), 55
prune_species,character,phylo-method
(prune_species), 55
prune_species,character,phyloseq-method
(prune_species), 55
prune_species,character, sampleData-method
(prune_species), 55

prune_species,character, taxonomyTable-method

(prune_species), 55
prune_species,logical, ANY-method
(prune_species), 55
prune_species,NULL,ANY-method

(prune_species), 55

gplot, 52

rainbow, 53

rank, 72, 78
rank.names, 56

rda, 39, 40
read.nexus, 29, 30

read. table, 25

read. tree, 30
rm_outlierf, 56, 57, 75-77
rowsum, 35

rowSums, 61, 64

samData (sampleData), 58
samData<- (sampleData<-), 60
sample.names, 38, 57
sample.names,ANY-method (sample.names),
57
sample.names,otuTable-method
(sample.names), 57
sample.names, phyloseq-method
(sample.names), 57
sample.names, sampleData-method
(sample.names), 57
sample.variables, 22, 58

INDEX

sampleData, 37, 38, 42, 45, 53, 57, 58, 60, 70,
79
sampleData, ANY-method (sampleData), 58
sampleData,data. frame-method
(sampleData), 58
sampleData-class, 59
sampleData<-, 60
sampleMap (sampleData), 58
sampleNames (sample.names), 57
sampleSums, 61, 64
save, 24
scale_color_manual, 46, 48
scale_shape_manual, 46, 49
scores, 46
setOldClass, 43
show, 61, 61
show,otuTable-method (show), 61
show, phyloseqg-method (show), 61
show, sampleData-method (show), 61
show, taxonomyTable-method (show), 61
show_mothur_list_cutoffs, 23, 26, 62
soilrep (data-soilrep), 9
species.names, 38, 55,57,62,71,78
species.names,ANY-method
(species.names), 62
species.names,otuTable-method
(species.names), 62
species.names,phylo-method
(species.names), 62
species.names,phyloseq-method
(species.names), 62
species.names, sampleData-method
(species.names), 62
species.names, taxonomyTable-method
(species.names), 62
speciesAreRows, 18, 63, 68
speciesarerows (speciesAreRows), 63
speciesAreRows,ANY-method
(speciesAreRows), 63
speciesAreRows,otuTable-method
(speciesAreRows), 63
speciesAreRows, phyloseq-method
(speciesAreRows), 63
speciesarerows<-, 63
speciesarerows<-,otuTable,logical-method
(speciesarerows<-), 63
speciesarerows<-,phyloseq, logical-method
(speciesarerows<-), 63
speciesSums, 61, 64
subset, 66, 67
subset_ord_plot, 65
subset_samples, 54, 66, 67

INDEX

subset_species, 66, 67 vegdist, 12, 40
sum, 35

t, 18,42, 67,67

t,otuTable-method (t), 67

t,phyloseqg-method (t), 67

t.test, 37

taxaplot (plot_taxa_bar), 51

taxglom, 36, 68

taxglom,otuTable, character-method
(taxglom), 68

taxglom,otuTable, taxonomyTable-method
(taxglom), 68

taxglom, phyloseq, ANY-method (taxglom),
68

taxonomyTable-class, 69

taxTab, 42, 45, 59,70, 71,79

taxtab (taxTab), 70

taxTab, ANY-method (taxTab), 70

taxTab,matrix-method (taxTab), 70

taxTab<-, 71

text, 74, 75

threshrank, 71, 72, 73

threshrankfun, 72,72, 73, 78

tipglom, 25, 36, 68, 69, 73

tipglom,phylo,ANY-method (tipglom), 73

tipglom,phylo,otuTable-method
(tipglom), 73

tipglom, phyloseq, ANY-method (tipglom),
73

tiplabels, 74, 75

tipsymbols, 53, 54, 74

tiptext (tipsymbols), 74

topf, 57,75,75,76, 77

topk, 57,75, 76,76, 77

topp, 57, 75, 76,76, 77

TransformSampleCounts
(transformsamplecounts), 77

transformSampleCounts
(transformsamplecounts), 77

transformsamplecounts, 72, 73,77

tre, 4, 13,42,45, 53,59, 70,78

tre,ANY-method (tre), 78

tre,phylo-method (tre), 78

tre<-, 79

tre<-,phyloseq, phylo-method (tre<-), 79

tre<-,phyloseq, phyloseg-method (tre<-),
79

UniFrac, 11, 12, 40, 80
unifrac, 81
UniFrac,phyloseg-method (UniFrac), 80

87

	phyloseq-package
	access
	data-enterotype
	data-esophagus
	data-GlobalPatterns
	data-soilrep
	distance
	DPCoA
	estimate_richness
	export_env_file
	export_mothur_dist
	filterfunSample
	filter_taxa
	genefilterSample
	getSamples
	getslots.phyloseq
	getSpecies
	getTaxa
	getVariable
	import
	import_biom
	import_env_file
	import_mothur
	import_mothur_dist
	import_pyrotagger_tab
	import_qiime
	import_RDP_cluster
	make_sample_network
	merge_phyloseq
	merge_phyloseq_pair
	merge_samples
	merge_species
	mt
	nsamples
	nspecies
	ordinate
	otuTable
	otuTable-class
	otuTable<-
	phylo-class
	phyloseq
	phyloseq-class
	plot_ordination
	plot_phyloseq
	plot_richness_estimates
	plot_sample_network
	plot_taxa_bar
	plot_tree_phyloseq
	prune_samples
	prune_species
	rank.names
	rm_outlierf
	sample.names
	sample.variables
	sampleData
	sampleData-class
	sampleData<-
	sampleSums
	show
	show_mothur_list_cutoffs
	species.names
	speciesAreRows
	speciesarerows<-
	speciesSums
	subset_ord_plot
	subset_samples
	subset_species
	t
	taxglom
	taxonomyTable-class
	taxTab
	taxTab<-
	threshrank
	threshrankfun
	tipglom
	tipsymbols
	topf
	topk
	topp
	transformsamplecounts
	tre
	tre<-
	UniFrac
	[
	Index

