
Package ‘MinimumDistance’
September 24, 2012

Type Package

Title A package for de novo CNV detection in case-parent trios

Version 1.0.0

Date 11/13/2010

Author Robert B Scharpf and Ingo Ruczinski

Maintainer Moiz Bootwalla <mbootwa1@jhu.edu>, Robert B Scharpf <rscharpf@jhsph.edu>

Description
Analysis of de novo copy number variants in trios from high-dimensional genotyping platforms

License Artistic-2.0

Depends R (>= 2.14), IRanges (>= 1.13.30)

Imports methods, DNAcopy, utils, msm, lattice, BiocGener-
ics,VanillaICE (>= 1.17.22), ff, SNPchip (>= 2.0.3), Biobase,foreach, oligoClasses (>= 1.17.38)

Suggests human610quadv1bCrlmm, RUnit

Enhances snow, doSNOW

Collate AllClasses.R AllGenerics.R methods-AnnotatedDataFrame.R
methods-AssayData.R methods-Pedigree.R methods-TrioSet.R
methods-TrioSetList.R methods-matrix.R methods-list.R
methods-ff_array.R segment2-methods.R mad-methods.R
lattice-methods.R functions.R utils.R zzz.R

LazyLoad yes

biocViews Microarray, SNP, Bioinformatics, CopyNumberVariants

R topics documented:
annotatedDataFrameFrom-methods . 2
calculateMindist . 3
callDenovoSegments . 4
computeBayesFactor . 5
concordance . 6
correspondingCall . 7

1

2 annotatedDataFrameFrom-methods

isDenovo . 8
mad2 . 9
narrow . 9
Pedigree . 10
Pedigree-class . 11
phenoData . 12
RangedDataCBS_Examples . 13
segment2 . 14
stackRangedDataList . 15
TrioSet . 16
TrioSet-class . 17
TrioSetList . 19
TrioSetList-class . 20
trioSetListExample . 23
TrioSetListLD . 23
xypanelMD . 24

Index 27

annotatedDataFrameFrom-methods

Methods for creating AnnotatedDataFrame objects

Description

Methods for creating AnnotatedDataFrame objects in the package MinimumDistance.

Methods

signature(object = "array", byrow = "ANY") Creates an AnnotatedDataFrame from an array.
byrow is ignored.

signature(object = "ff_array", byrow = "ANY") Creates an AnnotatedDataFrame from an
ff_array. byrow is ignored.

signature(object = "ff_matrix", byrow = "ANY") Creates an AnnotatedDataFrame from an
ff_matrix. byrow is ignored.

signature(object = "Pedigree", byrow = "logical") Creates an AnnotatedDataFrame from
an object of class Pedigree.

Usage

When object is of class Pedigree, an AnnotatedDataFrame containing phenotypic informa-
tion on the father, mother, or offspring can be specified by the argument which.

annotatedDataFrameFrom(object, byrow, sample.sheet,which=c("offspring", "father", "mother"), row.names=NULL, ...):
A data.frame containing phenotypic information on the samples can be passed to this method
through the argument sample.sheet. The sample.sheet can contain phenotypic information
on all the samples. Only the rows relevant to the offspring, for example, will be included when
instantating an AnnotatedDataFrame when which is "offspring". When sample.sheet is
missing, an AnnotatedDataFrame with zero rows will be instantiated. When sample.sheet
is not missing, row.names must be specified. The row.names are the identifiers for each row
in sample.sheet and are matched to sample identifiers stored in object.

calculateMindist 3

calculateMindist Compute the minimum distance.

Description

Compute the minimum distance.

Usage

calculateMindist(object, ...)

Arguments

object A list of arrays, a TrioSetList object, or an array of the log R ratios.

... Ignored.

Details

The ’minimum distance’ is the minimum signed absolute difference of the parental log R ratios
and the offspring log R ratios. Specifically, let |O-F| denote the absolute difference in the log R
ratios comparing offspring to father and |O-M| the absolute difference in the log R ratios comparing
offspring to mother. The minimum distance at a marker is the signed minimum of |O-M| and |O-F|.
After segmentation of the minimum distance, non-zero segments can indicate a de novo difference
in the log R ratio of the offspring and either parent. For example, a positive minimum distance
suggests that the log R ratio from the offspring is greater than the log R ratio of either parent.

Value

If object is an array, a matrix of the minimum distance is returned. For an object with M mark-
ers and T trios, the dimension of the resulting matrix is M x T. If object is a list of arrays or a
TrioSetList object, a list of matrices are returned. The dimension of the ith matrix in the list is
M_i x T.

Author(s)

R. Scharpf

Examples

data(trioSetListExample)
mdlist <- calculateMindist(lrr(trioSetList))

trioSet <- stack(trioSetList)
md <- calculateMindist(lrr(trioSet))

4 callDenovoSegments

callDenovoSegments Posterior calling for segmented data.

Description

This function provides a convenient wrapper for the segmentation and posterior calling steps.

Usage

callDenovoSegments(path = "", pedigreeData, ext = "", featureData, cdfname, chromosome = 1:22, segmentParents, verbose = FALSE, ...)

Arguments

path character string indicating path to BeadStudio files.
pedigreeData Object of class Pedigree.
ext character: filename extension
featureData An object of class AnnotatedDataFrame. Variable labels ’chromosome’, ’posi-

tion’, and ’isSnp’ are required.
cdfname Name of the package for annotating the chromosome and physical position. Ig-

nored if featureData is specified.
chromosome integer indicating which autosomal chromosomes to process
segmentParents Logical: whether to segment the parental log R ratios using circular binary

segmentation
verbose Logical: whether to display verbose output indicating progress.
... Additional arguments can be specified for the segment function in the package

DNAcopy

Details

A wrapper for the segmentation and posterior calling steps. Circular binary segmentation is per-
formed on the minimum distance and the offspring log R ratios. The minimum distance (the signed
minimum of the absolute difference of the offspring and parental log2 R ratios) should have mean
zero in regions of inherited CNV and normal diploid genomes. Hence, the segmentation algorithm
should smooth over inherited CNV in which the offspring has the same copy number as the parent
as well as normal diploid regions. Therefore, the posterior call for a segment that contains both
inherited CNV and normal diploid regions will depend on the relative size of these regions. For
example, if most of the segment is diploid the posterior call would be ’333’ (see State Symbols
below for details regarding the state symbols). Conversely, if most of the region contains a deletion
transmitted from the mother, the state call will be ’322’. Of primary interest are regions for which
the offspring copy number differs from the parental copy numbers. Note that for such regions, the
CNV in the offspring may be Mendelian or non-Mendelian.

The likelihood for the called state and the likelihood for the normal state are named ’lik.state’ and
’lik.norm’, respectively. The ratio can provide a useful rank whereby large values indicate strong
evidence for the called state.

State Symbols:

The MinimumDistance states can be easily remembered as the latent copy number offset by 1 for
the father, mother, and offspring, respectively. For example, a region of the genome for which all
individuals in the trio are diploid would have state ’333’. By contrast, a region for which the father
is diploid and the mother and offspring are hemizygous would have the state symbol ’322’.

computeBayesFactor 5

Value

A object of class RangedDataCBS with the predicted trio copy number sates. Only states for which
the offspring copy number differs from the parental copy numbers are reliable. In particular, the
normal state (state ’333’) may contain both normal and inherited CNV as the minimum distance for
both states is near zero.

Author(s)

R. Scharpf

See Also

state for accessing the state symbols (posterior calls) for the genomic ranges.

Examples

library(oligoClasses)
foreach::registerDoSEQ()
path <- system.file("extdata", package="MinimumDistance")
fnames <- list.files(path, pattern=".txt")
ped <- Pedigree(fatherIds=fnames[1], motherIds=fnames[2],
offspringIds=fnames[3])
map.segs <- callDenovoSegments(path=path,

ext="",
pedigreeData=ped,
cdfname="human610quadv1b",
chromosome=1,
segmentParents=FALSE)

computeBayesFactor Compute Bayes factors for minimum distance segments

Description

Estimate the trio copy number state for each minimum distance segment using the maximum a
posterior probability. The posterior probability of the normal state is also returned.

Usage

computeBayesFactor(object, ranges, ...)

Arguments

object A object of class TrioSetList or TrioSet.

ranges A RangedDataCBS object.

... Additional arguments specified in the methods for TrioSet and TrioSetList.

Value

A object of class RangedDataCBS.

6 concordance

References

The posterior calling is an extension of the joint HMM described in Wang et al, 2008 Nucleic Acids
Research.

See Also

TrioSetList, TrioSet RangedDataCBS, calculateMindist

Examples

library(MinimumDistance)
library(oligoClasses)
foreach::registerDoSEQ()
data(trioSetListExample)
data(md.segs)
data(lrr.segs)
mdlist <- calculateMindist(lrr(trioSetList))
mads.md <- mad2(mdlist, byrow=FALSE)
md.segs2 <- narrow(md.segs, lrr.segs, mad.minimumdistance=mads.md, thr=0.8)
map.segs <- computeBayesFactor(trioSetList, ranges=md.segs2)

concordance Functions for assessing concordance

Description

Functions for assessing concordance and discordance of copy number variant calls

Usage

concAtTop(ranges.query, ranges.subject, list.size, verbose = TRUE, ...)
discAtTop(ranges.query, ranges.subject, verbose=TRUE, ...)

Arguments

ranges.query RangedDataCNV object
ranges.subject RangedDataCNV object
list.size size of list in query and subject ranges
verbose logical
... Additional arguments passed to findOverlaps.

Details

concAtTop calculates three measures of concordance:

1. the proportion of top ranges that overlap between ranges.query and ranges.subject objects
as a function of list size (we assume that each RangedDataCNV object is ordered such that the first
range has the highest rank (most evidence of an alteration).

2. the proportion of top ranges in ranges.query that appear anywhere in the ranges.subject
object. Again, a proportion is calculated as a function of list size until the size of the list is equal to
list.size.

3. the same as (2), but reversing the role of ranges.query and ranges.subject.

The function discAtTop identifies the ranges in ranges.query that do not appear in ranges.subject.

correspondingCall 7

Value

distAtTop returns an object of the same class as ranges.query.

concAtTop returns a list of 3 elements, corresponding to the 3 approaches for estimating concor-
dance described in the details.

Author(s)

Rob Scharpf

See Also

findOverlaps

correspondingCall Find overlapping ranges

Description

Finds ranges in a RangedDataCNV object that overlap with ranges from another RangedDataCNV
object.

Usage

correspondingCall(ranges.query, ranges.subject, subject.method)

Arguments

ranges.query A RangedDataCNV object.

ranges.subject A RangedDataCNV object.

subject.method A character string. If provided, a column called ‘method’ will be added to
ranges.subject that indicates the statistical algorithm used to call the de novo
alterations.

Details

Given a set of de novo calls from one statistical algorithm, this function finds the corresponding
calls made by a second statistical algorithm. For any given range in ranges.query, one or more
ranges in ranges.subject may overlap.

Value

An object of the same class as ranges.subject.

Author(s)

Rob Scharpf

See Also

findOverlaps

8 isDenovo

isDenovo Indicator for whether a trio copy number state is a de novo copy num-
ber alteration.

Description

Return an indicator for a de novo copy number alteration.

Usage

isDenovo(states)

Arguments

states a string with 3 characters. Character elements 1-3 indicate the copy number
state for the father, mother, and offspring, respectively. See Details.

Details

We consider a copy number alteration occurring in the offspring that is not present in either parent
to be de novo, irrespective of whether the copy number alteration is transmitted by a Mendelian
mechanism. Each segment is assigned a trio copy number state by a 3 digit integer code that
indicates the copy number state for the father, mother, and offspring. For example, ’332’ indicates
copy number 2 in the mother and father (state ’3’) and a hemizygous deletion in the offspring
(state ’2’). See computeBayesFactor for details. A subset of the possible states, such as ’332’, is
considered de novo.

Value

Logical

Author(s)

Rob Scharpf

See Also

computeBayesFactor. See state for the accessor to extract the trio copy number state.

Examples

library(oligoClasses)
isDenovo(c(333, 332, 311, 334, 344))
data(map.segs)
table(isDenovo(state(map.segs)))
sts <- unique(state(map.segs))
sts[isDenovo(sts)]

mad2 9

mad2 Methods for computing the minimum absolute distance.

Description

Compute the median absolute deviation for elements in a list, array, or matrix. For lists, elements
of the list can be matrices or arrays or ff-versions of these.

Usage

mad2(object, byrow=FALSE, ...)

Arguments

object object can be any of the following: class TrioSetList, TrioSet, or a list of
matrices.

byrow When byrow is TRUE, the MAD is calculated for each marker across all offspring.
When byrow is FALSE, the MAD is computed across all autosomal markers for
the fathers, mothers, and offspring. The former provides a robust estimate of the
marker-level variance across samples, whereas the latter provides an estimate of
variance for the samples.

... Not currently implemented.

Value

A list.

Examples

data(trioSetListExample)
foreach::registerDoSEQ()
computing the MAD of the log R ratios for each individual (across markers)
mads.sample <- mad2(trioSetList, byrow=FALSE)
compute the MAD of the log R ratio for each marker (across individuals)
too few samples
##mads.marker <- mad2(trioSetList, byrow=TRUE)

narrow Adjust breakpoints from segmentation inward

Description

Narrow the minimum distance ranges by the segmentation of the offspring copy number estimates.

Usage

narrow(object, lrr.segs, thr, mad.minimumdistance, verbose = TRUE)

10 Pedigree

Arguments

object A RangedDataCNV object. The segmentation of the minimum distance.

lrr.segs A RangedDataCNV object. The segmentation of the log R ratios.

thr Numeric. For segments with a segment mean less than thr, the breakpoints are
not altered.

mad.minimumdistance

A named numeric vector. The names should the sampleNames of the TrioSet
or TrioSetList object.

verbose Logical. Whether to display messages that indicate progress.

Details

If the start and stop coordinates for a segment [x, y] with mean log R ratio greater than thr in
absolute value, the x and y coordinates of the interval may be adjusted. If there are no breakpoints
from the segmentation of the offspring log R ratio occurring in [x, y], nothing is done. However, if
one or more breakpoints occur in the interval [x,y], one or more new segments can be created. For
example, suppose a segment from the log R ratio segmention has breakpoints given by [a, b], where
x < b < y. Then the following two intervals are created:

1. [x, b] 2. [b, y]

The motivation is to avoid having a single minimum distance segment spanning differing copy
number states in the offspring.

Value

A RangedDataCBS object.

Author(s)

Rob Scharpf

Examples

data(trioSetListExample)
data(lrr.segs)
data(md.segs)

md <- calculateMindist(lrr(trioSetList))
md.mads <- mad2(md, byrow=FALSE)
md.segs.narrowed <- narrow(object=md.segs, lrr.segs=lrr.segs, thr=0.1, mad.minimumdistance=md.mads)

Pedigree Constructor for Pedigree class

Description

Constructor for Pedigree class

Usage

Pedigree(pedigreeInfo, fatherIds=character(), motherIds=character(), offspringIds=character())

Pedigree-class 11

Arguments

pedigreeInfo a data.frame with column labels F, M, and O containing sample identifiers
for the father (F), mother (M), and offspring (O). Each row of the data.frame
corresponds to a single trio.

fatherIds A vector of sample ids for the father. Ignored if pedigreeInfo is specified.

motherIds A vector of sample ids for the mother. Ignored if pedigreeInfo is specified.

offspringIds A vector of sample ids for the mother. Ignored if pedigreeInfo is specified.

Details

Constructor for object that contains information regarding the case-parent trios

Value

Object of class Pedigree

Note

If pedigreeInfo is missing, the vector of character strings provided to indicate the ids of the father,
mother and offspring should be ordered such that the ith element in each vector are the sample
identifiers for one trio.

Author(s)

R. Scharpf

See Also

Pedigree

Examples

Pedigree()
Pedigree(fatherIds=letters[1], motherIds=letters[2],offspringIds=letters[3])

path <- system.file("extdata", package="MinimumDistance")
load(file.path(path, "pedigreeInfo.rda"))
Pedigree(pedigreeInfo)

Pedigree-class Container for storing pedigree information

Description

Container for storing familial information for father, mother, offspring trios.

Objects from the Class

See the examples for instantiating a Pedigree object.

12 phenoData

Slots

trios: Object of class "data.frame" ~~

trioIndex: Object of class "data.frame" ~~

Accessors

In the following code descriptions, object is an instance of the Pedigree class:

allNames(object): character vector of unique sample ids. Note that the length of this vector
is not necessarily a multiple of 3 if some parents have multiple offspring.

annotatedDataFrameFrom(object, byrow=FALSE, sample.sheet, which=c("offspring", "father", "mother"), row.names=NULL, ...):
Create an AnnotatedDataFrame for the father, mother or, offspring (depending on value of ar-
gument which). Optionally, a data.frame of covariates for the samples can be passed as an
argument to sample.sheet. If sample.sheet is not missing, row.names can not be NULL.

dim(object): Returns an integer vector of length 2: the first element is the number of trios; the
second element is 3.

fatherNames(object): character vector of father ids (not necessarily unique).

motherNames(object): character vector of mother ids (not necessarily unique).

offspringNames(object): character vector of offspring ids (must be unique).

trios(object): data.frame of sample ids. Each row in the data.frame contains the ids of
father, mother, and offspring, respectively.

object[i,]: subset the Pedigree by trio index i.

Author(s)

R. Scharpf

See Also

Pedigree annotatedDataFrameFrom

Examples

showClass("Pedigree")
an empty container
Pedigree()

phenoData Extract phenotype data for parents in a trio.

Description

Extract phenotype data for parents in a trio.

Usage

motherPhenoData(object)
fatherPhenoData(object)

RangedDataCBS_Examples 13

Arguments

object A object of class TrioSet or TrioSetList

Details

Extracts phenotypic data for parents

Value

AnnotatedDataFrame

Author(s)

R. Scharpf

See Also

TrioSet, TrioSetList

Examples

data(trioSetListExample)
father phenoData
fatherPhenoData(trioSetList)
mother phenoData
motherPhenoData(trioSetList)
offspring phenoData
phenoData(trioSetList)

RangedDataCBS_Examples

Objects containing segmented data

Description

Example RangedDataCBS objects created from the segmentation of the log R ratios (object cbs.segs)
and the minimum distance (object md.segs).

Usage

data(lrr.segs)
data(md.segs)

data(map.segs)

See Also

See RangedDataCBS for accessors and methods available for objects of this class. See computeBayesFactor
for details regarding how the object map.segs was instantiated.

14 segment2

Examples

data(lrr.segs)
data(md.segs)

###object containing maximum a posterior probabilities
data(map.segs)

segment2 Wrapper for segment function in package DNAcopy

Description

segment2 is a wrapper for the segment function in DNAcopy. The first argument can be simple data
structures: a list, a matrix, or an array, or more complex: TrioSetList and TrioSet. If the
first argument is a list, each element of the list can be a matrix or an array.

Segmentation of ff_matrix and ff_array objects is also supported.

Details

When object is a list of arrays, the argument id is required. The easiest way to obtain a data.frame
of the trio sample names is via the method trios, as in the example below.

Value

RangedDataCBS object

Arguments

Arguments to segment2 depend on the class of object. In all forms, additional arguments to the
segment function in the DNAcopy package can be passed through the ... operator.

For TrioSetList objects, the arguments are:

segment2(object, md=NULL, segmentParents=TRUE, verbose=TRUE, ...): md is a list
of matrices containing the minimum distance. See calculateMindist. segmentParents
must be logical. When TRUE, the parental log R ratios are segmented via circular binary
segmentation. When FALSE, only the offspring log R ratios are segmented.
For objects of class TrioSet:

segment2(object, md=NULL, segmentParents=TRUE, verbose=TRUE, ...): md is a matrix
of the minimum distance where each column corresponds to a trio in the TrioSetList object.
For objects of class list:

segment2(object, pos, chrom, id=NULL, featureNames, segmentParents=TRUE, verbose=TRUE, ...):
pos is a list of the genomic positions (integers) for each row of the elements of the object
list. Similarly, chrom and featureNames are lists specifying the chromosome (integer) and
feature identifiers (character) for each row in the object list elements, respectively. Note:
pos, chrom, and featureNames must be lists of the same size.
For objects of class matrix :

segment2(object, pos, chrom, id=NULL, featureNames,segmentParents=TRUE, verbose=TRUE, ...):
pos is a vector of the genomic positions (integers) for each row in the object matrix. Simi-
larly, chrom and featureNames are vectors specifying the chromosome (integer) and feature
identifiers (character) for each row in the object matrix, respectively. Note: pos, chrom,
and featureNames must be vectors of the same size.

stackRangedDataList 15

See Also

segment

Examples

Not run: ## examples are checked in the vignette
data(trioSetListExample)
mdlist <- calculateMindist(lrr(trioSetList))
md.segs <- segment2(trioSetList, md=mdlist)
lrr.segs <- segment2(trioSetList, segmentParents=FALSE)

End(Not run)

stackRangedDataList Stack a list of RangedDataCBS objects.

Description

Stack a list of RangedDataCBS objects.

Usage

stackRangedDataList(...)

Arguments

... A list. Each element has class RangedDataCBS.

Value

Object of class RangedDataCBS.

Author(s)

R. Scharpf

See Also

RangedDataCBS

Examples

data(map.segs)
stackRangedDataList(list(map.segs, map.segs))

16 TrioSet

TrioSet Constructor for TrioSet objects.

Description

Construct an object of class TrioSet.

Usage

TrioSet(pedigreeData = Pedigree(), sample.sheet, row.names = NULL, lrr,
baf, featureData, cdfname, drop = TRUE, mindist=NULL)

Arguments

pedigreeData A Pedigree object.

sample.sheet A data.frame of sample covariates.

row.names Row identifiers for sample.sheet that match the names of the trios in the
Pedigree object.

lrr Matrix of log R ratios

baf Matrix of B allele frequencies

featureData AnnotatedDataFrame for features.

cdfname character string for annotation package.

drop Logical. If FALSE, the row and column dimnames are null.

mindist A matrix of the minimum distance.

Value

A object of class TrioSet.

Author(s)

R. Scharpf

See Also

TrioSet, Pedigree, Pedigree

Examples

path <- system.file("extdata", package="MinimumDistance")
load(file.path(path, "logRratio.rda"))
load(file.path(path, "baf.rda"))
load(file.path(path, "pedigreeInfo.rda"))
trioSet <- TrioSet(lrr=logRratio,

baf=baf,
pedigree=Pedigree(pedigreeInfo),
cdfname="human610quadv1bCrlmm")

TrioSet-class 17

TrioSet-class Class "TrioSet"

Description

A TrioSet is a container for storing high throughput assay data and metadata from genotyping ar-
rays when the study design is case-parent trios. In our application, de novo copy number alterations
in affected offspring were of the primary interest. Examination of the joint distribution of the log
R ratios and B allele frequencies across members in a trio motivates a container with assay data
elements that are 3-dimensional arrays rather than 2-dimensional matrices. The dimension of the
arrays is marker x trio x individual. Typically, a TrioSet instance stores the data for a single chromo-
some and an instance of TrioSetList is a list of TrioSets. While having a single TrioSet for the entire
dataset would simplify the classes of objects defined in this package, multiple arrays with thousands
of trios and roughly a million markers are impractical on most machines. In addition, storage by
chromosome will facilitate parallelization of computation that can be carried out independently on
different chromosomes.

Objects from the Class

Objects can be created by calls of the form :

new("TrioSet", logRRatio, BAF, phenoArray, mindist, mad, ...).

Subsetting

As the TrioSet class is an extension of eSet, the subsetting is similar. One important differ-
ence is that the assay date elements are 3 dimensional arrays. While k is not a formal argument
in the generic for "[", k can be passed to the "[" method for TrioSet objects for subsetting
the 3rd dimension of the assay data.

object[i, j, drop]: i selects features, j selects trios, and k (though not part of the generic)
selects for the individual in a trio. Valid values for k are 1 (selects father), 2 (selects mother),
or 3 (selects offspring).

Accessors

The object in the accessor descriptions that follow is a TrioSet:

allNames(object): The individual ids for each subject. See offspringNames, fatherNames,
and motherNames to list ids corresponding to membership in the trio.

baf(object): Extract array of B allele frequencies.

baf(object) <- value: assign B allele frequencies. value is a 3-dimensional array (feature x
trio x sample).

dim(object): Returns the dimension of the assay data elements. Each assay data element is a
three dimensional array with dimensions for features, trios, and sample, respectively.

fatherNames(object) <- value: Assign character string of father sample names.

fatherNames(object): Return character string of father identifiers.

fatherPhenoData(object): Extract AnnotatedDataFrame for father pheno data.

lrr(object) <- value: assign log R ratios to assayData. value is a 3-dimensional array (feature
x trio x sample).

mindist(object): Accessor for the minimum distance matrix.

18 TrioSet-class

mindist(object) <- value: Replacement method for slot mindist. Value must be a matrix.

motherNames(object) <- value: Assign a character string for the mother identifiers

motherPhenoData(object): Extract AnnotatedDataFrame for mother pheno data.

motherNames(object) Return a character vector of mother identifiers

ncol(object) Number of trios in the TrioSet object

offspringNames(object) <- value: Assign a character vector of offspring identifiers

offspringNames(object): Retrieve character vector of offspring identifiers. Note that the result
will identical to sampleNames(object) as the offspring identifiers uniquely identify a trio

offspringPhenoData(object): Extract a AnnotatedDataFrame of the sample-level covariates
for the offspring. Alternatively, use phenoData(object).

order(object): order TrioSet object by chromosome and physical position

pedigree(object): accessor for pedigree slot. Returns an object of class Pedigree.

trios(object): Returns the data.frame stored in slot trios of the Pedigree class object stored
in slot pedigree of the TrioSet object.

Compute the minimum distance

calculateMindist(object): calculate the minimum distance for an object of class TrioSet.

Posterior summaries

computeBayesFactor(object, ranges, mad.marker, mad.sample, returnEmission=FALSE, verbose=TRUE, ...):
Compute posterior probabilities for the trio copy number states. The called trio copy number
state is the argmax of the posterior probabilities. See examples below for computing the stan-
dard deviation of the markers for argument mad.marker and the standard deviation of the
samples for argument mad.sample.

Visualization

xyplot(x, data, ...)

Miscellaneous

updateObject(object): Currently, this method only checks the class of the featureData slot. If
the class is AnnotatedDataFrame, the featureData is updated to the GenomeAnnotatedDataFrame
class.

Author(s)

R. Scharpf

See Also

TrioSet, TrioSetList, calculateMindist

TrioSetList 19

Examples

showClass("TrioSet")
instantiate a TrioSet with an array of log R ratios (logRR) and B
allele frequencies
library(MinimumDistance)
TrioSet()

data(trioSetListExample)
trioSet <- stack(trioSetList)

TrioSetList Constructs and object of class TrioSetList

Description

Constructs and object of class TrioSetList

Usage

TrioSetList(chromosome=integer(), pedigreeData=Pedigree(), sample.sheet, row.names=NULL, lrr, baf, featureData, cdfname)

Arguments

chromosome Vector of integers indicating which chromosomes are stored in the TrioSetList
object.

pedigreeData A object of class Pedigree.

sample.sheet A data.frame of sample-level covariates.

row.names If sample.sheet is non-missing, row.names must the specified. The row.names
must match the sample identifiers stored in the argument to pedigreeData. If
sample.sheet is missing, row.names is ignored.

lrr Matrix of log R Ratios

baf matrix of B allele frequencies

featureData Object of class AnnotatedDataFrame containing feature annotation. If missing,
the argument cdfname must be specified.

cdfname A character string providing the name of the annotation package.

Value

An object of class TrioSetList

See Also

TrioSetList, phenoData

20 TrioSetList-class

Examples

TrioSetList()
TrioSetList(chromosome=1:22)

A more realistic example
Note that a data.frame containing covariates on the samples can be
passed through the sample.sheet argument
library(human610quadv1bCrlmm)
path <- system.file("extdata", package="MinimumDistance")
load(file.path(path, "pedigreeInfo.rda"))
load(file.path(path, "sample.sheet.rda"))
load(file.path(path, "logRratio.rda"))
load(file.path(path, "baf.rda"))
nms <- paste("NA",substr(sample.sheet$Sample.Name, 6, 10),sep="")
trioSetList <- TrioSetList(lrr=logRratio, ## must provide row.names

baf=baf,
pedigree=Pedigree(pedigreeInfo),
sample.sheet=sample.sheet,
row.names=nms,
cdfname="human610quadv1bCrlmm")

motherPhenoData(trioSetList)
fatherPhenoData(trioSetList)
offspringPhenoData(trioSetList)
log R ratios for the first trioSetList element
str(lrr(trioSetList)[[1]])
B allele frequencies for the first trioSetList element
str(baf(trioSetList)[[1]])

TrioSetList-class Class "TrioSetList"

Description

A container storing pedigree information, as well as low-level statistical summaries used for copy
number estimation: the log R ratios and B allele frequencies. The list structure is organized by
chromosome, where each element of the list is a TrioSet object.

Objects from the Class

Objects from the class can be initialized by:

new("TrioSetList"): Instantiate an empty container.

TrioSetList(): See TrioSetList .

Slots

assayDataList: list of arrays containing log R ratios and B allele frequencies.

featureDataList: list of containing feature annotation. Each element of the list is a AnnotatedDataFrame.

pedigree: Object of class "Pedigree". Contains information on the trio-relationships.

motherPhenoData: Object of class "AnnotatedDataFrame". Contains sample-level covariates for
the mother.

fatherPhenoData: Object of class "AnnotatedDataFrame". Contains sample-level covariates for
the father.

TrioSetList-class 21

phenoData: Object of class "AnnotatedDataFrame". Contains sample-level covariates for the
offspring.

chromosome: Integer vector indicating which autosomes are contained in the TrioSetList object.

Accessors

In the following accessor descriptions, object is a TrioSetList:

object$NAME: Extract phenotype ’NAME’ for offspring.

"[[": Extract a TrioSet object.

allnames(object): Returns character vector of all the sample names. Note that sampleNames
of a TrioSetList object is not the same. In particular, sampleNames(object) returns only
the character vector of offspring ids which uniquely identify a trio. Hence, a separate method,
allNames, is supplied when all the sample ids in the data set are required. Finally, note that
the length of the vector returned by allNames is not necessarily a multiple of 3 as mothers
and fathers with multiple offspring would be included in multiple trios.

annotation(object): character string indicating the array platform

baf(object): Returns a list of B allele frequencies for each chromosome. Each element in the
list is a 3-dimensional array (features x trios x samples).

dims(object): Return dimensions of the low-level statistical summaries (log R ratios and B allele
frequencies) for each TrioSet element in the TrioSetList.

fatherNames(object): character vector of father ids.

fatherPhenoData(object): Extract a AnnotatedDataFrame of the sample-level covariates for
the father.

length(object): The number of chromosomes.

lrr(object) Returns list of log R ratios for each chromosome. Each element in the list is a
3-dimensional array (features x trios x samples).

mad2(object, byrow=TRUE) Calculates the median absolute deviation (MAD) of the log R ratios
in object. When byrow is TRUE, the MAD is calculated for each marker across all offspring.
When byrow is FALSE, the MAD is computed across all autosomal markers for the fathers,
mothers, and offspring. The former provides a robust estimate of the marker-level variance
across samples, whereas the latter provides an estimate of variance for the samples.

mindist(object) <- value: Assigns the minimum distance to each TrioSet element. value is
a list.

mindist(object): Accessor for the minimum distance in each TrioSet element. Returns a list.

motherNames(object): Character vector of sample identifiers for the mothers.

motherPhenoData(object): Extract a AnnotatedDataFrame of the sample-level covariates for
the mother.

ncol(object): the number of trios, or equivalently the number of offspring.

nrow(object): The number of features across all TrioSet elements.

offspringNames(object): Character vector of offspring identifiers. Note that the offspring ids
uniquely identify a trio, and the method sampleNames will return the same result.

order(object): order TrioSet object by chromosome and physical position

pedigree signature(object = "TrioSetList"): Accessor for pedigree information. See also
Pedigree

offspringPhenoData(object): Extract a AnnotatedDataFrame of the sample-level covariates
for the offspring. Alternatively, use phenoData(object).

22 TrioSetList-class

phenoData(object): Extract a AnnotatedDataFrame of the sample-level covariates for the off-
spring.

sampleNames(object): Character vector of unique identifiers for father-mother-offspring trio.
As the offspring id uniquely identifies a trio,sampleNames returns the same vector of ids as
offspringNames

trios(object): Returns a data.frame of the trios. Each row in the data.frame contains the
sample identifiers for the father, mother, and offspring. Parents with multiple offspring will
appear in multiple rows.

Subsetting

x[i, j]: i selects the list elements. j selects the trio for each list element. The list elements have
class TrioSet.

Stacking a TrioSetList object

A TrioSetList object contains a list of elements of class TrioSet. Each list element corre-
sponds to one chromosome. A TrioSet object can be constructed from a TrioSetList by
stacking the TrioSet elements:

stack(object): creates a TrioSet object from a TrioSetList object.

Compute the minimum distance

calculateMindist(object): Compute the minimum distance from the list of log R ratio arrays.
Returns a list of matrices of the minimum distance; each element in the list is the minimum
distance for one chromosome.

Posterior summaries

computeBayesFactor(object, ranges, mad.marker, mad.sample, returnEmission=FALSE, verbose=TRUE, ...):
Compute posterior probabilities for the trio copy number states. The called trio copy number
state is the argmax of the posterior probabilities. See examples below for computing the stan-
dard deviation of the markers for argument mad.marker and the standard deviation of the
samples for argument mad.sample.

Miscellaneous

updateObject(object): Currently, this method only checks the class of the elements in the
featureDataList slot. If the elements are AnnotatedDataFrame instead of GenomeAnnotatedDataFrame,
the featureDataList slot is updated.

Author(s)

R. Scharpf

See Also

TrioSet, Pedigree

Examples

showClass("TrioSetList")
TrioSetList()
data(trioSetExample)

trioSetListExample 23

trioSetListExample An example of a TrioSetList object

Description

A TrioSetList object instantiated from HapMap samples arrayed on a high-throughput Illumina
genotyping platform.

Usage

data(trioSetListExample)

Format

TrioSetList object

Details

Each element in the TrioSetList is a TrioSet.

Source

Two HapMap trios.

Examples

data(trioSetListExample)
class(trioSetList[[1]])

TrioSetListLD Constructor for TrioSetList class for large data

Description

Constructor for TrioSetList class for large data

Usage

TrioSetListLD(path, fnames, ext="", samplesheet, row.names, pedigreeData, featureData, annotationPkg, outdir=ldPath())

Arguments

path Path to plain-text files containing log R ratios and B allele frequencies. Files
should contain data for a single sample.

fnames Character string providing the filenames.

ext Character string indicating whether the fnames has a file extension (e.g., ".txt")

samplesheet (Optional) data.frame containing phenotypic / experimental covariates on the
samples. Note that if samplesheet is provided, row.names must be specified.

24 xypanelMD

row.names Character vector indicating the sample id for each row in samplesheet. row.names
should be unique and, ideally, correspond to fnames,

pedigreeData An object of class Pedigree.

featureData A GenomeAnnotatedDataFrame

annotationPkg Character string indicating the annotation package used to extract information
on the features (chromosome, physical position, and whether the feature is poly-
morphic (’isSnp’)).

outdir Character string indicating the path for storing ff objects. Ignored if the ff
package is not loaded.

Details

If the ff package is loaded, the assayData elements will be of class ff_array. Otherwise, the
assayData elements will be ordinary arrays. For large datasets (or for computers with limited
RAM), loading the ff may be required.

Value

A TrioSetList object

Author(s)

R. Scharpf

See Also

TrioSetList

Examples

if(require("ff")){
library(ff)
ldPath(tempdir())
path <- system.file("extdata", package="MinimumDistance")
fnames <- list.files(path, pattern="[FMO].txt")
trioSetListff <- TrioSetListLD(path=path,

fnames=fnames,
pedigreeData=Pedigree(data.frame(F="F.txt",
M="M.txt", O="O.txt")),
annotationPkg="human610quadv1bCrlmm",
outdir=ldPath())

}

xypanelMD Panel function for plotting log R ratios and B allele frequencies for a
trio

Description

This is a panel function for xyplot function in lattice that is useful for plotting log R ratios and B
allele frequencies for a trio

xypanelMD 25

Usage

xypanelMD(x, y, id, gt, is.snp, range, cex, col.hom = "grey20", fill.hom =
"lightblue", col.het = "grey20", fill.het = "salmon", col.np = "grey20",
fill.np = "grey60", show.state = TRUE, lrr.segs, md.segs, ...,
subscripts)

Arguments

x Physical position in MB.

y Either the log R ratios, minimum distance, or B allele frequency.

id The id for the trio.

gt Genotype call (if available)

is.snp Indicator for whether the marker is polymorphic.

range A genomic interval of class RangedDataHMM.

cex Size of plotting symbols.

col.hom Color for homozygous genotypes.

fill.hom Fill color for homozygous genotypes (ignored for some plotting symbols).

col.het Color for heterozygous genotypes.

fill.het Fill color for heterozygous genotypes (ignored for some plotting symbols).

col.np Color for nonpolymorphic markers

fill.np Fill color for nonpolymorphic markers (ignored for some plotting symbols).

show.state Whether to display the inferred copy number state stored in the object passed to
the range argument.

lrr.segs Object of class RangedDataCBS containing the results of the CBS segmentation
of the log R ratios. Optional

md.segs Object of class RangedDataCBS containing the results of the CBS segmentation
of the minimum distance. Optional

... Additional arguments to panel.xyplot.

subscripts See lattice xyplot.

Details

This function is not typically called directly, but is passed to the panel argument in the xyplot
method.

Value

Nothing is returned.

Author(s)

R. Scharpf

See Also

xyplot, xypanel, panel.xyplot

26 xypanelMD

Examples

library(oligoClasses)
data(trioSetListExample)
trioSet <- stack(trioSetList)
mindist(trioSet) <- calculateMindist(lrr(trioSet))
data(map.segs)
data(lrr.segs)
data(md.segs)
select a range with a possible de novo copy number alteration in the offspring
rd <- map.segs[which(isDenovo(state(map.segs)))[1],]
figs <- MinimumDistance:::xyplotTrioLrrBaf(rd=rd,

object=trioSet,
frame=200e3,
ylab="log R ratio and BAFs",
xlab="physical position",
panel=MinimumDistance:::xypanelTrioBaf,
scales=list(y=list(alternating=1)),
lrr.segments=lrr.segs,
md.segments=md.segs,
layout=c(1, 4), ylim=c(-3,1.5),
par.strip.text=list(lines=0.8, cex=0.6))

Index

∗Topic classes
Pedigree-class, 11
TrioSet-class, 17
TrioSetList, 19
TrioSetList-class, 20

∗Topic classif
callDenovoSegments, 4

∗Topic color
xypanelMD, 24

∗Topic datasets
RangedDataCBS_Examples, 13
trioSetListExample, 23

∗Topic dplot
xypanelMD, 24

∗Topic htest
callDenovoSegments, 4
computeBayesFactor, 5

∗Topic manip
concordance, 6
isDenovo, 8
narrow, 9
Pedigree, 10
phenoData, 12
stackRangedDataList, 15
TrioSet, 16
TrioSetListLD, 23

∗Topic math
calculateMindist, 3

∗Topic methods
annotatedDataFrameFrom-methods, 2

∗Topic models
callDenovoSegments, 4

∗Topic robust
callDenovoSegments, 4
mad2, 9

∗Topic smooth
callDenovoSegments, 4
segment2, 14

∗Topic univar
calculateMindist, 3
mad2, 9

∗Topic utilities
concordance, 6

correspondingCall, 7
[,Pedigree-method (Pedigree-class), 11
[,TrioSet-method (TrioSet-class), 17
[,TrioSetList-method

(TrioSetList-class), 20
[,ff_array-method (TrioSet-class), 17
[[,TrioSetList-method

(TrioSetList-class), 20
$,TrioSetList-method

(TrioSetList-class), 20

allNames (TrioSetList-class), 20
allNames,Pedigree-method

(Pedigree-class), 11
allNames,TrioSet-method

(TrioSet-class), 17
allNames,TrioSetList-method

(TrioSetList-class), 20
annotatedDataFrameFrom, 12
annotatedDataFrameFrom,array,ANY-method

(annotatedDataFrameFrom-methods),
2

annotatedDataFrameFrom,ff_array,ANY-method
(annotatedDataFrameFrom-methods),
2

annotatedDataFrameFrom,ff_matrix,ANY-method
(annotatedDataFrameFrom-methods),
2

annotatedDataFrameFrom,matrix,ANY-method
(annotatedDataFrameFrom-methods),
2

annotatedDataFrameFrom,Pedigree,logical-method
(annotatedDataFrameFrom-methods),
2

annotatedDataFrameFrom-methods, 2
annotation,TrioSetList-method

(TrioSetList-class), 20

baf (TrioSetList-class), 20
baf,TrioSet-method (TrioSet-class), 17
baf,TrioSetList-method

(TrioSetList-class), 20
baf<- (TrioSet-class), 17

27

28 INDEX

baf<-,TrioSet,array-method
(TrioSet-class), 17

baf<-,TrioSet,ff_array-method
(TrioSet-class), 17

baf<-,TrioSet-method (TrioSet-class), 17

calculateMindist, 3, 6, 14, 18
calculateMindist,arrayORff_array-method

(calculateMindist), 3
calculateMindist,list-method

(calculateMindist), 3
calculateMindist,TrioSet-method

(TrioSet-class), 17
calculateMindist,TrioSetList-method

(calculateMindist), 3
callDenovoSegments, 4
computeBayesFactor, 5, 8, 13
computeBayesFactor,TrioSet-method

(TrioSet-class), 17
computeBayesFactor,TrioSetList-method

(TrioSetList-class), 20
concAtTop (concordance), 6
concordance, 6
correspondingCall, 7

dim,Pedigree-method (Pedigree-class), 11
dim,TrioSet-method (TrioSet-class), 17
dims,TrioSetList-method

(TrioSetList-class), 20
discAtTop (concordance), 6

fatherNames, 17
fatherNames (TrioSetList-class), 20
fatherNames,Pedigree-method

(Pedigree-class), 11
fatherNames,TrioSet-method

(TrioSet-class), 17
fatherNames,TrioSetList-method

(TrioSetList-class), 20
fatherNames<- (TrioSet-class), 17
fatherNames<-,TrioSet,character-method

(TrioSet-class), 17
fatherPhenoData (phenoData), 12
fatherPhenoData,TrioSet-method

(TrioSet-class), 17
fatherPhenoData,TrioSetList-method

(TrioSetList-class), 20
findOverlaps, 7

initialize,Pedigree-method
(Pedigree-class), 11

initialize,TrioSet-method
(TrioSet-class), 17

initialize,TrioSetList-method
(TrioSetList-class), 20

isDenovo, 8

length,TrioSetList-method
(TrioSetList-class), 20

lrr,TrioSet-method (TrioSet-class), 17
lrr,TrioSetList-method

(TrioSetList-class), 20
lrr.segs (RangedDataCBS_Examples), 13
lrr<- (TrioSet-class), 17
lrr<-,TrioSet-method (TrioSet-class), 17

mad2, 9
mad2,array-method (mad2), 9
mad2,list-method (mad2), 9
mad2,matrix-method (mad2), 9
mad2,TrioSetList-method

(TrioSetList-class), 20
map.segs (RangedDataCBS_Examples), 13
md.segs (RangedDataCBS_Examples), 13
mindist (TrioSet-class), 17
mindist,TrioSet-method (TrioSet-class),

17
mindist,TrioSetList-method

(TrioSetList-class), 20
mindist<- (TrioSet-class), 17
mindist<-,TrioSet,matrix-method

(TrioSet-class), 17
mindist<-,TrioSetList,list-method

(TrioSetList-class), 20
motherNames, 17
motherNames (TrioSetList-class), 20
motherNames,Pedigree-method

(Pedigree-class), 11
motherNames,TrioSet-method

(TrioSet-class), 17
motherNames,TrioSetList-method

(TrioSetList-class), 20
motherPhenoData (phenoData), 12
motherPhenoData,TrioSet-method

(TrioSet-class), 17
motherPhenoData,TrioSetList-method

(TrioSetList-class), 20

narrow, 9
ncol,TrioSet-method (TrioSet-class), 17
ncol,TrioSetList-method

(TrioSetList-class), 20
nrow,TrioSetList-method

(TrioSetList-class), 20

offspringNames, 17

INDEX 29

offspringNames (TrioSetList-class), 20
offspringNames,Pedigree-method

(Pedigree-class), 11
offspringNames,TrioSet-method

(TrioSet-class), 17
offspringNames,TrioSetList-method

(TrioSetList-class), 20
offspringPhenoData (TrioSet-class), 17
offspringPhenoData,TrioSet-method

(TrioSet-class), 17
offspringPhenoData,TrioSetList-method

(TrioSetList-class), 20
order,TrioSet-method (TrioSet-class), 17
order,TrioSetList-method

(TrioSetList-class), 20

panel.xyplot, 25
Pedigree, 10, 11, 12, 16, 21, 22
pedigree (TrioSetList-class), 20
pedigree,TrioSet-method

(TrioSet-class), 17
pedigree,TrioSetList-method

(TrioSetList-class), 20
Pedigree-class, 11
phenoData, 12, 19
phenoData,TrioSetList-method

(TrioSetList-class), 20

RangedDataCBS, 6, 13, 15
RangedDataCBS_Examples, 13

sampleNames,TrioSetList-method
(TrioSetList-class), 20

segment, 15
segment2, 14
segment2,arrayORff_array-method

(segment2), 14
segment2,ff_matrix-method (segment2), 14
segment2,list-method (segment2), 14
segment2,matrix-method (segment2), 14
segment2,TrioSet-method (segment2), 14
segment2,TrioSetList-method (segment2),

14
stack,TrioSetList-method

(TrioSetList-class), 20
stackRangedDataList, 15
state, 5, 8

trios (TrioSetList-class), 20
trios,Pedigree-method (Pedigree-class),

11
trios,TrioSet-method (TrioSet-class), 17
trios,TrioSetList-method

(TrioSetList-class), 20

TrioSet, 5, 6, 13, 16, 16, 18, 22
TrioSet-class, 17
TrioSetList, 5, 6, 13, 18, 19, 19, 20, 24
trioSetList (trioSetListExample), 23
TrioSetList-class, 20
trioSetListExample, 23
TrioSetListLD, 23

updateObject,TrioSet-method
(TrioSet-class), 17

updateObject,TrioSetList-method
(TrioSetList-class), 20

xypanel, 25
xypanel (xypanelMD), 24
xypanelMD, 24
xyplot, 25
xyplot,formula,TrioSet-method

(TrioSet-class), 17

	annotatedDataFrameFrom-methods
	calculateMindist
	callDenovoSegments
	computeBayesFactor
	concordance
	correspondingCall
	isDenovo
	mad2
	narrow
	Pedigree
	Pedigree-class
	phenoData
	RangedDataCBS_Examples
	segment2
	stackRangedDataList
	TrioSet
	TrioSet-class
	TrioSetList
	TrioSetList-class
	trioSetListExample
	TrioSetListLD
	xypanelMD
	Index

