
Package ‘IRanges’
September 24, 2012

Title Infrastructure for manipulating intervals on sequences

Description The package provides efficient low-level and highly reusable S4
classes for storing ranges of integers, RLE vectors (Run-Length
Encoding), and, more generally, data that can be organized
sequentially (formally defined as Vector objects), as well as views on these Vector objects.
Efficient list-like classes are also provided for storing big
collections of instances of the basic classes. All classes in
the package use consistent naming and share the same rich and
consistent ‘‘Vector API’’ as much as possible.

Version 1.14.4

Author H. Pages, P. Aboyoun and M. Lawrence

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

biocViews Infrastructure, DataRepresentation

Depends R (>= 2.8.0), methods, utils, stats, BiocGenerics (>= 0.1.4)

Imports methods, utils, stats, BiocGenerics, stats4

Suggests RUnit

License Artistic-2.0

ExtraLicenses The following files in the ’src’ directory are licensed
for all use by Jim Kent, in a manner compatible with the Artistic 2.0 license: com-
mon.c/h, memalloc.c/h, localmem.c/h,hash.c/h, errabort.c/h, rbTree.c/h, dlist.c/h, errCatch.h

Collate validity-utils.R utils.R isConstant.R normarg-utils.R
int-utils.R str-utils.R compact_bitvector.R endoapply.R
runstat.R Annotated-class.R Vector-class.R List-class.R
AtomicList-class.R Ranges-class.R Ranges-comparison.R
Ranges-utils.R IRanges-class.R IRanges-constructor.R
IRanges-utils.R IRanges-setops.R DataTable-API.R
DataTable-stats.R Views-class.R Grouping-class.R
SimpleList-class.R CompressedList-class.R Rle-class.R
RleViews-class.R RleViews-utils.R AtomicList-impl.R
Binning-class.R DataFrame-class.R DataFrame-utils.R
DataFrameList-class.R DataFrameList-utils.R RangesList-class.R
GappedRanges-class.R ViewsList-class.R RleViewsList-class.R
RleViewsList-utils.R MaskCollection-class.R RangedData-class.R

1



2 R topics documented:

FilterRules-class.R RDApplyParams-class.R RangedData-utils.R
Hits-class.R HitsList-class.R RangesMapping-class.R IntervalTree-class.R IntervalTree-utils.R
OverlapEncodings-class.R encodeOverlaps.R
RangedSelection-class.R read.Mask.R SharedVector-class.R
SharedRaw-class.R SharedInteger-class.R SharedDouble-class.R
XVector-class.R XRaw-class.R XInteger-class.R XDouble-class.R
XVectorList-class.R XRawList-class.R XIntegerViews-class.R
XIntegerViews-utils.R XDoubleViews-class.R XDoubleViews-utils.R
compact.R reverse.R coverage.R test_IRanges_package.R
updateObject-methods.R debug.R zzz.R

R topics documented:
Annotated-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
AtomicList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
DataFrame-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
DataFrameList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
DataTable-API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
DataTable-stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
disjoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
encodeOverlaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
endoapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
FilterRules-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
GappedRanges-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Grouping-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Hits-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
HitsList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
IntervalTree-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
IRanges-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
IRanges-constructor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
IRanges-setops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
IRanges-utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
IRangesList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
isConstant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
List-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
MaskCollection-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
multisplit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
nearest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
OverlapEncodings-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
RangedData-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
RangedData-utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
RangedDataList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
RangedSelection-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Ranges-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Ranges-comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Ranges-utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
RangesList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
RangesList-utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
RangesMapping-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
rdapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



Annotated-class 3

read.Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Rle-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
RleViews-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
RleViewsList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
runstat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
seqapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SimpleList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
strutils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
updateObject-methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Vector-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Views-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Views-utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ViewsList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
XDoubleViews-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
XIntegerViews-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
XRawList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
XVector-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
XVectorList-class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Index 117

Annotated-class Annotated class

Description

The virtual class Annotated is used to standardize the storage of metadata with a subclass.

Details

The Annotated class supports the storage of global metadata in a subclass. This is done through
the metadata slot that stores a list object.

Accessors

In the following code snippets, x is an Annotated object.

metadata(x), metadata(x) <- value: Get or set the list holding arbitrary R objects as annota-
tions. May be, and often is, empty.

Author(s)

P. Aboyoun

See Also

Vector for example implementations
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AtomicList Lists of Atomic Vectors in Natural and Rle Form

Description

An extension of List that holds only atomic vectors in either a natural or run-length encoded form.

Details

The lists of atomic vectors are LogicalList, IntegerList, NumericList, ComplexList, CharacterList,
and RawList. There is also an RleList class for run-length encoded versions of these atomic vector
types.

Each of the above mentioned classes is virtual with Compressed* and Simple* non-virtual repre-
sentations.

Constructors

LogicalList(..., compress = TRUE): Concatenates the logical vectors in ... into a new
LogicalList. If compress, the internal storage of the data is compressed.

IntegerList(..., compress = TRUE): Concatenates the integer vectors in ... into a new
IntegerList. If compress, the internal storage of the data is compressed.

NumericList(..., compress = TRUE): Concatenates the numeric vectors in ... into a new
NumericList. If compress, the internal storage of the data is compressed.

ComplexList(..., compress = TRUE): Concatenates the complex vectors in ... into a new
ComplexList. If compress, the internal storage of the data is compressed.

CharacterList(..., compress = TRUE): Concatenates the character vectors in ... into a
new CharacterList. If compress, the internal storage of the data is compressed.

RawList(..., compress = TRUE): Concatenates the raw vectors in ... into a new RawList. If
compress, the internal storage of the data is compressed.

RleList(..., compress = FALSE): Concatenates the run-length encoded atomic vectors in ...
into a new RleList. If compress, the internal storage of the data is compressed.

Coercion

as(from, "CompressedSplitDataFrameList"), as(from, "SimpleSplitDataFrameList"): Cre-
ates a CompressedSplitDataFrameList/SimpleSplitDataFrameList instance from an Atomi-
cList instance.

as(from, "IRangesList"), as(from, "CompressedIRangesList"), as(from, "SimpleIRangesList"):
Creates a CompressedIRangesList/SimpleIRangesList instance from a LogicalList or logical
RleList instance. Note that the elements of this instance are guaranteed to be normal.

as(from, "NormalIRangesList"), as(from, "CompressedNormalIRangesList"), as(from, "SimpleNormalIRangesList"):
Creates a CompressedNormalIRangesList/SimpleNormalIRangesList instance from a Logi-
calList or logical RleList instance.

as(from, "CharacterList"), as(from, "ComplexList"), as(from, "IntegerList"), as(from, "LogicalList"),
as(from, "NumericList"), as(from, "RawList"), as(from, "RleList"): Coerces an
AtomicList from to another derivative of AtomicList.

as(from, "AtomicList"): If from is a vector, converts it to an AtomicList of the appropriate
type.
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Group Generics

AtomicList objects have support for S4 group generic functionality to operate within elements
across objects:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="

Logic "&", "|"

Ops "Arith", "Compare", "Logic"

Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod",
"cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan",
"atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh", "gamma", "lgamma",
"digamma", "trigamma"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

See S4groupGeneric for more details.

Other Basic Methods

The AtomicList objects also support a large number of basic methods. Like the group generics
above, these methods perform the corresponding operation on each element of the list separately.
The methods are:

General %in%, is.na, match, sort, table, unique

Logical !, which, which.max, which.min

Numeric diff, pmax, pmax.int, pmin, pmin.int, mean, var, cov, cor, sd, median, quantile,
mad, IQR

Running Window smoothEnds, runmed. runmean, runsum, runwtsum, runq

Character nchar, chartr, tolower, toupper, sub, gsub

RleList Methods

RleList has a number of methods that are not shared by other AtomicList derivatives.

runLength(x): Gets the run lengths of each element of the list, as an IntegerList.

runValue(x): Gets the run values of each element of the list, as an AtomicList.

ranges(x): Gets the run ranges as a RangesList.

Specialized Methods

drop(x): Checks if every element of x is of length one, and, if so, unlists x. Otherwise, an error
is thrown.

Author(s)

P. Aboyoun

See Also

List for the applicable methods.
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Examples

int1 <- c(1L,2L,3L,5L,2L,8L)
int2 <- c(15L,45L,20L,1L,15L,100L,80L,5L)
collection <- IntegerList(int1, int2)

## names
names(collection) <- c("one", "two")
names(collection)
names(collection) <- NULL # clear names
names(collection)
names(collection) <- "one"
names(collection) # c("one", NA)

## extraction
collection[[1]] # range1
collection[["1"]] # NULL, does not exist
collection[["one"]] # range1
collection[[NA_integer_]] # NULL

## subsetting
collection[numeric()] # empty
collection[NULL] # empty
collection[] # identity
collection[c(TRUE, FALSE)] # first element
collection[2] # second element
collection[c(2,1)] # reversed
collection[-1] # drop first
collection$one

## replacement
collection$one <- int2
collection[[2]] <- int1

## combining
col1 <- IntegerList(one = int1, int2)
col2 <- IntegerList(two = int2, one = int1)
col3 <- IntegerList(int2)
append(col1, col2)
append(col1, col2, 0)
col123 <- c(col1, col2, col3)
col123

## revElements
revElements(col123)
revElements(col123, 4:5)

## group generics
2 * col1
col1 + col1
col1 > 2
sum(col1) # equivalent to (but faster than) ’sapply(col1, sum)’
mean(col1) # equivalent to (but faster than) ’sapply(col1, mean)’

compact Object compaction
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Description

Compacting an object is modifying its internal representation in order to reduce its size in memory.

Usage

compact(x, check=TRUE, ...)

## Internal compact() support function. Not intended to be called
## directly:
xvcopy(x, start=NA, end=NA, width=NA, lkup=NULL, reverse=FALSE)

Arguments

x For compact, the object to be compacted. compact accepts any R object. How-
ever, on most of them, compact won’t do anything and will just return an object
identical to x. See the Details section below.
For xvcopy, a SharedVector, XVector, SharedVector_Pool, or XRawList vector.

check After compacting the individual slots of an S4 object, this argument is passed to
‘slot<-‘ when replacing the original value of a slot with the compacted value.

... Arguments to be passed to or from other methods.

start, end, width, lkup, reverse

For internal use.

Details

The internal reorganization of the object should be transparent to the user i.e. compact(x) should
"look" the same as x, or, more precisely, x and compact(x) should be interchangeable anywhere in
the user’s code. However, because they have different internal representations, we generally don’t
expect identical(x, compact(x)) to be TRUE, even though most of the times they will, because
there are only very few types of objects that compact actually knows how to reorganize internally.

compact is a generic function.

Here is how the default method works. By default compact(x) is obtained by compacting all
the "components" in x. Only 2 kinds of objects are considered to have "components": lists (the
components are the list elements), and S4 objects (the components are the slots). The other objects
are not considered to have components, so, by default, compact does nothing on them. In particular,
it does nothing on environments. Also the attributes of an object (other than the slots of an S4 object)
are not considered to be "components" and therefore are not compacted.

Note that, in the absence of specialized compact methods that actually know how to reorganize an
object internally, the default method would visit the tree of all the components, sub-components,
sub-sub-components etc of object x without actually modifying anything in x. So of course, spe-
cialized compact methods need to be defined for the objects that can *effectively* be compacted.
Otherwise the compact function would be equivalent to the identity function!

At the moment, 2 specialized compact methods are defined (in addition to the default method): one
for XVector objects, and one for XVectorList objects.

Value

An object equivalent to x but eventually smaller in memory.
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Author(s)

H. Pages

See Also

XVector-class, XVectorList-class, subseq, object.size, save

Examples

## We illustrate the use of compact() on an XInteger vector (XInteger
## is one of the 3 concrete subclasses of the XVector virtual class):
x <- XInteger(500000, sample(500000))

## subseq() does NOT copy the data stored in an XVector object:
y <- subseq(x, start=41, end=60)
x@shared
y@shared # same address
object.size(x)
object.size(y) # same size

## compact() copies the data, but only the data actually "used" by ’y’:
y0 <- compact(y)
y0@shared # new address
object.size(y0) # much smaller now!

## Compaction is particularly relevant when saving an object with
## external references like ’y’:
yfile <- file.path(tempdir(), "y.rda")
save(y, file=yfile)
file.info(yfile)$size

y0file <- file.path(tempdir(), "y0.rda")
save(y0, file=y0file)
file.info(y0file)$size

coverage Coverage across a set of ranges

Description

Counts the number of times a position is represented in a set of ranges.

Usage

coverage(x, shift=0L, width=NULL, weight=1L, ...)
## S4 method for signature ’RangesList’
coverage(x,

shift = structure(rep(list(0L), length(x)), names = names(x)),
width = structure(rep(list(NULL), length(x)), names = names(x)),
weight = structure(rep(list(1L), length(x)), names = names(x)),
method = c("sort", "hash"))
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Arguments

x An IRanges, Views, MaskCollection, RangesList, RangedData object, or any
object for which a coverage method is defined.

shift For most methods, an integer vector (recycled to the length of x) specifying
how each element in x should be (horizontally) shifted before the coverage is
computed. Only shifted indices in the range [1, width] will be included in the
coverage calculation. For RangesList and RangedData objects, a list or vector of
the same length as x to be used for the corresponding element in x. In addition
for RangedData objects, can also be a character vector of length 1 denoting the
column to use in values(x).

width For most methods, the length of the returned coverage vector. For RangesList
and RangedData objects, a list or vector of the same length as x to be used for
the corresponding element in x. In addition for RangedData objects, can also be
a character vector of length 1 denoting the column to use in values(x).
If width=NULL (the default), then the specific coverage method that is actu-
ally selected will choose the length of the returned vector "in a way that makes
sense".
For example, when width=NULL, the method for IRanges objects returns a vec-
tor that has just enough elements to have its last element aligned with the right-
most end of all the ranges in x after those ranges have been shifted (see the
shift argument above). This ensures that any longer coverage vector would be
a "padded with zeros" version of the vector returned when width=NULL.
When width=NULL, the method for Views objects returns a vector with length(subject(x))
elements.
When width=NULL, the method for MaskCollection objects returns a vector with
width(x) elements.

weight For most methods, an integer vector specifying how much each element in x
counts. For RangesList and RangedData objects, a list or vector of the same
length as x to be used for the corresponding element in x. For IRanges, Views,
MaskCollection and RangedData objects, this can also be a single string naming
a column in elementMetadata(x) (or in x for RangedData) to be used as the
weights.

method Settings method to hash is intended only for large x objects. If method is set to
the sort default, then x is sorted during the calculation of the coverage Rle. If
method is set to hash, then x is hashed to a vector of size width. Note that setting
method to hash saves time on large x vectors, but at the expense of additional
memory usage.

... Further arguments to be passed to or from other methods.

Value

For most methods, an Rle object representing the coverage of x. For RangesList and RangedData
objects, a SimpleRleList object representing a list of coverage vectors.

An integer value called the "coverage" can be associated to each position in x, indicating how many
times this position is covered by the elements contained in x. For example, if x is a Views object,
the coverage of a given position in subject(x) is the number of views it belongs to.

Author(s)

H. Pages and P. Aboyoun
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See Also

IRanges-class, Views-class, Rle-class, MaskCollection-class

Examples

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),
width=c( 5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))

coverage(x)
coverage(x, shift=7)
coverage(x, shift=7, width=27)
coverage(restrict(x, 1, 10))
coverage(reduce(x), shift=7)
coverage(gaps(shift(x, 7), start=1, end=27))

mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
coverage(mymasks)

DataFrame-class External Data Frame

Description

The DataFrame extends the DataTable virtual class and supports the storage of any type of object
(with length and [ methods) as columns.

Details

On the whole, the DataFrame behaves very similarly to data.frame, in terms of construction,
subsetting, splitting, combining, etc. The most notable exception is that the row names are optional.
This means calling rownames(x) will return NULL if there are no row names. Of course, it could
return seq_len(nrow(x)), but returning NULL informs, for example, combination functions that no
row names are desired (they are often a luxury when dealing with large data).

As DataFrame derives from Vector, it is possible to set an annotation string. Also, another
DataFrame can hold metadata on the columns.

For a class to be supported as a column, it must have length and [ methods, where [ sup-
ports subsetting only by i and respects drop=FALSE. Optionally, a method may be defined for
the showAsCell generic, which should return a vector of the same length as the subset of the col-
umn passed to it. This vector is then placed into a data.frame and converted to text with format.
Thus, each element of the vector should be some simple, usually character, representation of the
corresponding element in the column.

Accessors

In the following code snippets, x is a DataFrame.

dim(x): Get the length two integer vector indicating in the first and second element the number of
rows and columns, respectively.

dimnames(x), dimnames(x) <- value: Get and set the two element list containing the row
names (character vector of length nrow(x) or NULL) and the column names (character vec-
tor of length ncol(x)).
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Subsetting

In the following code snippets, x is a DataFrame.

x[i,j,drop]: Behaves very similarly to the [.data.frame method, except i can be a logical Rle
object and subsetting by matrix indices is not supported. Indices containing NA’s are also not
supported.

x[i,j] <- value: Behaves very similarly to the [<-.data.frame method.

x[[i]]: Behaves very similarly to the [[.data.frame method, except arguments j and exact
are not supported. Column name matching is always exact. Subsetting by matrices is not
supported.

x[[i]] <- value: Behaves very similarly to the [[<-.data.frame method, except argument j
is not supported.

Constructor

DataFrame(..., row.names = NULL): Constructs a DataFrame in similar fashion to data.frame.
Each argument in ... is coerced to a DataFrame and combined column-wise. No special ef-
fort is expended to automatically determine the row names from the arguments. The row
names should be given in row.names; otherwise, there are no row names. This is by design,
as row names are normally undesirable when data is large.
To store an object of a class that does not support coercion to DataFrame, wrap it in I(). The
class must still have methods for length and [.

Splitting and Combining

In the following code snippets, x is a DataFrame.

split(x, f, drop = FALSE): Splits x into a CompressedSplitDataFrameList, according to f,
dropping elements corresponding to unrepresented levels if drop is TRUE.

rbind(...): Creates a new DataFrame by combining the rows of the DataFrame objects in ....
Very similar to rbind.data.frame, except in the handling of row names. If all elements have
row names, they are concatenated and made unique. Otherwise, the result does not have row
names. Currently, factors are not handled well (their levels are dropped). This is not a high
priority until there is an XFactor class.

cbind(...): Creates a new DataFrame by combining the columns of the DataFrame objects in
.... Very similar to cbind.data.frame, except row names, if any, are dropped. Consider the
DataFrame as an alternative that allows one to specify row names.

Aggregation

In the following code snippets, data is a DataFrame.

aggregate(x, data, FUN, ..., subset, na.action = na.omit): Aggregates the
DataFrame data according to the formula x and the aggregating function FUN. See aggregate
and its method for formula.

Coercion

as(from, "DataFrame"): By default, constructs a new DataFrame with from as its only column.
If from is a matrix or data.frame, all of its columns become columns in the new DataFrame.
If from is a list, each element becomes a column, recycling as necessary. Note that for the
DataFrame to behave correctly, each column object must support element-wise subsetting via
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the [ method and return the number of elements with length. It is recommended to use the
DataFrame constructor, rather than this interface.

as.list(x): Coerces x, a DataFrame, to a list.

as.data.frame(x, row.names=NULL, optional=FALSE): Coerces x, a DataFrame, to a data.frame.
Each column is coerced to a data.frame and then column bound together. If row.names is
NULL, they are retrieved from x, if it has any. Otherwise, they are inferred by the data.frame
constructor.
NOTE: conversion of x to a data.frame is not supported if x contains any list, SimpleList,
or CompressedList columns.

as(from, "data.frame"): Coerces a DataFrame to a data.frame by calling as.data.frame(from).

as.matrix(x): Coerces the DataFrame to a matrix, if possible.

Author(s)

Michael Lawrence

See Also

DataTable, Vector, and RangedData, which makes heavy use of this class.

Examples

score <- c(1L, 3L, NA)
counts <- c(10L, 2L, NA)
row.names <- c("one", "two", "three")

df <- DataFrame(score) # single column
df[["score"]]
df <- DataFrame(score, row.names = row.names) #with row names
rownames(df)

df <- DataFrame(vals = score) # explicit naming
df[["vals"]]

# arrays
ary <- array(1:4, c(2,1,2))
sw <- DataFrame(I(ary))

# a data.frame
sw <- DataFrame(swiss)
as.data.frame(sw) # swiss, without row names
# now with row names
sw <- DataFrame(swiss, row.names = rownames(swiss))
as.data.frame(sw) # swiss

# subsetting

sw[] # identity subset
sw[,] # same

sw[NULL] # no columns
sw[,NULL] # no columns
sw[NULL,] # no rows

## select columns
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sw[1:3]
sw[,1:3] # same as above
sw[,"Fertility"]
sw[,c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE)]

## select rows and columns
sw[4:5, 1:3]

sw[1] # one-column DataFrame
## the same
sw[, 1, drop = FALSE]
sw[, 1] # a (unnamed) vector
sw[[1]] # the same
sw[["Fertility"]]

sw[["Fert"]] # should return ’NULL’

sw[1,] # a one-row DataFrame
sw[1,, drop=TRUE] # a list

## duplicate row, unique row names are created
sw[c(1, 1:2),]

## indexing by row names
sw["Courtelary",]
subsw <- sw[1:5,1:4]
subsw["C",] # partially matches

## row and column names
cn <- paste("X", seq_len(ncol(swiss)), sep = ".")
colnames(sw) <- cn
colnames(sw)
rn <- seq(nrow(sw))
rownames(sw) <- rn
rownames(sw)

## column replacement

df[["counts"]] <- counts
df[["counts"]]
df[[3]] <- score
df[["X"]]
df[[3]] <- NULL # deletion

## split

sw <- DataFrame(swiss)
swsplit <- split(sw, sw[["Education"]])

## rbind

do.call(rbind, as.list(swsplit))

## cbind

cbind(DataFrame(score), DataFrame(counts))
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DataFrameList-class List of DataFrames

Description

Represents a list of DataFrame objects. The SplitDataFrameList class contains the additional
restriction that all the columns be of the same name and type. Internally it is stored as a list of
DataFrame objects and extends List.

Accessors

In the following code snippets, x is a DataFrameList.

dim(x): Get the two element integer vector indicating the number of rows and columns over the
entire dataset.

dimnames(x): Get the list of two character vectors, the first holding the rownames (possibly NULL)
and the second the column names.

columnMetadata(x): Get the DataFrame of metadata along the columns, i.e., where each column
in x is represented by a row in the metadata. The metadata is common across all elements of
x. Note that calling elementMetadata(x) returns the metadata on the DataFrame elements
of x.

columnMetadata(x) <- value: Set the DataFrame of metadata for the columns.

Subsetting

In the following code snippets, x is a SplitDataFrameList. In general x follows the conventions
of SimpleList/CompressedList with the following addition:

x[i,j,drop]: If matrix subsetting is used, i selects either the list elements or the rows within the
list elements as determined by the [ method for SimpleList/CompressedList, j selects the
columns, and drop is used when one column is selected and output can be coerced into an
AtomicList or RangesList subclass.

x[i,j] <- value: If matrix subsetting is used, i selects either the list elements or the rows within
the list elements as determined by the [<- method for SimpleList/CompressedList, j selects
the columns and value is the replacement value for the selected region.

Constructor

DataFrameList(...): Concatenates the DataFrame objects in ... into a new DataFrameList.

SplitDataFrameList(..., compress = TRUE, cbindArgs = FALSE): If cbindArgs is
FALSE, the ... arguments are coerced to DataFrame objects and concatenated to form the re-
sult. The arguments must have the same number and names of columns. If cbindArgs is
TRUE, the arguments are combined as columns. The arguments must then be the same length,
with each element of an argument mapping to an element in the result. If compress = TRUE,
returns a CompressedSplitDataFrameList; else returns a SimpleSplitDataFrameList.
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Combining

In the following code snippets, objects in ... are of class DataFrameList.

rbind(...): Creates a new DataFrameList containing the element-by-element row concatena-
tion of the objects in ....

cbind(...): Creates a new DataFrameList containing the element-by-element column concate-
nation of the objects in ....

Coercion

In the following code snippets, x is a DataFrameList.

as(from, "DataFrame"): Coerces a DataFrameList to an DataFrame by combining the rows of
the elements. This essentially unsplits the DataFrame. Every element of x must have the same
columns.

as(from, "SplitDataFrameList"): By default, simply calls the SplitDataFrameList con-
structor on from. If from is a List, each element of from is passed as an argument to
SplitDataFrameList, like calling as.list on a vector.

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Unsplits the DataFrame and
coerces it to a data.frame, with the rownames specified in row.names. The optional argu-
ment is ignored.

stack(x, indName = "space"): Unlists x and adds a column named indName to the result,
indicating the element of x from which each row was obtained.

Author(s)

Michael Lawrence

See Also

DataFrame, RangedData, which uses a DataFrameList to split the data by the spaces.

DataTable-API The DataTable API

Description

DataTable is an API only (i.e. virtual class with no slots) for accessing objects with a rectangular
shape like DataFrame or RangedData objects. It mimics the API for standard data.frame objects.

Accessors

In the following code snippets, x is a DataTable.

nrow(x), ncol(x): Get the number of rows and columns, respectively.

NROW(x), NCOL(x): Same as nrow(x) and ncol(x), respectively.

dim(x): Length two integer vector defined as c(nrow(x), ncol(x)).

rownames(x), colnames(x): Get the names of the rows and columns, respectively.

dimnames(x): Length two list of character vectors defined as list(rownames(x), colnames(x)).
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Subsetting

In the code snippets below, x is a DataTable object.

x[i, j, drop=TRUE]: Return a new DataTable object made of the selected rows and columns.
For single column selection, the drop argument specifies whether or not to coerce the returned
sequence to a standard vector.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta = NULL, ...):
Extract the subsequence window from the DataTable object using:

start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value:
Replace the subsequence window specified on the left (i.e. the subsequence in x specified by
start, end and width) by value. value must either be of class class(x), belong to a sub-
class of class(x), be coercible to class(x), or be NULL. If keepLength is TRUE, the number
of rows of value are repeated to create a DataTable with the same number of rows as the
width of the subsequence window it is replacing. If keepLength is FALSE, this replacement
method can modify the number of rows of x, depending on how the number of rows of the left
subsequence window compares to the number of rows of value.

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except that multiple
subsequences can be requested. The requested subsequences are concatenated.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-, ex-
cept that multiple consecutive subsequences can be replaced by a value that spans those
windows.

head(x, n = 6L): If n is non-negative, returns the first n rows of the DataTable object. If n is
negative, returns all but the last abs(n) rows of the DataTable object.

tail(x, n = 6L): If n is non-negative, returns the last n rows of the DataTable object. If n is
negative, returns all but the first abs(n) rows of the DataTable object.

subset(x, subset, select, drop = FALSE): Return a new DataTable object using:

subset logical expression indicating rows to keep, where missing values are taken as FALSE.
select expression indicating columns to keep.
drop passed on to [ indexing operator.

na.omit(object): Returns a subset with incomplete cases removed.

na.exclude(object): Returns a subset with incomplete cases removed (but to be included with
NAs in statistical results).

is.na(x): Returns a logical matrix indicating which cells are missing.

complete.cases(x): Returns a logical vector identifying which cases have no missing values.

Combining

In the code snippets below, x is a DataTable object.

cbind(...): Creates a new DataTable by combining the columns of the DataTable objects in
....

rbind(...): Creates a new DataTable by combining the rows of the DataTable objects in ....

merge(x, y, ...): Merges two DataTable objects x and y, with arguments in ... being the
same as those allowed by the base merge. It is allowed for either x or y to be a data.frame.
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Looping

In the code snippets below, x is a DataTable object.

aggregate(x, by, FUN, start = NULL, end = NULL, width = NULL, frequency = NULL, delta = NULL, ..., simplify = TRUE):
Generates summaries on the specified windows and returns the result in a convenient form:

by An object with start, end, and width methods.
FUN The function, found via match.fun, to be applied to each window of x.
start, end, width the start, end, or width of the window. If by is missing, then must supply

two of the three.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.
. . . Further arguments for FUN.
simplify A logical value specifying whether or not the result should be simplified to a vector

or matrix if possible.

by(data, INDICES, FUN, ..., simplify = TRUE): Apply FUN to each group of data, a DataTable,
formed by the factor (or list of factors) INDICES. Exactly the same contract as as.data.frame.

Utilities

duplicated(x): Returns a logical vector indicating the rows that are identical to a previous row.

unique(x): Returns a new DataTable after removing the duplicated rows from x.

Coercion

as.env(x, enclos = parent.frame()): Creates an environment from x with a symbol for each
colnames(x). The values are not actually copied into the environment. Rather, they are
dynamically bound using makeActiveBinding. This prevents unnecessary copying of the
data from the external vectors into R vectors. The values are cached, so that the data is not
copied every time the symbol is accessed.

See Also

DataTable-stats for statistical functionality, like fitting regression models, data.frame

Examples

showClass("DataTable") # shows (some of) the known subclasses

DataTable-stats Statistical modeling with DataTable

Description

A number of wrappers are implemented for performing statistical procedures, such as model fitting,
with DataTable objects.

Tabulation

xtabs(formula = ~., data, subset, na.action, exclude = c(NA, NaN), drop.unused.levels = FALSE):
Like the original xtabs, except data is a DataTable.
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See Also

DataTable for general manipulation, DataFrame for an implementation that mimics data.frame.

Examples

df <- DataFrame(as.data.frame(UCBAdmissions))
xtabs(Freq ~ Gender + Admit, df)

disjoin Making Ranges disjoint

Description

Functions for making Ranges disjoint, where no ranges overlap another.

Usage

disjoin(x, ...)
disjointBins(x, ...)

Arguments

x The Ranges instance, possibly overlapping intervals.

... Additional arguments for methods

Details

The disjoin method returns a disjoint Ranges, by finding the union of the end points in x. In other
words, the result consists of a range for every interval, of maximal length, over which the set of
overlapping ranges in x is the same and at least of size 1.

disjointBins segregates x into a set of bins so that the ranges in each bin are disjoint. Lower-
indexed bins are filled first. The method returns an integer vector indicating the bin index for each
range.

Author(s)

M. Lawrence

See Also

reduce for making normal ranges, a subset of disjoint ranges, where there must be a gap of length
>= 1 between each range.

Examples

ir <- IRanges(c(1, 1, 4, 10), c(6, 3, 8, 10))
disjoin(ir) # IRanges(c(1, 4, 7, 10), c(3, 6, 8, 10))

disjointBins(IRanges(1, 5)) # 1L
disjointBins(IRanges(c(3, 1, 10), c(5, 12, 13))) # c(2L, 1L, 2L)
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encodeOverlaps Compute overlap encodings

Description

The encodeOverlaps function computes the overlap encodings between a query and a subject,
both list-like objects with top-level elements typically containing multiple ranges.

Usage

encodeOverlaps(query, subject, hits=NULL)

Arguments

query, subject List-like objects, usually of the same length, with top-level elements typically
containing multiple ranges (e.g. RangesList objects). If the 2 objects don’t have
the same length, and if hits is not supplied, then the shortest is recycled to the
length of the longest (the standard recycling rules apply).

hits An optional Hits object that is typically the result of a call to findOverlaps(query, subject).
Supplying hits is a convenient way to do encodeOverlaps(query[queryHits(hits)], subject[subjectHits(hits)]),
that is, calling encodeOverlaps(query, subject, hits) will perform the
above. In that case, query and subject are not expected to have the same
length anymore.

Details

See ?OverlapEncodings for a short introduction to "overlap encodings".

Value

An OverlapEncodings object with the length of query and subject for encodeOverlaps(query, subject),
or with the length of hits for encodeOverlaps(query, subject, hits).

Author(s)

H. Pages

See Also

OverlapEncodings, isCompatibleWithSplicing, Hits-class, findOverlaps, RangesList-class

Examples

## ---------------------------------------------------------------------
## A. BETWEEN 2 RangesList OBJECTS
## ---------------------------------------------------------------------
## In the context of an RNA-seq experiment, encoding the overlaps
## between 2 GRangesList objects, one containing the reads (the query),
## and one containing the transcripts (the subject), can be used for
## detecting hits between reads and transcripts that are "compatible"
## with the splicing of the transcript. Here we illustrate this with 2
## RangesList objects, in order to keep things simple:



20 endoapply

## 4 aligned reads in the query:
read1 <- IRanges(c(7, 15, 22), c(9, 19, 23)) # 2 gaps
read2 <- IRanges(c(5, 15), c(9, 17)) # 1 gap
read3 <- IRanges(c(16, 22), c(19, 24)) # 1 gap
read4 <- IRanges(c(16, 23), c(19, 24)) # 1 gap
query <- IRangesList(read1, read2, read3, read4)

## 1 transcript in the subject:
tx <- IRanges(c(1, 4, 15, 22, 38), c(2, 9, 19, 25, 47)) # 5 exons
subject <- IRangesList(tx)

## Encode the overlaps:
ovenc <- encodeOverlaps(query, subject)
ovenc
encoding(ovenc)

## Reads that are "compatible" with the transcript can be detected with
## a regular expression (the regular expression below assumes that
## reads have at most 2 gaps):
regex0 <- "(:[fgij]:|:[jg].:.[gf]:|:[jg]..:.g.:..[gf]:)"
grepl(regex0, encoding(ovenc)) # read4 is NOT "compatible"

## This was for illustration purpose only. In practise you don’t need
## (and should not) use this regular expression, but use instead the
## isCompatibleWithSplicing() utility function defined in the
## GenomicRanges package. See ’?isCompatibleWithSplicing’ in the
## GenomicRanges package for more information.

## ---------------------------------------------------------------------
## B. BETWEEN 2 GRangesList OBJECTS
## ---------------------------------------------------------------------
## With real RNA-seq data, the reads and transcripts will typically be
## stored in GRangesList objects. See ’?isCompatibleWithSplicing’ in the
## GenomicRanges package for more information.

endoapply Endomorphisms via application of a function over an object’s ele-
ments

Description

Performs the endomorphic equivalents of lapply and mapply by returning objects of the same class
as the inputs rather than a list.

Usage

endoapply(X, FUN, ...)

mendoapply(FUN, ..., MoreArgs = NULL)
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Arguments

X a list, data.frame or List object.

FUN the function to be applied to each element of X (for endoapply) or for the ele-
ments in ... (for mendoapply).

... For endoapply, optional arguments to FUN. For mendoapply, a set of list, data.frame
or List objects to compute over.

MoreArgs a list of other arguments to FUN.

Value

endoapply returns an object of the same class as X, each element of which is the result of applying
FUN to the corresponding element of X.

mendoapply returns an object of the same class as the first object specified in ..., each element of
which is the result of applying FUN to the corresponding elements of ....

See Also

lapply, mapply

Examples

a <- data.frame(x = 1:10, y = rnorm(10))
b <- data.frame(x = 1:10, y = rnorm(10))

endoapply(a, function(x) (x - mean(x))/sd(x))
mendoapply(function(e1, e2) (e1 - mean(e1)) * (e2 - mean(e2)), a, b)

FilterRules-class Collection of Filter Rules

Description

A FilterRules object is a collection of filter rules, which can be either expression or function
objects. Rules can be disabled/enabled individually, facilitating experimenting with different com-
binations of filters.

Details

It is common to split a dataset into subsets during data analysis. When data is large, however,
representing subsets (e.g. by logical vectors) and storing them as copies might become too costly
in terms of space. The FilterRules class represents subsets as lightweight expression and/or
function objects. Subsets can then be calculated when needed (on the fly). This avoids copying
and storing a large number of subsets. Although it might take longer to frequently recalculate a
subset, it often is a relatively fast operation and the space savings tend to be more than worth it
when data is large.

Rules may be either expressions or functions. Evaluating an expression or invoking a function
should result in a logical vector. Expressions are often more convenient, but functions (i.e. closures)
are generally safer and more powerful, because the user can specify the enclosing environment. If
a rule is an expression, it is evaluated inside the envir argument to the eval method (see below).
If a function, it is invoked with envir as its only argument. See examples.
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Accessor methods

In the code snippets below, x is a RangedData object.

active(x): Get the logical vector of length length(x), where TRUE for an element indicates that
the corresponding rule in x is active (and inactive otherwise). Note that names(active(x))
is equal to names(x).

active(x) <- value: Replace the active state of the filter rules. If value is a logical vector, it
should be of length length(x) and indicate which rules are active. Otherwise, it can be either
numeric or character vector, in which case it sets the indicated rules (after dropping NA’s) to
active and all others to inactive. See examples.

Constructor

FilterRules(exprs = list(), ..., active = TRUE): Constructs a FilterRules with the
rules given in the list exprs or in .... The initial active state of the rules is given by active,
which is recycled as necessary. Elements in exprs may be either character (parsed into an
expression), a language object (coerced to an expression), an expression, or a function that
takes at least one argument. IMPORTANTLY, all arguments in ... are quote()’d and then
coerced to an expression. So, for example, character data is only parsed if it is a literal. The
names of the filters are taken from the names of exprs and ..., if given. Otherwise, the char-
acter vectors take themselves as their name and the others are deparsed (before any coercion).
Thus, it is recommended to always specify meaningful names. In any case, the names are
made valid and unique.

Subsetting and Replacement

In the code snippets below, x is a FilterRules object.

x[i]: Subsets the filter rules using the same interface as for Vector.

x[[i]]: Extracts an expression or function via the same interface as for List.

x[[i]] <- value: The same interface as for List. The default active state for new rules is TRUE.

Combining

In the code snippets below, x is a FilterRules object.

append(x, values, after = length(x)): Appends the values FilterRules instance onto x
at the index given by after.

c(x, ..., recursive = FALSE): Concatenates the FilterRule instances in ... onto the end
of x.

Evaluating

eval(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir))
parent.frame() else baseenv()): Evaluates a FilterRules instance (passed as the expr
argument). Expression rules are evaluated in envir, while function rules are invoked with
envir as their only argument. The evaluation of a rule should yield a logical vector. The
results from the rule evaluations are combined via the AND operation (i.e. &) so that a single
logical vector is returned from eval.
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evalSeparately(expr, envir = parent.frame(), enclos = if (is.list(envir) || is.pairlist(envir)) parent.frame() else
baseenv()): Evaluates separately each rule in a FilterRules instance (passed as the expr
argument). Expression rules are evaluated in envir, while function rules are invoked with
envir as their only argument. The evaluation of a rule should yield a logical vector. The
results from the rule evaluations are combined into a logical matrix, with a column for each
rule. This is essentially the parallel evaluator, while eval is the serial evaluator.

subsetByFilter(x, filter): Evaluates filter on x and uses the result to subset x. The result
contains only the elements in x for which filter evaluates to TRUE.

summary(object, subject): Returns an integer vector with the number of elements in subject
that pass each rule in object, along with a count of the elements that pass all filters.

Author(s)

Michael Lawrence

See Also

rdapply, which accepts a FilterRules instance to filter each space before invoking the user func-
tion.

Examples

## constructing a FilterRules instance

## an empty set of filters
filters <- FilterRules()

## as a simple character vector
filts <- c("peaks", "promoters")
filters <- FilterRules(filts)
active(filters) # all TRUE

## with functions and expressions
filts <- list(peaks = expression(peaks), promoters = expression(promoters),

find_eboxes = function(rd) rep(FALSE, nrow(rd)))
filters <- FilterRules(filts, active = FALSE)
active(filters) # all FALSE

## direct, quoted args (character literal parsed)
filters <- FilterRules(under_peaks = peaks, in_promoters = "promoters")
filts <- list(under_peaks = expression(peaks),

in_promoters = expression(promoters))

## specify both exprs and additional args
filters <- FilterRules(filts, diffexp = de)

filts <- c("peaks", "promoters", "introns")
filters <- FilterRules(filts)

## set the active state directly

active(filters) <- FALSE # all FALSE
active(filters) <- TRUE # all TRUE
active(filters) <- c(FALSE, FALSE, TRUE)
active(filters)["promoters"] <- TRUE # use a filter name
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## toggle the active state by name or index

active(filters) <- c(NA, 2) # NA’s are dropped
active(filters) <- c("peaks", NA)

GappedRanges-class GappedRanges objects

Description

The GappedRanges class is a vector-like container for storing a set of "gapped ranges".

Details

A "gapped range" is conceptually the union of 1 or more non-overlapping (and non-empty) ranges
ordered from left to right. More precisely, a "gapped range" can be represented by a normal IRanges
object of length >= 1. In particular normality here ensures that the individual ranges are non-empty
and are separated by non-empty gaps. The start of a "gapped range" is the start of its first range.
The end of a "gapped range" is the end of its last range. If we ignore the gaps, then a GappedRanges
object can be seen as a Ranges object.

Constructor

No constructor function is provided for GappedRanges objects. The coercion methods described
below can be used to create GappedRanges objects.

Coercion

as(from, "GappedRanges"): Turns a CompressedNormalIRangesList or CompressedIRanges-
List object into a GappedRanges object.

as(from, "RangesList"): Turns a GappedRanges object into a RangesList object (more pre-
cisely the result will be a CompressedNormalIRangesList object).

Accessor methods

In the code snippets below, x is a GappedRanges object.

length(x): Returns the number of "gapped ranges" in x.

start(x), end(x): Returns an integer vector of length length(x) containing the start and end
(respectively) of each "gapped range" in x. See Details section above for the exact definitions
of the start and end of a "gapped range".

width(x): Defined as end(x) - start(x) + 1L.

ngap(x): Returns an integer vector of length length(x) containing the number of gaps for each
"gapped range" in x. Equivalent to elementLengths(x) - 1L.

names(x): NULL or a character vector of length length(x).
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Subsetting and related operations

In the code snippets below, x is a GappedRanges object.

x[i]: Returns a new GappedRanges object made of the selected "gapped ranges". i can be a
numeric, character or logical vector, or any of the types supported by the [ method for Com-
pressedNormalIRangesList objects.

x[[i]]: Returns the NormalIRanges object representing the i-th element in x. Equivalent to
as(from, "RangesList")[[i]]. i can be a single numeric value or a single character string.

elemenType(x): Returns the type of x[[i]] as a single string (always "NormalIRanges"). Note
that the semantic of the [[ method for GappedRanges objects is different from the semantic
of the method for Ranges objects (the latter returns an integer vector).

elementLengths(x): Semantically equivalent to

sapply(seq_len(length(x)), function(i) length(x[[i]]))

but much faster. Note that the semantic of the elementLengths method for GappedRanges
objects is different from the semantic of the method for Ranges objects (the latter returns the
width of the Ranges object).

Combining and related operations

In the code snippets below, x is a GappedRanges object.

c(x, ...): Combine x and the GappedRanges objects in ... together. The result is an object of
the same class as x.

Author(s)

H. Pages

See Also

Ranges-class, CompressedNormalIRangesList-class

Examples

## The 3 following IRanges objects are normal. Each of them will be
## stored as a "gapped range" in the GappedRanges object ’gr’.
ir1 <- IRanges(start=c(11, 21, 23), end=c(15, 21, 30))
ir2 <- IRanges(start=-2, end=15)
ir3 <- IRanges(start=c(-2, 21), end=c(10, 22))
irl <- IRangesList(ir1, ir2, ir3)

gr <- as(irl, "GappedRanges")
gr

length(gr)
start(gr)
end(gr)
width(gr)
ngap(gr)
gr[-1]
gr[ngap(gr) >= 1]
gr[[1]]
as.integer(gr[[1]])
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gr[[2]]
as.integer(gr[[2]])
as(gr, "RangesList")
start(as(gr, "RangesList")) # not the same as ’start(gr)’

Grouping-class Grouping objects

Description

In this man page, we call "grouping" the action of dividing a collection of NO objects into NG
groups (some of which may be empty). The Grouping class and subclasses are containers for
representing groupings.

The Grouping core API

Let’s give a formal description of the Grouping core API:

Groups G_i are indexed from 1 to NG (1 <= i <= NG).

Objects O_j are indexed from 1 to NO (1 <= j <= NO).

Every object must belong to one group and only one.

Given that empty groups are allowed, NG can be greater than NO.

Grouping an empty collection of objects (NO = 0) is supported. In that case, all the groups are
empty. And only in that case, NG can be zero too (meaning there are no groups).

If x is a Grouping object:

length(x): Returns the number of groups (NG).

names(x): Returns the names of the groups.

nobj(x): Returns the number of objects (NO). Equivalent to length(togroup(x)).

Going from groups to objects:

x[[i]]: Returns the indices of the objects (the j’s) that belong to G_i. The j’s are returned in
ascending order. This provides the mapping from groups to objects (one-to-many mapping).

grouplength(x, i=NULL): Returns the number of objects in G_i. Works in a vectorized fashion
(unlike x[[i]]). grouplength(x) is equivalent to grouplength(x, seq_len(length(x))).
If i is not NULL, grouplength(x, i) is equivalent to sapply(i, function(ii) length(x[[ii]])).

members(x, i): Equivalent to x[[i]] if i is a single integer. Otherwise, if i is an integer vector
of arbitrary length, it’s equivalent to sort(unlist(sapply(i, function(ii) x[[ii]]))).

vmembers(x, L): A version of members that works in a vectorized fashion with respect to the L ar-
gument (L must be a list of integer vectors). Returns lapply(L, function(i) members(x, i)).

Going from objects to groups:

togroup(x, j=NULL): Returns the index i of the group that O_j belongs to. This provides the
mapping from objects to groups (many-to-one mapping). Works in a vectorized fashion.
togroup(x) is equivalent to togroup(x, seq_len(nobj(x))): both return the entire map-
ping in an integer vector of length NO. If j is not NULL, togroup(x, j) is equivalent to
y <- togroup(x); y[j].

tofactor(x): Like togroup, except a factor is formed with the level set defined as seq_len(length(x)).
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togrouplength(x, j=NULL): Returns the number of objects that belong to the same group as O_j
(including O_j itself). Equivalent to grouplength(x, togroup(x, j)).

Given that length, names and [[ are defined for Grouping objects, those objects can be considered
List objects. In particular, as.list works out-of-the-box on them.

One important property of any Grouping object x is that unlist(as.list(x)) is always a per-
mutation of seq_len(nobj(x)). This is a direct consequence of the fact that every object in the
grouping belongs to one group and only one.

The H2LGrouping and Dups subclasses

DOCUMENT ME

The Partitioning subclass

A Partitioning container represents a block-grouping, i.e. a grouping where each group contains
objects that are neighbors in the original collection of objects. More formally, a grouping x is a
block-grouping iff togroup(x) is sorted in increasing order (not necessarily strictly increasing).

A block-grouping object can also be seen (and manipulated) as a Ranges object where all the ranges
are adjacent starting at 1 (i.e. it covers the 1:NO interval with no overlap between the ranges).

Note that a Partitioning object is both: a particular type of Grouping object and a particular type of
Ranges object. Therefore all the methods that are defined for Grouping and Ranges objects can also
be used on a Partitioning object. See ?Ranges for a description of the Ranges API.

The Partitioning class is virtual with 2 concrete subclasses: PartitioningByEnd (only stores the end
of the groups, allowing fast mapping from groups to objects), and PartitioningByWidth (only stores
the width of the groups).

Constructors

H2LGrouping(high2low=integer()): [DOCUMENT ME]

Dups(high2low=integer()): [DOCUMENT ME]

PartitioningByEnd(end=integer(), names=NULL): Return the PartitioningByEnd object made
of the partitions ending at the values specified by end. end must contain sorted non-negative
integer values. If the names argument is non NULL, it is used to name the partitions.

PartitioningByWidth(width=integer(), names=NULL): Return the PartitioningByWidth ob-
ject made of the partitions with the widths specified by width. width must contain non-
negative integer values. If the names argument is non NULL, it is used to name the partitions.

Note that these constructors don’t recycle their names argument (to remain consistent with what
‘names<-‘ does on standard vectors).

Author(s)

H. Pages and P. Aboyoun

See Also

List-class, Ranges-class, IRanges-class, successiveIRanges, cumsum, diff
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Examples

showClass("Grouping") # shows (some of) the known subclasses

## ---------------------------------------------------------------------
## A. H2LGrouping OBJECTS
## ---------------------------------------------------------------------
high2low <- c(NA, NA, 2, 2, NA, NA, NA, 6, NA, 1, 2, NA, 6, NA, NA, 2)
x <- H2LGrouping(high2low)
x

## The Grouping core API:
length(x)
nobj(x) # same as ’length(x)’ for H2LGrouping objects
x[[1]]
x[[2]]
x[[3]]
x[[4]]
x[[5]]
grouplength(x) # same as ’unname(sapply(x, length))’
grouplength(x, 5:2)
members(x, 5:2) # all the members are put together and sorted
togroup(x)
togroup(x, 5:2)
togrouplength(x) # same as ’grouplength(x, togroup(x))’
togrouplength(x, 5:2)

## The List API:
as.list(x)
sapply(x, length)

## ---------------------------------------------------------------------
## B. Dups OBJECTS
## ---------------------------------------------------------------------
x_dups <- as(x, "Dups")
x_dups
duplicated(x_dups) # same as ’duplicated(togroup(x_dups))’

### The purpose of a Dups object is to describe the groups of duplicated
### elements in a vector-like object:
x <- c(2, 77, 4, 4, 7, 2, 8, 8, 4, 99)
x_high2low <- high2low(x)
x_high2low # same length as ’x’
x_dups <- Dups(x_high2low)
x_dups
togroup(x_dups)
duplicated(x_dups)
togrouplength(x_dups) # frequency for each element
table(x)

## ---------------------------------------------------------------------
## C. Partitioning OBJECTS
## ---------------------------------------------------------------------
x <- PartitioningByEnd(end=c(4, 7, 7, 8, 15), names=LETTERS[1:5])
x # the 3rd partition is empty

## The Grouping core API:
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length(x)
nobj(x)
x[[1]]
x[[2]]
x[[3]]
grouplength(x) # same as ’unname(sapply(x, length))’ and ’width(x)’
togroup(x)
togrouplength(x) # same as ’grouplength(x, togroup(x))’
names(x)

## The Ranges core API:
start(x)
end(x)
width(x)

## The List API:
as.list(x)
sapply(x, length)

## Replacing the names:
names(x)[3] <- "empty partition"
x

## Coercion to an IRanges object:
as(x, "IRanges")

## Other examples:
PartitioningByEnd(end=c(0, 0, 19), names=LETTERS[1:3])
PartitioningByEnd() # no partition
PartitioningByEnd(end=integer(9)) # all partitions are empty

## ---------------------------------------------------------------------
## D. RELATIONSHIP BETWEEN Partitioning OBJECTS AND successiveIRanges()
## ---------------------------------------------------------------------
mywidths <- c(4, 3, 0, 1, 7)

## The 3 following calls produce the same ranges:
x1 <- successiveIRanges(mywidths) # IRanges instance.
x2 <- PartitioningByEnd(end=cumsum(mywidths)) # PartitioningByEnd instance.
x3 <- PartitioningByWidth(width=mywidths) # PartitioningByWidth instance.
stopifnot(identical(as(x1, "PartitioningByEnd"), x2))
stopifnot(identical(as(x1, "PartitioningByWidth"), x3))

Hits-class Set of hits between 2 vector-like objects

Description

The Hits class stores a set of "hits" between the elements in one vector-like object (called the
"query") and the elements in another (called the "subject"). Currently, Hits are used to represent
the result of a call to findOverlaps, though other operations producing "hits" are imaginable.
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Details

The as.matrix and as.data.frame methods coerce a Hits object to a two column matrix or
data.frame with one row for each hit, where the value in the first column is the index of an element
in the query and the value in the second column is the index of an element in the subject.

The as.table method counts the number of hits for each query element and outputs the counts as
a table.

To transpose a Hits x, so that the subject and query are interchanged, call t(x). This allows, for
example, counting the number of hits for each subject element using as.table.

When the Hits object is the result of a call to findOverlaps, the actual regions of intersection
between the overlapping ranges can be obtained with the ranges accessor.

Coercion

In the code snippets below, x is a Hits object.

as.matrix(x): Coerces x to a two column integer matrix, with each row representing a hit be-
tween a query index (first column) and subject index (second column).

as(from, "DataFrame"): Creates a DataFrame by combining the the result of as.matrix(from)
with elementMetadata(from).

as.data.frame(x): Attempts to coerce the result of as(from, "DataFrame") to a data.frame.
as.table(x): counts the number of hits for each query element in x and outputs the counts as a

table.
t(x): Interchange the query and subject in x, returns a transposed Hits.
as.list(x): Returns a list with an element for each query, where each element contains the

indices of the subjects that have a hit with the corresponding query.
as(x, "List"): Like as.list, above.

Extraction

x[i]: Extracts a subset of the hits. The index argument i may be logical or numeric. If numeric,
be sure that i does not contain any duplicates, which would violate the set property of Hits.

Accessors

queryHits(x): Equivalent to as.data.frame(x)[[1]].
subjectHits(x): Equivalent to as.data.frame(x)[[2]].
ranges(x, query, subject): returns a Ranges holding the intersection of the ranges in the

Ranges objects query and subject, which should be the same subject and query used in
the call to findOverlaps that generated x. Eventually, we might store the query and subject
inside x, in which case the arguments would be redundant.

length(x): get the number of hits
queryLength(x), nrow(x): get the number of elements in the query
subjectLength(x), ncol(x): get the number of elements in the subject
dim(x): get a two-element integer vector, essentially c(nrow(x), ncol(x)).

Set Operations

A Hits object is a set of matchings, each from a query index to a subject index. The basic set
operation API has been implemented to treat Hits in this manner. This includes %in%, intersect,
union, and setdiff.
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Author(s)

Michael Lawrence

See Also

findOverlaps, which generates an instance of this class.

Examples

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
tree <- IntervalTree(subject)
matchings <- findOverlaps(query, tree)

as.matrix(matchings)
as.data.frame(matchings)

as.table(matchings) # hits per query
as.table(t(matchings)) # hits per subject

HitsList-class List of Hits objects

Description

The HitsList class stores a set of Hits objects. It’s typically used to represent the result of
findOverlaps on two RangesList objects.

Details

Roughly the same set of utilities are provided for HitsList as for Hits:

The as.matrix method coerces a HitsList in a similar way to Hits, except a column is prepended
that indicates which space (or element in the query RangesList) to which the row corresponds.

The as.table method flattens or unlists the list, counts the number of hits for each query range and
outputs the counts as a table, which has the same shape as from a single Hits object.

To transpose a HitsList x, so that the subject and query in each space are interchanged, call t(x).
This allows, for example, counting the number of hits for each subject element using as.table.

When the HitsList object is the result of a call to findOverlaps on two RangesList objects, the
actual regions of intersection between the overlapping ranges can be obtained with the ranges
accessor.

Coercion

In the code snippets below, x is a HitsList object.

as.matrix(x): calls as.matrix on each Hits, combines them row-wise and offsets the indices
so that they are aligned with the result of calling unlist on the query and subject.

as.table(x): counts the number of hits for each query element in x and outputs the counts as a
table, which is aligned with the result of calling unlist on the query.

t(x): Interchange the query and subject in each space of x, returns a transposed HitsList.
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Accessors

queryHits(x): Equivalent to unname(as.matrix(x)[,1]).

subjectHits(x): Equivalent to unname(as.matrix(x)[,2]).

space(x): gets the character vector naming the space in the query RangesList for each hit, or
NULL if the query did not have any names.

ranges(x, query, subject): returns a RangesList holding the intersection of the ranges in the
RangesList objects query and subject, which should be the same subject and query used in
the call to findOverlaps that generated x. Eventually, we might store the query and subject
inside x, in which case the arguments would be redundant.

Note

This class is highly experimental. It has not been well tested and may disappear at any time.

Author(s)

Michael Lawrence

See Also

findOverlaps, which generates an instance of this class.

IntervalTree-class Interval Search Trees

Description

Efficiently perform overlap queries with an interval tree.

Details

A common type of query that arises when working with intervals is finding which intervals in one
set overlap those in another. An efficient family of algorithms for answering such queries is known
as the Interval Tree. This implementation makes use of the augmented tree algorithm from the
reference below, but heavily adapts it for the use case of large, sorted query sets.

The simplest approach is to call the findOverlaps function on a Ranges or other object with range
information, as described in the following section.

An IntervalTree object is a derivative of Ranges and stores its ranges as a tree that is optimized
for overlap queries. Thus, for repeated queries against the same subject, it is more efficient to create
an IntervalTree once for the subject using the constructor described below and then perform the
queries against the IntervalTree instance.

Finding Overlaps

This main purpose of the interval tree is to optimize the search for ranges overlapping those in a
query set. The interface for this operation is the findOverlaps function.
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findOverlaps(query, subject = query, maxgap = 0L, minoverlap = 1L, type = c("any", "start", "end", "within", "equal"), select = c("all", "first", "last", "arbitrary"), drop = FALSE, ignoreSelf = FALSE, ignoreRedundant = FALSE):
Find the intervals in query, a Ranges, RangesList, RangedData, or integer vector (to be
converted to length-one ranges), that overlap with the intervals subject, a Ranges, RangesList,
or RangedData. If query is unsorted, it is sorted first, so it is usually better to sort up-front, to
avoid a sort with each findOverlaps call.
If subject is omitted, query is queried against itself. In this case, and only this case, the
ignoreSelf and ignoreRedundant arguments are allowed. By default, the result will contain
hits for each range against itself, and if there is a hit from A to B, there is also a hit for B to A.
If ignoreSelf is TRUE, all self matches are dropped. If ignoreRedundant is TRUE, only one
of A->B and B->A is returned.
Intervals with a separation of maxgap or less and a minimum of minoverlap overlapping
positions, allowing for maxgap, are considered to be overlapping. maxgap should be a scalar,
non-negative, integer. minoverlap should be a scalar, positive integer.
When select is "all", the results are returned as a Hits object. When select is "first",
"last", or "arbitrary" the results are returned as an integer vector of length query contain-
ing the first, last, or arbitrary overlapping interval in subject, with NA indicating intervals that
did not overlap any intervals in subject.
If query is a RangesList or RangedData, subject must be a RangesList or RangedData.
If both lists have names, each element from the subject is paired with the element from the
query with the matching name, if any. Otherwise, elements are paired by position. The over-
lap is then computed between the pairs as described above. If select is "all", a Hits
is returned. For all other select the return value depends on the drop argument. When
select != "all" && !drop, an IntegerList is returned, where each element of the re-
sult corresponds to a space in query. Whenselect != "all" && drop, an integer vector is
returned containing indices that are offset to align with the unlisted query.
By default, any overlap is accepted. By specifying the type parameter, one can select for
specific types of overlap. The types correspond to operations in Allen’s Interval Algebra (see
references). If type is start or end, the intervals are required to have matching starts or ends,
respectively. While this operation seems trivial, the naive implementation using outer would
be much less efficient. Specifying equal as the type returns the intersection of the start
and end matches. If type is within, the query interval must be wholly contained within the
subject interval. Note that all matches must additionally satisfy the minoverlap constraint
described above.
The maxgap parameter has special meaning with the special overlap types. For start, end,
and equal, it specifies the maximum difference in the starts, ends or both, respectively. For
within, it is the maximum amount by which the query may be wider than the subject.

countOverlaps(query, subject, maxgap = 0L, minoverlap = 1L, type = c("any", "start", "end", "within", "equal")):
Returns the overlap hit count for each range in query using the specified findOverlaps pa-
rameters. Both query and subject should be Ranges, RangesList or RangedData objects.

subsetByOverlaps(query, subject, maxgap = 0L, minoverlap = 1L, type = c("any", "start", "end", "within", "equal")):
Returns the subset of query that has an overlap hit with a range in subject using the speci-
fied findOverlaps parameters. Both query and subject should be Ranges, RangesList or
RangedData objects.

x %in% table: Shortcut for finding the ranges in x that overlap any of the ranges in table. Both
x and table should be Ranges, RangesList or RangedData objects. For Ranges objects,
the result is a logical vector of length equal to the number of ranges in x. For RangesList
and RangedData objects, the result is a LogicalList object, where each element of the result
corresponds to a space in x.

match(x, table, nomatch = NA_integer_, incomparables = NULL): Returns an
integer vector of length length(x), containing the index of the first overlapping range in
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table for each range in x. If a range in x does not overlap any ranges in table, its value is
nomatch. The x and table arguments should either be both Ranges objects or both RangesList
objects, in which case the indices are into the unlisted table. The incomparables argument
is currently ignored.

Constructor

IntervalTree(ranges): Creates an IntervalTree from the ranges in ranges, an object coercible to
IntervalTree, such as an IRanges object.

Coercion

as(from, "IRanges"): Imports the ranges in from, an IntervalTree, to an IRanges.

as(from, "IntervalTree"): Constructs an IntervalTree representing from, a Ranges object
that is coercible to IRanges.

Accessors

length(x): Gets the number of ranges stored in the tree. This is a fast operation that does not
bring the ranges into R.

start(x): Get the starts of the ranges.

end(x): Get the ends of the ranges.

Notes on Time Complexity

The cost of constructing an instance of the interval tree is a O(n*lg(n)), which makes it about as
fast as other types of overlap query algorithms based on sorting. The good news is that the tree
need only be built once per subject; this is useful in situations of frequent querying. Also, in this
implementation the data is stored outside of R, avoiding needless copying. Of course, external
storage is not always convenient, so it is possible to coerce the tree to an instance of IRanges (see
the Coercion section).

For the query operation, the running time is based on the query size m and the average number of
hits per query k. The output size is then max(mk,m), but we abbreviate this as mk. Note that when
the multiple parameter is set to FALSE, k is fixed to 1 and drops out of this analysis. We also
assume here that the query is sorted by start position (the findOverlaps function sorts the query if
it is unsorted).

An upper bound for finding overlaps is O(min(mk*lg(n),n+mk)). The fastest interval tree algo-
rithm known is bounded by O(min(m*lg(n),n)+mk) but is a lot more complicated and involves two
auxillary trees. The lower bound is Omega(lg(n)+mk), which is almost the same as for returning
the answer, Omega(mk). The average is of course somewhere in between.

This analysis informs the choice of which set of ranges to process into a tree, i.e. assigning one to be
the subject and the other to be the query. Note that if m > n, then the running time is O(m), and the
total operation of complexity O(n*lg(n) + m) is better than if m and n were exchanged. Thus,
for once-off operations, it is often most efficient to choose the smaller set to become the tree (but k
also affects this). This is reinforced by the realization that if mk is about the same in either direction,
the running time depends only on n, which should be minimized. Even in cases where a tree has
already been constructed for one of the sets, it can be more efficient to build a new tree when the
existing tree of size n is much larger than the query set of size m, roughly when n > m*lg(n).

Author(s)

Michael Lawrence
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References

Interval tree algorithm from: Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein,
Clifford. Introduction to Algorithms, second edition, MIT Press and McGraw-Hill. ISBN 0-262-
53196-8

Allen’s Interval Algebra: James F. Allen: Maintaining knowledge about temporal intervals. In:
Communications of the ACM. 26/11/1983. ACM Press. S. 832-843, ISSN 0001-0782

See Also

Ranges, the parent of this class, Hits, set of hits between 2 vector-like objects.

Examples

query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2, 10), c(2, 3, 12))
tree <- IntervalTree(subject)

## at most one hit per query
findOverlaps(query, tree, select = "first")
findOverlaps(query, tree, select = "last")
findOverlaps(query, tree, select = "arbitrary")

## allow multiple hits
findOverlaps(query, tree)

## overlap as long as distance <= 1
findOverlaps(query, tree, maxgap = 1L)

## shortcut
findOverlaps(query, subject)

## query and subject are easily interchangeable
query <- IRanges(c(1, 4, 9), c(5, 7, 10))
subject <- IRanges(c(2, 2), c(5, 4))
tree <- IntervalTree(subject)
t(findOverlaps(query, tree))
# the same as:
findOverlaps(subject, query)

## one Ranges with itself
findOverlaps(query)

## single points as query
subject <- IRanges(c(1, 6, 13), c(4, 9, 14))
findOverlaps(c(3L, 7L, 10L), subject, select = "first")

## alternative overlap types
query <- IRanges(c(1, 5, 3, 4), width=c(2, 2, 4, 6))
subject <- IRanges(c(1, 3, 5, 6), width=c(4, 4, 5, 4))

findOverlaps(query, tree, type = "start")
findOverlaps(query, tree, type = "start", maxgap = 1L)
findOverlaps(query, tree, type = "end", select = "first")
findOverlaps(query, tree, type = "within", maxgap = 1L)
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IRanges-class IRanges and NormalIRanges objects

Description

The IRanges class is a simple implementation of the Ranges container where 2 integer vectors of
the same length are used to store the start and width values. See the Ranges virtual class for a formal
definition of Ranges objects and for their methods (all of them should work for IRanges objects).

Some subclasses of the IRanges class are: NormalIRanges, Views, etc...

A NormalIRanges object is just an IRanges object that is guaranteed to be "normal". See the Nor-
mality section in the man page for Ranges objects for the definition and properties of "normal"
Ranges objects.

Constructor

See ?‘IRanges-constructor‘.

Coercion

as(from, "IRanges"): Creates an IRanges instance from a Ranges object, logical vector, or
integer vector. When from is a logical vector, the resulting IRanges object contains the indices
for the runs of TRUE values. When from is an integer vector, the elements are either singletons
or "increase by 1" sequences.

as(from, "NormalIRanges"): Creates a NormalIRanges instance from a logical or integer vec-
tor. When from is an integer vector, the elements must be strictly increasing.

Combining

c(x, ..., .ignoreElementMetadata=TRUE) Combining IRanges objects is straightforward when
they do not have any elementMetadata set. If only one of the IRanges object has its
elementMetadata set, this is also trivial: the resulting (combined) IRanges object will take
the single elementMetadata as the default, and set the corresponding elementMetadata for
the other IRanges object to NA. When multiple IRanges object have their own elementMetadata,
the user must ensure that each such linkS4class{DataFrame} have identical layouts to each
other (same columns defined), in order for the combination to be successful, otherwise an error
will be thrown. The user can call c(x, ..., .ignoreElementMetadata=TRUE) in order to
combine IRanges objects with differing elementMetadata, which will result in the combined
object having NO elementMetadata defined.

Methods for NormalIRanges objects

max(x): The maximum value in the finite set of integers represented by x.

min(x): The minimum value in the finite set of integers represented by x.

Author(s)

H. Pages
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See Also

Ranges-class, Ranges-utils, IRanges-constructor, IRanges-utils, IRanges-setops.

Some direct subclasses of the IRanges class (other than NormalIRanges): Views-class.

Examples

showClass("IRanges") # shows (some of) the known subclasses

## ---------------------------------------------------------------------
## A. MANIPULATING IRanges OBJECTS
## ---------------------------------------------------------------------
## All the methods defined for Ranges objects work on IRanges objects.
## See ?Ranges for some examples.
## Also see ?‘IRanges-utils‘ and ?‘IRanges-setops‘ for additional
## operations on IRanges objects.

## Combining IRanges objects
ir1 <- IRanges(c(1, 10, 20), width=5)
elementMetadata(ir1) <- DataFrame(score=runif(3))
ir2 <- IRanges(c(101, 110, 120), width=10)
elementMetadata(ir2) <- DataFrame(score=runif(3))
ir3 <- IRanges(c(1001, 1010, 1020), width=20)
elementMetadata(ir3) <- DataFrame(value=runif(3))
some.iranges <- c(ir1, ir2)
## all.iranges <- c(ir1, ir2, ir3) ## This will raise an error
all.iranges <- c(ir1, ir2, ir3, .ignoreElementMetadata=TRUE)
stopifnot(is.null(elementMetadata(all.iranges)))

## ---------------------------------------------------------------------
## B. A NOTE ABOUT PERFORMANCE
## ---------------------------------------------------------------------
## Using an IRanges object for storing a big set of ranges is more
## efficient than using a standard R data frame:
N <- 2000000L # nb of ranges
W <- 180L # width of each range
start <- 1L
end <- 50000000L
set.seed(777)
range_starts <- sort(sample(end-W+1L, N))
range_widths <- rep.int(W, N)
## Instantiation is faster
system.time(x <- IRanges(start=range_starts, width=range_widths))
system.time(y <- data.frame(start=range_starts, width=range_widths))
## Subsetting is faster
system.time(x16 <- x[c(TRUE, rep.int(FALSE, 15))])
system.time(y16 <- y[c(TRUE, rep.int(FALSE, 15)), ])
## Internal representation is more compact
object.size(x16)
object.size(y16)

IRanges-constructor The IRanges constructor and supporting functions
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Description

The IRanges function is a constructor that can be used to create IRanges instances.

solveUserSEW0 and solveUserSEW are utility functions that solve a set of user-supplied start/end/width
values.

Usage

## IRanges constructor:
IRanges(start=NULL, end=NULL, width=NULL, names=NULL)

## Supporting functions (not for the end user):
solveUserSEW0(start=NULL, end=NULL, width=NULL)
solveUserSEW(refwidths, start=NA, end=NA, width=NA,

rep.refwidths=FALSE,
translate.negative.coord=TRUE,
allow.nonnarrowing=FALSE)

Arguments

start, end, width

For IRanges and solveUserSEW0: NULL, or vector of integers (eventually with
NAs).
For solveUserSEW: vector of integers (eventually with NAs).

names A character vector or NULL.

refwidths Vector of non-NA non-negative integers containing the reference widths.

rep.refwidths TRUE or FALSE. Use of rep.refwidths=TRUE is supported only when refwidths
is of length 1.

translate.negative.coord, allow.nonnarrowing

TRUE or FALSE.

IRanges constructor

Return the IRanges object containing the ranges specified by start, end and width. Input falls into
one of two categories:

Category 1 start, end and width are numeric vectors (or NULLs). If necessary they are recycled
to the length of the longest (NULL arguments are filled with NAs). After this recycling,
each row in the 3-column matrix obtained by binding those 3 vectors together is "solved" i.e.
NAs are treated as unknown in the equation end = start + width - 1. Finally, the solved
matrix is returned as an IRanges instance.

Category 2 The start argument is a logical vector or logical Rle object and IRanges(start)
produces the same result as as(start, "IRanges"). Note that, in that case, the returned
IRanges instance is guaranteed to be normal.

Note that the names argument is never recycled (to remain consistent with what ‘names<-‘ does on
standard vectors).

Supporting functions

solveUserSEW0(start=NULL, end=NULL, width=NULL):
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solveUserSEW(refwidths, start=NA, end=NA, width=NA, rep.refwidths=FALSE, translate.negative.coord=TRUE, allow.nonnarrowing=FALSE):
Use of rep.refwidths=TRUE is supported only when refwidths is of length 1. If rep.refwidths=FALSE
(the default) then start, end and width are recycled to the length of refwidths (it’s an error
if one of them is longer than refwidths, or is of zero length while refwidths is not). If
rep.refwidths=TRUE then refwidths is first replicated L times where L is the length of the
longest of start, end and width. After this replication, start, end and width are recycled
to the new length of refwidths (L) (it’s an error if one of them is of zero length while L is !=
0).
From now, refwidths, start, end and width are integer vectors of equal lengths. Each
row in the 3-column matrix obtained by binding those 3 vectors together must contain at
least one NA (otherwise an error is returned). Then each row is "solved" i.e. the 2 following
transformations are performed (i is the indice of the row): (1) if translate.negative.coord
is TRUE then a negative value of start[i] or end[i] is considered to be a -refwidths[i]-
based coordinate so refwidths[i]+1 is added to it to make it 1-based; (2) the NAs in the row
are treated as unknowns which values are deduced from the known values in the row and from
refwidths[i].
The exact rules for (2) are the following. Rule (2a): if the row contains at least 2 NAs, then
width[i] must be one of them (otherwise an error is returned), and if start[i] is one of them
it is replaced by 1, and if end[i] is one of them it is replaced by refwidths[i], and finally
width[i] is replaced by end[i] - start[i] + 1. Rule (2b): if the row contains only 1 NA,
then it is replaced by the solution of the width[i] == end[i] - start[i] + 1 equation.
Finally, the set of solved rows is returned as an IRanges object of the same length as refwidths
(after replication if rep.refwidths=TRUE).
Note that an error is raised if either (1) the set of user-supplied start/end/width values is
invalid or (2) allow.nonnarrowing is FALSE and the ranges represented by the solved
start/end/width values are not narrowing the ranges represented by the user-supplied start/end/width
values.

Author(s)

H. Pages

See Also

IRanges-class, narrow

Examples

## ---------------------------------------------------------------------
## A. USING THE IRanges() CONSTRUCTOR
## ---------------------------------------------------------------------
IRanges(start=11, end=rep.int(20, 5))
IRanges(start=11, width=rep.int(20, 5))
IRanges(-2, 20) # only one range
IRanges(start=c(2, 0, NA), end=c(NA, NA, 14), width=11:0)
IRanges() # IRanges instance of length zero
IRanges(names=character())

## With logical input:
x <- IRanges(c(FALSE, TRUE, TRUE, FALSE, TRUE)) # logical vector input
isNormal(x) # TRUE
x <- IRanges(Rle(1:30) %% 5 <= 2) # logical Rle input
isNormal(x) # TRUE
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## ---------------------------------------------------------------------
## B. USING solveUserSEW()
## ---------------------------------------------------------------------
refwidths <- c(5:3, 6:7)
refwidths

solveUserSEW(refwidths)
solveUserSEW(refwidths, start=4)
solveUserSEW(refwidths, end=3, width=2)
solveUserSEW(refwidths, start=-3)
solveUserSEW(refwidths, start=-3, width=2)
solveUserSEW(refwidths, end=-4)

## The start/end/width arguments are recycled:
solveUserSEW(refwidths, start=c(3, -4, NA), end=c(-2, NA))

## Using ’rep.refwidths=TRUE’:
solveUserSEW(10, start=-(1:6), rep.refwidths=TRUE)
solveUserSEW(10, end=-(1:6), width=3, rep.refwidths=TRUE)

IRanges-setops Set operations on IRanges objects

Description

Performs set operations on IRanges objects.

Usage

## Vector-wise operations:
gaps(x, start=NA, end=NA)
## S4 method for signature ’IRanges,IRanges’
union(x, y,...)
## S4 method for signature ’IRanges,IRanges’
intersect(x, y,...)
## S4 method for signature ’IRanges,IRanges’
setdiff(x, y,...)

## Element-wise (aka "parallel") operations:
## S4 method for signature ’IRanges,IRanges’
punion(x, y, fill.gap=FALSE, ...)
## S4 method for signature ’IRanges,IRanges’
pintersect(x, y, resolve.empty=c("none", "max.start", "start.x"), ...)
## S4 method for signature ’IRanges,IRanges’
psetdiff(x, y, ...)
## S4 method for signature ’IRanges,IRanges’
pgap(x, y, ...)

Arguments

x, y IRanges objects.

start, end A single integer or NA. Use these arguments to specify the interval of reference
i.e. which interval the returned gaps should be relative to.
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fill.gap Logical indicating whether or not to force a union by using the rule start = min(start(x), start(y)), end = max(end(x), end(y)).

resolve.empty One of "none", "max.start", or "start.x" denoting how to handle ambiguous
empty ranges formed by intersections. "none" - throw an error if an ambiguous
empty range is formed, "max.start" - associate the maximum start value with
any ambiguous empty range, and "start.x" - associate the start value of x with
any ambiguous empty range. (See Details section below for the definition of an
ambiguous range.)

... Further arguments to be passed to or from other methods.

Details

gaps returns the "normal" IRanges object (of the same class as x) representing the set of integers
that remain after the set of integers represented by x has been removed from the interval specified
by the start and end arguments.

The union, intersect and setdiff methods for IRanges objects return a "normal" IRanges object
(of the same class as x) representing the union, intersection and (asymmetric!) difference of the sets
of integers represented by x and y.

punion, pintersect, psetdiff and pgap are generic functions that compute the element-wise
(aka "parallel") union, intersection, (asymmetric!) difference and gap between each element in x
and its corresponding element in y. Methods for IRanges objects are defined. For these methods, x
and y must have the same length (i.e. same number of ranges) and they return an IRanges instance
of the same length as x and y where each range represents the union/intersection/difference/gap
of/between the corresponding ranges in x and y.

By default, pintersect will throw an error when an "ambiguous empty range" is formed. An
ambiguous empty range can occur three different ways: 1) when corresponding non-empty ranges
elements x and y have an empty intersection, 2) if the position of an empty range element does
not fall within the corresponding limits of a non-empty range element, or 3) if two corresponding
empty range elements do not have the same position. For example if empty range element [22,21]
is intersected with non-empty range element [1,10], an error will be produced; but if it is intersected
with the range [22,28], it will produce [22,21]. As mentioned in the Arguments section above, this
behavior can be changed using the resolve.empty argument.

Author(s)

H. Pages and M. Lawrence

See Also

pintersect is similar to narrow, except the end points are absolute, not relative. pintersect
is also similar to restrict, except ranges outside of the restriction become empty and are not
discarded.

union,

Ranges-class, Ranges-utils, IRanges-class, IRanges-utils

Examples

x0 <- IRanges(start=c(-2, 6, 9, -4, 1, 0, -6, 10),
width=c( 5, 0, 6, 1, 4, 3, 2, 3))

gaps(x0)
gaps(x0, start=-6, end=20) # Regions of the -6:20 range that are not masked by ’x0’.

x <- IRanges(c(1, 5, -2, 0, 14), c(10, 9, 3, 11, 17))
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y <- Views(as(4:-17, "XInteger"), start=c(14, 0, -5, 6, 18), end=c(20, 2, 2, 8, 20))

## Vector-wise operations:
union(x, ranges(y))
union(ranges(y), x)

intersect(x, ranges(y))
intersect(ranges(y), x)

setdiff(x, ranges(y))
setdiff(ranges(y), x)

## Element-wise (aka "parallel") operations:
try(punion(x, ranges(y)))
punion(x[3:5], ranges(y)[3:5])
punion(x, ranges(y), fill.gap=TRUE)
try(pintersect(x, ranges(y)))
pintersect(x[3:4], ranges(y)[3:4])
pintersect(x, ranges(y), resolve.empty="max.start")
psetdiff(ranges(y), x)
try(psetdiff(x, ranges(y)))
start(x)[4] <- -99
end(y)[4] <- 99
psetdiff(x, ranges(y))
pgap(x, ranges(y))

IRanges-utils IRanges utility functions

Description

Utility functions for creating or modifying IRanges objects.

Usage

## Create an IRanges instance:
successiveIRanges(width, gapwidth=0, from=1)
breakInChunks(totalsize, chunksize)

## Turn a logical vector into a set of ranges:
whichAsIRanges(x)

## Coercion:
asNormalIRanges(x, force=TRUE)

Arguments

width A vector of non-negative integers (with no NAs) specifying the widths of the
ranges to create.

gapwidth A single integer or an integer vector with one less element than the width vector
specifying the widths of the gaps separating one range from the next one.

from A single integer specifying the starting position of the first range.
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totalsize A single integer. The total size of the object to break.

chunksize A single integer. The size of the chunks (last chunk might be smaller).

x A logical vector for whichAsIRanges. An IRanges object for asNormalIRanges.

force TRUE or FALSE. Should x be turned into a NormalIRanges object even if isNormal(x)
is FALSE?

Details

successiveIRanges returns an IRanges instance containing the ranges that have the widths speci-
fied in the width vector and are separated by the gaps specified in gapwidth. The first range starts
at position from. When gapwidth=0 and from=1 (the defaults), the returned IRanges can be seen
as a partitioning of the 1:sum(width) interval. See ?Partitioning for more details on this.

whichAsIRanges returns an IRanges instance containing all of the ranges where x is TRUE.

If force=TRUE (the default), then asNormalIRanges will turn x into a NormalIRanges instance by
reordering and reducing the set of ranges if necessary (i.e. only if isNormal(x) is FALSE, otherwise
the set of ranges will be untouched). If force=FALSE, then asNormalIRanges will turn x into a
NormalIRanges instance only if isNormal(x) is TRUE, otherwise it will raise an error. Note that
when force=FALSE, the returned object is guaranteed to contain exactly the same set of ranges than
x. as(x, "NormalIRanges") is equivalent to asNormalIRanges(x, force=TRUE).

Author(s)

H. Pages

See Also

Ranges-class, Ranges-utils, IRanges-class, IRanges-setops, solveUserSEW, successiveViews

Examples

vec <- as.integer(c(19, 5, 0, 8, 5))

successiveIRanges(vec)

breakInChunks(600999, 50000) # 13 chunks of size 50000 (last chunk is
# smaller).

whichAsIRanges(vec >= 5)

x <- IRanges(start=c(-2L, 6L, 9L, -4L, 1L, 0L, -6L, 10L),
width=c( 5L, 0L, 6L, 1L, 4L, 3L, 2L, 3L))

asNormalIRanges(x) # 3 non-empty ranges ordered from left to right and
# separated by gaps of width >= 1.

## More on normality:
example(‘IRanges-class‘)
isNormal(x16) # FALSE
if (interactive())

x16 <- asNormalIRanges(x16) # Error!
whichFirstNotNormal(x16) # 57
isNormal(x16[1:56]) # TRUE
xx <- asNormalIRanges(x16[1:56])
class(xx)
max(xx)
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min(xx)

IRangesList-class List of IRanges and NormalIRanges

Description

IRangesList and NormalIRangesList objects for storing IRanges and NormalIRanges objects
respectively.

Constructor

IRangesList(..., universe = NULL, compress = TRUE): The ... argument accepts either
a comma-separated list of IRanges objects, or a single LogicalList / logical RleList object,
or 2 elements named start and end each of them being either a list of integer vectors or an
IntegerList object. When IRanges objects are supplied, each of them becomes an element
in the new IRangesList, in the same order, which is analogous to the list constructor. If
compress, the internal storage of the data is compressed.

Coercion

unlist(x): Unlists x, an IRangesList, by concatenating all of the ranges into a single IRanges
instance. If the length of x is zero, an empty IRanges is returned.

Methods for NormalIRangesList objects

max(x): An integer vector containing the maximum values of each of the elements of x.

min(x): An integer vector containing the minimum values of each of the elements of x.

Author(s)

Michael Lawrence

See Also

RangesList, the parent of this class, for more functionality.

Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
named <- IRangesList(one = range1, two = range2)
length(named) # 2
names(named) # "one" and "two"
named[[1]] # range1
unnamed <- IRangesList(range1, range2)
names(unnamed) # NULL

x <- IRangesList(start=list(c(1,2,3), c(15,45,20,1)),
end=list(c(5,2,8), c(15,100,80,5)))

as.list(x)
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isConstant Test if an atomic vector or array is constant

Description

Generic function to test if an atomic vector or array is constant or not. Currently only methods for
vectors or arrays of type integer or double are implemented.

Usage

isConstant(x)

Arguments

x An atomic vector or array.

Details

Vectors of length 0 or 1 are always considered to be constant.

Value

A single logical i.e. TRUE, FALSE or NA.

Author(s)

H. Pages

See Also

duplicated, unique, all.equal, NA, is.finite

Examples

## ---------------------------------------------------------------------
## A. METHOD FOR integer VECTORS
## ---------------------------------------------------------------------

## On a vector with no NAs:
stopifnot(isConstant(rep(-29L, 10000)))

## On a vector with NAs:
stopifnot(!isConstant(c(0L, NA, -29L)))
stopifnot(is.na(isConstant(c(-29L, -29L, NA))))

## On a vector of length <= 1:
stopifnot(isConstant(NA_integer_))

## ---------------------------------------------------------------------
## B. METHOD FOR numeric VECTORS
## ---------------------------------------------------------------------
## This method does its best to handle rounding errors and special
## values NA, NaN, Inf and -Inf in a way that "makes sense".
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## Below we only illustrate handling of rounding errors.

## Here values in ’x’ are "conceptually" the same:
x <- c(11/3,

2/3 + 4/3 + 5/3,
50 + 11/3 - 50,
7.00001 - 1000003/300000)

## However, due to machine rounding errors, they are not *strictly*
## equal:
duplicated(x)
unique(x)
## only *nearly* equal:
all.equal(x, rep(11/3, 4)) # TRUE

## ’isConstant(x)’ uses ’all.equal()’ internally to decide whether
## the values in ’x’ are all the same or not:
stopifnot(isConstant(x))

## This is not perfect though:
isConstant((x - 11/3) * 1e8) # FALSE on Intel Pentium paltforms

# (but this is highly machine dependent!)

List-class List objects

Description

List objects are Vector objects with a "[[", elementType and elementLengths method. The List
class serves a similar role as list in base R.

It adds one slot, the elementType slot, to the two slots shared by all Vector objects.

The elementType slot is the preferred location for List subclasses to store the type of data repre-
sented in the sequence. It is designed to take a character of length 1 representing the class of the
sequence elements. While the List class performs no validity checking based on elementType, if a
subclass expects elements to be of a given type, that subclass is expected to perform the necessary
validity checking. For example, the subclass IntegerList has elementType = "integer" and its
validity method checks if this condition is TRUE.

To be functional, a class that inherits from List must define at least a "[[" method (in addition to
the minimum set of Vector methods).

Accessors

In the following code snippets, x is a List object.

elementType(x): Get the scalar string naming the class from which all elements must derive.

elementLengths(x): Get the ’length’ of each of the elements.

isEmpty(x): Returns a logical indicating either if the sequence has no elements or if all its ele-
ments are empty.
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Element extraction (list style)

In the code snippets below, x is a List object.

x[[i]]: If defined, return the selected element i, where i is an numeric or character vector of
length 1.

x$name: Similar to x[[name]], but name is taken literally as an element name.

Looping

In the code snippets below, x is a List object.

lapply(X, FUN, ...): Like the standard lapply function defined in the base package, the
lapply method for List objects returns a list of the same length as X, with each element being
the result of applying FUN to the corresponding element of X.

sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE): Like the standard sapply func-
tion defined in the base package, the sapply method for List objects is a user-friendly version
of lapply by default returning a vector or matrix if appropriate.

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE, USE.NAMES = TRUE): Like the stan-
dard mapply function defined in the base package, the mapply method for List objects is a
multivariate version of sapply.

endoapply(X, FUN, ...): Similar to lapply, but performs an endomorphism, i.e. returns an
object of class(X).

mendoapply(FUN, ..., MoreArgs = NULL): Similar to mapply, but performs an endomorphism
across multiple objects, i.e. returns an object of class(list(...)[[1]]).

revElements(x, i): A convenient way to do x[i] <- endoapply(x[i], rev). There is a fast
method for CompressedList objects, otherwise expect it to be rather slow.

Coercion

In the code snippets below, x is a List object.

as.env(x, enclos = parent.frame()): Creates an environment from x with a symbol for each
names(x). The values are not actually copied into the environment. Rather, they are dynami-
cally bound using makeActiveBinding. This prevents unnecessary copying of the data from
the external vectors into R vectors. The values are cached, so that the data is not copied every
time the symbol is accessed.

as.list(x, ...), as(from, "list"): Turns x into a standard list.

stack(x, indName = "space", valuesName = "values"): As with stack on a list, con-
structs a DataFrame with two columns: one for the unlisted values, the other indicating the
name of the element from which each value was obtained. indName specifies the column
name for the index (source name) column and valuesName specifies the column name for the
values.

relist(flesh, skeleton): Convert flesh to a list with the same structure (element lengths)
as skeleton, a List object. This makes sense when flesh[i] corresponds somehow to
unlist(skeleton)[i].

unsplit(value, f, drop = FALSE): Unlists value, where the order of the returned vector is as
if value were originally created by splitting that vector on the factor f.
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Functional Programming

The R base package defines some Higher-Order functions that are commonly found in Functional
Programming Languages. See ?Reduce for the details, and, in particular, for a description of their
arguments. The IRanges package provides methods for List objects, so, in addition to be a vector,
the x argument can also be a List object.

Reduce(f, x, init, right = FALSE, accumulate = FALSE): Uses a binary function to suc-
cessively combine the elements of x and a possibly given initial value. See ?Reduce (in the
base package) for the details.

Filter(f, x): Extracts the elements of x for which function f is TRUE. See ?Filter (in the
base package) for the details.

Find(f, x, right = FALSE, nomatch = NULL): Extracts the first or last such element in x.
See ?Find (in the base package) for the details.

Map(f, ...): Applies a function to the corresponding elements of given List objects. See ?Map
(in the base package) for the details.

Position(f, x, right = FALSE, nomatch = NA_integer_): Extracts the first or last such
position in x. See ?Position (in the base package) for the details.

Evaluating

In the code snippets below, envir and data are List objects.

eval(expr, envir, enclos = parent.frame()): Converts the List object specified in envir
to an environment using as.env, with enclos as its parent, and then evaluates expr within
that environment.

with(data, expr, ...): Equivalent to eval(quote(expr), data, ...).

within(data, expr, ...): Similar to with, except assignments made during evaluation are
taken as assignments into data, i.e., new symbols have their value appended to data, and
assigning new values to existing symbols results in replacement.

Author(s)

P. Aboyoun and H. Pages

See Also

Vector for the parent class.

SimpleList and CompressedList for direct extensions.

IRanges and CompressedLogicalList for example implementations.

Examples

showClass("List") # shows (some of) the known subclasses
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MaskCollection-class MaskCollection objects

Description

The MaskCollection class is a container for storing a collection of masks that can be used to mask
regions in a sequence.

Details

In the context of the Biostrings package, a mask is a set of regions in a sequence that need to be ex-
cluded from some computation. For example, when calling alphabetFrequency or matchPattern
on a chromosome sequence, you might want to exclude some regions like the centromere or the
repeat regions. This can be achieved by putting one or several masks on the sequence before calling
alphabetFrequency on it.

A MaskCollection object is a vector-like object that represents such set of masks. Like standard
R vectors, it has a "length" which is the number of masks contained in it. But unlike standard R
vectors, it also has a "width" which determines the length of the sequences it can be "put on". For
example, a MaskCollection object of width 20000 can only be put on an XString object of 20000
letters.

Each mask in a MaskCollection object x is just a finite set of integers that are >= 1 and <= width(x).
When "put on" a sequence, these integers indicate the positions of the letters to mask. Internally,
each mask is represented by a NormalIRanges object.

Basic accessor methods

In the code snippets below, x is a MaskCollection object.

length(x): The number of masks in x.

width(x): The common with of all the masks in x. This determines the length of the sequences
that x can be "put on".

active(x): A logical vector of the same length as x where each element indicates whether the
corresponding mask is active or not.

names(x): NULL or a character vector of the same length as x.

desc(x): NULL or a character vector of the same length as x.

nir_list(x): A list of the same length as x, where each element is a NormalIRanges object
representing a mask in x.

Constructor

Mask(mask.width, start=NULL, end=NULL, width=NULL): Return a single mask (i.e. a MaskCol-
lection object of length 1) of width mask.width (a single integer >= 1) and masking the ranges
of positions specified by start, end and width. See the IRanges constructor (?IRanges) for
how start, end and width can be specified. Note that the returned mask is active and un-
named.
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Other methods

In the code snippets below, x is a MaskCollection object.

isEmpty(x): Return a logical vector of the same length as x, indicating, for each mask in x,
whether it’s empty or not.

max(x): The greatest (or last, or rightmost) masked position for each mask. This is a numeric
vector of the same length as x.

min(x): The smallest (or first, or leftmost) masked position for each mask. This is a numeric
vector of the same length as x.

maskedwidth(x): The number of masked position for each mask. This is an integer vector of the
same length as x where all values are >= 0 and <= width(x).

maskedratio(x): maskedwidth(x) / width(x)

Subsetting and appending

In the code snippets below, x and values are MaskCollection objects.

x[i]: Return a new MaskCollection object made of the selected masks. Subscript i can be a
numeric, logical or character vector.

x[[i, exact=TRUE]]: Extract the mask selected by i as a NormalIRanges object. Subscript i
can be a single integer or a character string.

append(x, values, after=length(x)): Add masks in values to x.

Other methods

In the code snippets below, x is a MaskCollection object.

collapse(x): Return a MaskCollection object of length 1 obtained by collapsing all the active
masks in x.

gaps(x): Invert the masks in x.

narrow(x, start=NA, end=NA, width=NA, use.names=TRUE): If y is a sequence that x has
been put on top of, then narrow will return the set of submasks that go on top of the subse-
quence obtained by calling subseq on y (narrow must be called on x with the same arguments
that have been used to call subseq on y).

Author(s)

H. Pages

See Also

NormalIRanges-class, read.Mask, MaskedXString-class, reverse, alphabetFrequency, matchPattern

Examples

## Making a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
mymasks
length(mymasks)
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width(mymasks)
collapse(mymasks)
gaps(mymasks)

## Names and descriptions:
names(mymasks) <- c("A", "B", "C") # names should be short and unique...
mymasks
mymasks[c("C", "A")] # ...to make subsetting by names easier
desc(mymasks) <- c("you can be", "more verbose", "here")
mymasks[-2]

## Activate/deactivate masks:
active(mymasks)["B"] <- FALSE
mymasks
collapse(mymasks)
active(mymasks) <- FALSE # deactivate all masks
mymasks
active(mymasks)[-1] <- TRUE # reactivate all masks except mask 1
active(mymasks) <- !active(mymasks) # toggle all masks

## Other advanced operations:
mymasks[[2]]
length(mymasks[[2]])
mymasks[[2]][-3]
append(mymasks[-2], gaps(mymasks[2]))
mymasks2 <- narrow(mymasks, start=8)
mymasks2
mymasks2[[2]]

multisplit Split elements belonging to multiple groups

Description

This is like split, except elements can belong to multiple groups, in which case they are repeated
to appear in multiple elements of the return value.

Usage

multisplit(x, f)

Arguments

x The object to split, like a vector.

f A list-like object of vectors, the same length as x, where each element indicates
the groups to which each element of x belongs.

Value

A list-like object, with an element for each unique value in the unlisted f, containing the elements
in x where the corresponding element in f contained that value. Just try it.
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Author(s)

Michael Lawrence

Examples

multisplit(1:3, list(letters[1:2], letters[2:3], letters[2:4]))

nearest Nearest neighbor finding

Description

The nearest, precede and follow methods find nearest neighbors between Ranges instances.

Usage

nearest(x, subject, ...)
## S4 method for signature ’Ranges,RangesORmissing’
nearest(x, subject,
select = c("arbitrary", "all"))
precede(x, subject = x, ...)
## S4 method for signature ’Ranges,RangesORmissing’
precede(x, subject,
select = c("first", "all"))
follow(x, subject = x, ...)
## S4 method for signature ’Ranges,RangesORmissing’
follow(x, subject,
select = c("last", "all"))
distanceToNearest(x, subject = x, ...)
## S4 method for signature ’Ranges,RangesORmissing’
distanceToNearest(x, subject,
select = c("arbitrary", "all"))

Arguments

x The query Ranges instance.

subject The subject Ranges instance, within which the nearest neighbors are found. Can
be missing, in which case the query, x, is also the subject.

select Logic for handling ties. By default, all of the methods here will select a single
interval (arbitrary for nearest, the first by order in subject for precede, and
the last for follow). To get all matchings, as a Hits object, use “all”.

... Additional arguments for methods

Details

nearest is the conventional nearest neighbor finder and returns a integer vector containing the
index of the nearest neighbor range in subject for each range in x. If there is no nearest neighbor
(if subject is empty), NA’s are returned.

The algorithm is roughly as follows, for a range xi in x:
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1. Find the ranges in subject that overlap xi. If a single range si in subject overlaps xi, si is
returned as the nearest neighbor of xi. If there are multiple overlaps, one of the overlapping
ranges is chosen arbitrarily.

2. If no ranges in subject overlap with xi, then the range in subject with the shortest distance
from its end to the start xi or its start to the end of xi is returned.

For each range in x, precede returns the index of the interval in subject that is directly preceded
by the query range. Note that any overlapping ranges are excluded. NA is returned when there are
no qualifying ranges in subject.

follow is the opposite of precede: it returns the index of the range in subject that a query range
in x directly follows.

distanceToNearest returns the distance for each range in x to its nearest neighbor in subject.

Value

For nearest, precede and follow, an integer vector of indices in subject, or a Hits if select is
“all”.

For distanceToNearest, a DataFrame with a column for the query index, subject index and
distance between the pair. This may become more formal in the future.

Author(s)

M. Lawrence

See Also

findOverlaps for finding just the overlapping ranges.

Examples

query <- IRanges(c(1, 3, 9), c(2, 7, 10))
subject <- IRanges(c(3, 5, 12), c(3, 6, 12))

nearest(query, subject) # c(1L, 1L, 3L)
nearest(query) # c(2L, 1L, 2L)

query <- IRanges(c(1, 3, 9), c(3, 7, 10))
subject <- IRanges(c(3, 2, 10), c(3, 13, 12))

precede(query, subject) # c(3L, 3L, NA)
precede(IRanges(), subject) # integer()
precede(query, IRanges()) # rep(NA_integer_, 3)
precede(query) # c(3L, 3L, NA)

follow(query, subject) # c(NA, NA, 1L)
follow(IRanges(), subject) # integer()
follow(query, IRanges()) # rep(NA_integer_, 3)
follow(query) # c(NA, NA, 2L)
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OverlapEncodings-class

OverlapEncodings objects

Description

The OverlapEncodings class is a container for storing the "overlap encodings" returned by the
encodeOverlaps function.

Usage

## OverlapEncodings accessors:

## S4 method for signature ’OverlapEncodings’
length(x)
## S4 method for signature ’OverlapEncodings’
Loffset(x)
## S4 method for signature ’OverlapEncodings’
Roffset(x)
## S4 method for signature ’OverlapEncodings’
encoding(x)

## Coercing an OverlapEncodings object:

## S4 method for signature ’OverlapEncodings’
as.data.frame(x, row.names=NULL, optional=FALSE, ...)

Arguments

x An OverlapEncodings object.

row.names NULL or a character vector.

optional, ... Ignored.

Details

Given a query and a subject of the same length, both list-like objects with top-level elements
typically containing multiple ranges (e.g. RangesList objects), the "overlap encoding" of the i-th
element in query and i-th element in subject is a character string describing how the ranges in
query[[i]] are qualitatively positioned relatively to the ranges in subject[[i]].

The encodeOverlaps function computes those overlap encodings and returns them in an Over-
lapEncodings object of the same length as query and subject.

OverlapEncodings accessors

In the following code snippets, x is an OverlapEncodings object typically obtained by a call to
encodeOverlaps(query, subject).

length(x): Get the number of elements (i.e. encodings) in x. This is equal to length(query)
and length(subject).
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Loffset(x), Roffset(x): Get the "left-offsets" and "right-offsets" of the encodings, respectively.
Both are integer vectors of the same length as x.

Let’s denote Qi = query[[i]], Si = subject[[i]], and [q1,q2] the range covered by Qi
i.e. q1 = min(start(Qi)) and q2 = max(end(Qi)), then Loffset(x)[i] is the number L
of ranges at the head of Si that are strictly to the left of all the ranges in Qi i.e. L is the greatest
value such that end(Si)[k] < q1 - 1 for all k in seq_len(L). Similarly, Roffset(x)[i]
is the number R of ranges at the tail of Si that are strictly to the right of all the ranges in Qi
i.e. R is the greatest value such that start(Si)[length(Si) + 1 - k] > q2 + 1 for all k
in seq_len(L).

encoding(x): Factor of the same length as x where the i-th element is the encoding obtained by
comparing each range in Qi with all the ranges in tSi = Si[(1+L):(length(Si)-R)] (tSi
stands for "trimmed Si"). More precisely, here is how this encoding is obtained:

1. All the ranges in Qi are compared with tSi[1], then with tSi[2], etc... At each step
(one step per range in tSi), comparing all the ranges in Qi with tSi[k] is done with
rangeComparisonCodeToLetter(compare(Qi, tSi[k])). So at each step, we end up
with a vector of M single letters (where M is length(Qi)).

2. Each vector obtained previously (1 vector per range in tSi, all of them of length M) is
turned into a single string by pasting its individual letters together.

3. All the strings obtained previously (1 per range in tSi) are pasted together into a single
long string and separated by colons (":"). An additional colon is prepended to the long
string and another one appended to it.

4. Finally, the value of M is prepended to the long string. The final string is the encoding.

Coercing an OverlapEncodings object

In the following code snippets, x is an OverlapEncodings object.

as.data.frame(x): Return x as a data frame with columns "Loffset", "Roffset" and "encoding".

Author(s)

H. Pages

See Also

encodeOverlaps, compare, RangesList-class

Examples

example(encodeOverlaps) # to make ’ovenc’

length(ovenc)
Loffset(ovenc)
Roffset(ovenc)
encoding(ovenc)
as.data.frame(ovenc)
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RangedData-class Data on ranges

Description

RangedData supports storing data, i.e. a set of variables, on a set of ranges spanning multiple spaces
(e.g. chromosomes). Although the data is split across spaces, it can still be treated as one cohesive
dataset when desired and extends DataTable. In order to handle large datasets, the data values
are stored externally to avoid copying, and the rdapply function facilitates the processing of each
space separately (divide and conquer).

Details

A RangedData object consists of two primary components: a RangesList holding the ranges
over multiple spaces and a parallel SplitDataFrameList, holding the split data. There is also
an universe slot for denoting the source (e.g. the genome) of the ranges and/or data.

There are two different modes of interacting with a RangedData. The first mode treats the object as
a contiguous "data frame" annotated with range information. The accessors start, end, and width
get the corresponding fields in the ranges as atomic integer vectors, undoing the division over the
spaces. The [[ and matrix-style [, extraction and subsetting functions unroll the data in the same
way. [[<- does the inverse. The number of rows is defined as the total number of ranges and the
number of columns is the number of variables in the data. It is often convenient and natural to treat
the data this way, at least when the data is small and there is no need to distinguish the ranges by
their space.

The other mode is to treat the RangedData as a list, with an element (a virtual Ranges/DataFrame
pair) for each space. The length of the object is defined as the number of spaces and the value
returned by the names accessor gives the names of the spaces. The list-style [ subset function
behaves analogously. The rdapply function provides a convenient and formal means of applying
an operation over the spaces separately. This mode is helpful when ranges from different spaces
must be treated separately or when the data is too large to process over all spaces at once.

Accessor methods

In the code snippets below, x is a RangedData object.

The following accessors treat the data as a contiguous dataset, ignoring the division into spaces:

Array accessors:

nrow(x): The number of ranges in x.
ncol(x): The number of data variables in x.
dim(x): An integer vector of length two, essentially c(nrow(x), ncol(x)).
rownames(x), rownames(x) <- value: Gets or sets the names of the ranges in x.
colnames(x), colnames(x) <- value: Gets the names of the variables in x.
dimnames(x): A list with two elements, essentially list(rownames(x), colnames(x)).
dimnames(x) <- value: Sets the row and column names, where value is a list as described

above.
columnMetadata(x): Get the DataFrame of metadata along the value columns, i.e., where

each column in x is represented by a row in the metadata. Note that calling elementMetadata(x)
returns the metadata on each space in x.

columnMetadata(x) <- value: Set the DataFrame of metadata for the columns.
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within(data, expr, ...): Evaluates expr within data, a RangedData. Any values as-
signed in expr will be stored as value columns in data, unless they match one of the
reserved names: ranges, start, end, width and space. Behavior is undefined if any of
the range symbols are modified inconsistently. Modifications to space are ignored.

Range accessors. The type of the return value depends on the type of Ranges. For IRanges, an
integer vector. Regardless, the number of elements is always equal to nrow(x).

start(x), start(x) <- value: Get or set the starts of the ranges. When setting the starts,
value can be an integer vector of length(sum(elementLengths(ranges(x)))) or an
IntegerList object of length length(ranges(x)) and names names(ranges(x)).

end(x), end(x) <- value: Get or set the ends of the ranges. When setting the ends,
value can be an integer vector of length(sum(elementLengths(ranges(x)))) or an
IntegerList object of length length(ranges(x)) and names names(ranges(x)).

width(x), width(x) <- value: Get or set the widths of the ranges. When setting the
widths, value can be an integer vector of length(sum(elementLengths(ranges(x))))
or an IntegerList object of length length(ranges(x)) and names names(ranges(x)).

These accessors make the object seem like a list along the spaces:

length(x): The number of spaces (e.g. chromosomes) in x.

names(x), names(x) <- value: Get or set the names of the spaces (e.g. "chr1"). NULL or a
character vector of the same length as x.

Other accessors:

universe(x), universe(x) <- value: Get or set the scalar string identifying the scope of the
data in some way (e.g. genome, experimental platform, etc). The universe may be NULL.

ranges(x), ranges(x) <- value: Gets or sets the ranges in x as a RangesList.

space(x): Gets the spaces from ranges(x).

values(x), values(x) <- value: Gets or sets the data values in x as a SplitDataFrameList.

score(x), score(x) <- value: Gets or sets the column representing a "score" in x, as a vector.
This is the column named score, or, if this does not exist, the first column, if it is numeric.
The get method return NULL if no suitable score column is found. The set method takes a
numeric vector as its value.

Constructor

RangedData(ranges = IRanges(), ..., space = NULL, universe = NULL): Creates
a RangedData with the ranges in ranges and variables given by the arguments in .... See the
constructor DataFrame for how the ... arguments are interpreted.
If ranges is a Ranges object, the space argument is used to split of the data into spaces.
If space is NULL, all of the ranges and values are placed into the same space, resulting in a
single-space (length one) RangedData object. Otherwise, the ranges and values are split into
spaces according to space, which is treated as a factor, like the f argument in split.
If ranges is a RangesList object, then the supplied space argument is ignored and its value
is derived from ranges.
If ranges is not a Ranges or RangesList object, this function calls as(ranges, "RangedData")
and returns the result if successful.
The universe may be specified as a scalar string by the universe argument.
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Coercion

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Copy the start, end, width of
the ranges and all of the variables as columns in a data.frame. This is a bridge to existing
functionality in R, but of course care must be taken if the data is large. Note that optional
and ... are ignored.

as(from, "DataFrame"): Like as.data.frame above, except the result is an DataFrame and it
probably involves less copying, especially if there is only a single space.

as(from, "RangedData"): Coerce from to a RangedData, according to the type of from:

Rle, RleList Converts each run to a range and stores the run values in a column named
"score".

Ranges, RangesList Creates a RangedData with only the ranges in from; no data columns.
data.frame or DataTable Constructs a RangedData, using the columns “start”, “end”, and,

optionally, “space” columns in from. The other columns become data columns in the
result. Any “width” column is ignored.

as.env(x, enclos = parent.frame()): Creates an environment with a symbol for each vari-
able in the frame, as well as a ranges symbol for the ranges. This is efficient, as no copying
is performed.

Subsetting and Replacement

In the code snippets below, x is a RangedData object.

x[i]: Subsets x by indexing into its spaces, so the result is of the same class, with a different set
of spaces. i can be numerical, logical, NULL or missing.

x[i,j]: Subsets x by indexing into its rows and columns. The result is of the same class, with a
different set of rows and columns. The row index i can either treat x as a flat table by being
a character, integer, or logical vector or treat x as a partitioned table by being a RangesList,
LogicalList, or IntegerList of the same length as x.

x[[i]]: Extracts a variable from x, where i can be a character, numeric, or logical scalar that
indexes into the columns. The variable is unlisted over the spaces.
For convenience, values of "space" and "ranges" are equivalent to space(x) and unlist(ranges(x))
respectively.

x$name: similar to above, where name is taken literally as a column name in the data.

x[[i]] <- value: Sets value as column i in x, where i can be a character, numeric, or logical
scalar that indexes into the columns. The length of value should equal nrow(x). x[[i]]
should be identical to value after this operation.
For convenience, i="ranges" is equivalent to ranges(x) <- value.

x$name <- value: similar to above, where name is taken literally as a column name in the data.

Splitting and Combining

In the code snippets below, x is a RangedData object.

split(x, f, drop = FALSE): Split x according to f, which should be of length equal to nrow(x).
Note that drop is ignored here. The result is a RangedDataList where every element has the
same length (number of spaces) but different sets of ranges within each space.

rbind(...): Matches the spaces from the RangedData objects in ... by name and combines
them row-wise. In a way, this is the reverse of the split operation described above.
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c(x, ..., recursive = FALSE): Combines x with arguments specified in ..., which must all
be RangedData objects. This combination acts as if x is a list of spaces, meaning that the
result will contain the spaces of the first concatenated with the spaces of the second, and so
on. This function is useful when creating RangedData objects on a space-by-space basis and
then needing to combine them.

Utilities

In the code snippets below, x is a RangedData object.

reduce(x, by = character(), drop.empty.ranges=FALSE, min.gapwidth=1L, with.inframe.attrib = FALSE):
Merges the ranges in each of the spaces after grouping by the by values columns and returns
the result as a RangedData containing the reduced ranges and the by value columns.

Applying

There are two ways explicitly supported ways to apply a function over the spaces of a RangedData.
The richest interface is rdapply, which is described in its own man page. The simpler interface is
an lapply method:

lapply(X, FUN, ...): Applies FUN to each space in X with extra parameters in ....

Author(s)

Michael Lawrence

See Also

DataTable, the parent of this class, with more utilities. RangedData-utils for utilities and the
rdapply function for applying a function to each space separately.

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
filter <- c(1L, 0L, 1L)
score <- c(10L, 2L, NA)

## constructing RangedData instances

## no variables
rd <- RangedData()
rd <- RangedData(ranges)
ranges(rd)
## one variable
rd <- RangedData(ranges, score)
rd[["score"]]
## multiple variables
rd <- RangedData(ranges, filter, vals = score)
rd[["vals"]] # same as rd[["score"]] above
rd$vals
rd[["filter"]]
rd <- RangedData(ranges, score + score)
rd[["score...score"]] # names made valid
## use a universe
rd <- RangedData(ranges, universe = "hg18")
universe(rd)
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rd <- RangedData(
RangesList(

chrA = IRanges(start = c(1, 4, 6), width=c(3, 2, 4)),
chrB = IRanges(start = c(1, 3, 6), width=c(3, 3, 4))),

score = c(2, 7, 3, 1, 1, 1))
rd
reduce(rd)

## split some data over chromosomes

range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
both <- c(ranges, range2)
score <- c(score, c(0L, 3L, NA, 22L))
filter <- c(filter, c(0L, 1L, NA, 0L))
chrom <- paste("chr", rep(c(1,2), c(length(ranges), length(range2))), sep="")

rd <- RangedData(both, score, filter, space = chrom, universe = "hg18")
rd[["score"]] # identical to score
rd[1][["score"]] # identical to score[1:3]

## subsetting

## list style: [i]

rd[numeric()] # these three are all empty
rd[logical()]
rd[NULL]
rd[] # missing, full instance returned
rd[FALSE] # logical, supports recycling
rd[c(FALSE, FALSE)] # same as above
rd[TRUE] # like rd[]
rd[c(TRUE, FALSE)]
rd[1] # numeric index
rd[c(1,2)]
rd[-2]

## matrix style: [i,j]

rd[,NULL] # no columns
rd[NULL,] # no rows
rd[,1]
rd[,1:2]
rd[,"filter"]
rd[1,] # now by the rows
rd[c(1,3),]
rd[1:2, 1] # row and column
rd[c(1:2,1,3),1] ## repeating rows

## dimnames

colnames(rd)[2] <- "foo"
colnames(rd)
rownames(rd) <- head(letters, nrow(rd))
rownames(rd)

## space names
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names(rd)
names(rd)[1] <- "chr1"

## variable replacement

count <- c(1L, 0L, 2L)
rd <- RangedData(ranges, count, space = c(1, 2, 1))
## adding a variable
score <- c(10L, 2L, NA)
rd[["score"]] <- score
rd[["score"]] # same as ’score’
## replacing a variable
count2 <- c(1L, 1L, 0L)
rd[["count"]] <- count2
## numeric index also supported
rd[[2]] <- score
rd[[2]] # gets ’score’
## removing a variable
rd[[2]] <- NULL
ncol(rd) # is only 1
rd$score2 <- score

## combining/splitting

rd <- RangedData(ranges, score, space = c(1, 2, 1))
c(rd[1], rd[2]) # equal to ’rd’
rd2 <- RangedData(ranges, score)
unlist(split(rd2, c(1, 2, 1))) # same as ’rd’

## applying

lapply(rd, ‘[[‘, 1) # get first column in each space

RangedData-utils RangedData utility functions

Description

Utility functions for manipulating RangedData objects.

Usage

## S4 method for signature ’RangedData’
range(x, ..., na.rm = FALSE)

Arguments

x A RangedData object

... Additional RangedData objects

na.rm Ignored
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Value

range returns a RangesList resulting from calling range(ranges(x)), i.e. the bounds of the
ranges in each space.

Author(s)

Michael Lawrence

See Also

RangedData, DataTable-API, Vector-class

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
score <- c(10L, 2L, NA)
rd <- RangedData(ranges, score)

range(rd)
rd2 <- RangedData(IRanges(c(5,2,0), c(6,3,1)))
range(rd, rd2)

RangedDataList-class Lists of RangedData

Description

A formal list of RangedData objects. Extends and inherits all its methods from List. One use case
is to group together all of the samples from an experiment generating data on ranges.

Constructor

RangedDataList(...): Concatenates the RangedData objects in ... into a new RangedDataList.

Other methods

stack(x, indName = "sample"): Concantenates the elements of x into a RangedData, with a
column named by indName that groups the records by their original element in x.

Author(s)

Michael Lawrence

See Also

RangedData, the element type of this List.

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
a <- RangedData(IRanges(c(1,2,3),c(4,5,6)), score = c(10L, 2L, NA))
b <- RangedData(IRanges(c(1,2,4),c(4,7,5)), score = c(3L, 5L, 7L))
RangedDataList(sample1 = a, sample2 = b)
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RangedSelection-class Selection of ranges and columns

Description

A RangedSelection represents a query against a table of interval data in terms of ranges and
column names. The ranges select any table row with an overlapping interval. Note that the intervals
are always returned, even if no columns are selected.

Details

Traditionally, tabular data structures have supported the subset function, which allows one to select
a subset of the rows and columns from the table. In that case, the rows and columns are specified by
two separate arguments. As querying interval data sources, especially those external to R, such as
binary indexed files and databases, is increasingly common, there is a need to encapsulate the row
and column specifications into a single data structure, mostly for the sake of interface cleanliness.
The RangedSelection class fills that role.

Constructor

RangedSelection(ranges = RangesList(), colnames = character()): Construc-
tors a RangedSelection with the given ranges and colnames.

Coercion

as(from, "RangedSelection"): Coerces from to a RangedSelection object. Typically, from
is a RangesList, the ranges of which become the ranges in the new RangedSelection.

Accessors

In the code snippets below, x is always a RangedSelection.

ranges(x), ranges(x) <- value: Gets or sets the ranges, a RangesList, that select rows with
overlapping intervals.

colnames(x), colnames(x) <- value: Gets the names, a character vector, indicating the
columns.

Author(s)

Michael Lawrence

Examples

rl <- RangesList(chr1 = IRanges(c(1, 5), c(3, 6)))

RangedSelection(rl)
as(rl, "RangedSelection") # same as above

RangedSelection(rl, "score")
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Ranges-class Ranges objects

Description

The Ranges virtual class is a general container for storing a set of integer ranges.

Details

A Ranges object is a vector-like object where each element describes a "range of integer values".

A "range of integer values" is a finite set of consecutive integer values. Each range can be fully
described with exactly 2 integer values which can be arbitrarily picked up among the 3 following
values: its "start" i.e. its smallest (or first, or leftmost) value; its "end" i.e. its greatest (or last, or
rightmost) value; and its "width" i.e. the number of integer values in the range. For example the set
of integer values that are greater than or equal to -20 and less than or equal to 400 is the range that
starts at -20 and has a width of 421. In other words, a range is a closed, one-dimensional interval
with integer end points and on the domain of integers.

The starting point (or "start") of a range can be any integer (see start below) but its "width" must
be a non-negative integer (see width below). The ending point (or "end") of a range is equal to its
"start" plus its "width" minus one (see end below). An "empty" range is a range that contains no
value i.e. a range that has a null width. Depending on the context, it can be interpreted either as just
the empty set of integers or, more precisely, as the position between its "end" and its "start" (note
that for an empty range, the "end" equals the "start" minus one).

The length of a Ranges object is the number of ranges in it, not the number of integer values in its
ranges.

A Ranges object is considered empty iff all its ranges are empty.

Ranges objects have a vector-like semantic i.e. they only support single subscript subsetting (unlike,
for example, standard R data frames which can be subsetted by row and by column).

The Ranges class itself is a virtual class. The following classes derive directly from the Ranges
class: IRanges and IntervalTree.

Methods

In the code snippets below, x, y and object are Ranges objects. Not all the functions described
below will necessarily work with all kinds of Ranges objects but they should work at least for
IRanges objects. Also more operations on Ranges objects are described in the man page for Ranges-
utils (shift, restrict, narrow, reduce, etc...), for IntervalTree objects (findOverlaps), and for
RangesList objects (split method for Ranges objects).

length(x): The number of ranges in x.

start(x): The start values of the ranges. This is an integer vector of the same length as x.

width(x): The number of integer values in each range. This is a vector of non-negative integers
of the same length as x.

end(x): start(x) + width(x) - 1L

mid(x): returns the midpoint of the range, start(x) + floor((width(x) - 1)/2).

names(x): NULL or a character vector of the same length as x.
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update(object, ...): Convenience method for combining multiple modifications of object in
one single call. For example object <- update(object, start=start(object)-2L, end=end(object)+2L)
is equivalent to start(object) <- start(object)-2L; end(object) <- end(object)+2L.

isEmpty(x): Return a logical value indicating whether x is empty or not.

isDisjoint(x): Return a logical value indicating whether the ranges x are disjoint (i.e. non-
overlapping).

as.matrix(x, ...): Convert x into a 2-column integer matrix containing start(x) and width(x).
Extra arguments (...) are ignored.

as.data.frame(x, row.names=NULL, optional=FALSE, ...): Convert x into a standard R
data frame object. row.names must be NULL or a character vector giving the row names for the
data frame, and optional and any additional argument (...) is ignored. See ?as.data.frame
for more information about these arguments.

as.integer(x): Convert x into an integer vector, by converting each range into the integer se-
quence formed by from:to and concatenating them together.

unlist(x, recursive = TRUE, use.names = TRUE): Similar to as.integer(x) except can
add names to elements.

x[[i]]: Return integer vector start(x[i]):end(x[i]) denoted by i. Subscript i can be a single
integer or a character string.

x[i]: Return a new Ranges object (of the same type as x) made of the selected ranges. i can be
a numeric vector, a logical vector, NULL or missing. If x is a NormalIRanges object and i a
positive numeric subscript (i.e. a numeric vector of positive values), then i must be strictly
increasing.

rep(x, times, length.out, each): Repeats the values in x through one of the following con-
ventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the Ranges elements if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

c(x, ...): Combine x and the Ranges objects in ... together. Any object in ... must belong
to the same class as x, or to one of its subclasses, or must be NULL. The result is an object of
the same class as x. NOTE: Only works for IRanges (and derived) objects for now.

x * y: The arithmetic operation x * y is for centered zooming. It symmetrically scales the width
of x by 1/y, where y is a numeric vector that is recycled as necessary. For example, x * 2
results in ranges with half their previous width but with approximately the same midpoint. The
ranges have been “zoomed in”. If y is negative, it is equivalent to x * (1/abs(y)). Thus,
x * -2 would double the widths in x. In other words, x has been “zoomed out”.

x + y: Expands the ranges in x on either side by the corresponding value in the numeric vector y.

Normality

A Ranges object x is implicitly representing an arbitrary finite set of integers (that are not necessarily
consecutive). This set is the set obtained by taking the union of all the values in all the ranges in x.
This representation is clearly not unique: many different Ranges objects can be used to represent
the same set of integers. However one and only one of them is guaranteed to be "normal".

By definition a Ranges object is said to be "normal" when its ranges are: (a) not empty (i.e. they
have a non-null width); (b) not overlapping; (c) ordered from left to right; (d) not even adjacent (i.e.
there must be a non empty gap between 2 consecutive ranges).
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Here is a simple algorithm to determine whether x is "normal": (1) if length(x) == 0, then x is
normal; (2) if length(x) == 1, then x is normal iff width(x) >= 1; (3) if length(x) >= 2, then
x is normal iff:

start(x)[i] <= end(x)[i] < start(x)[i+1] <= end(x)[i+1]

for every 1 <= i < length(x).

The obvious advantage of using a "normal" Ranges object to represent a given finite set of integers
is that it is the smallest in terms of of number of ranges and therefore in terms of storage space.
Also the fact that we impose its ranges to be ordered from left to right makes it unique for this
representation.

A special container (NormalIRanges) is provided for holding a "normal" IRanges object: a Nor-
malIRanges object is just an IRanges object that is guaranteed to be "normal".

Here are some methods related to the notion of "normal" Ranges:

isNormal(x): Return a logical value indicating whether x is "normal" or not.

whichFirstNotNormal(x): Return NA if x is normal, or the smallest valid indice i in x for which
x[1:i] is not "normal".

Author(s)

H. Pages and M. Lawrence

See Also

Ranges-comparison, Ranges-utils, IRanges-class, IRanges-utils, IRanges-setops, RangedData-class,
IntervalTree-class, update, as.matrix, as.data.frame, rep

Examples

x <- IRanges(start=c(2:-1, 13:15), width=c(0:3, 2:0))
x
length(x)
start(x)
width(x)
end(x)
isEmpty(x)
as.matrix(x)
as.data.frame(x)

## Subsetting:
x[4:2] # 3 ranges
x[-1] # 6 ranges
x[FALSE] # 0 range
x0 <- x[width(x) == 0] # 2 ranges
isEmpty(x0)

## Use the replacement methods to resize the ranges:
width(x) <- width(x) * 2 + 1
x
end(x) <- start(x) # equivalent to width(x) <- 0
x
width(x) <- c(2, 0, 4)
x
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start(x)[3] <- end(x)[3] - 2 # resize the 3rd range
x

## Name the elements:
names(x)
names(x) <- c("range1", "range2")
x
x[is.na(names(x))] # 5 ranges
x[!is.na(names(x))] # 2 ranges

## Check for disjointedness
isDisjoint(IRanges(c(2,5,1), c(3,7,3))) ## FALSE
isDisjoint(IRanges(c(2,9,5), c(3,9,6))) ## TRUE
isDisjoint(IRanges(1, 5)) ## TRUE

ir <- IRanges(c(1,5), c(3,10))
ir*1 # no change
ir*c(1,2) # zoom second range by 2X
ir*-2 # zoom out 2X

Ranges-comparison Comparing and ordering ranges

Description

Methods for comparing and ordering the elements in one or more Ranges objects.

Usage

## ==== Equality and related methods ====
## --------------------------------------

## S4 method for signature ’Ranges,Ranges’
e1 == e2

## S4 method for signature ’Ranges,Ranges’
e1 != e2

## S4 method for signature ’Ranges’
duplicated(x, incomparables=FALSE, fromLast=FALSE,

method=c("auto", "quick", "hash"), ...)

## S4 method for signature ’Ranges’
unique(x, incomparables=FALSE, fromLast=FALSE,

method=c("auto", "quick", "hash"), ...)

## ==== Ordering and related methods ====
## --------------------------------------

## S4 method for signature ’Ranges,Ranges’
e1 <= e2
## S4 method for signature ’Ranges,Ranges’
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e1 >= e2
## S4 method for signature ’Ranges,Ranges’
e1 < e2
## S4 method for signature ’Ranges,Ranges’
e1 > e2

## S4 method for signature ’Ranges’
order(..., na.last=TRUE, decreasing=FALSE)

## S4 method for signature ’Ranges’
sort(x, decreasing=FALSE, ...)

## S4 method for signature ’Ranges’
rank(x, na.last=TRUE,

ties.method=c("average", "first", "random", "max", "min"))

## ==== Generalized range-wise comparison ====
## -------------------------------------------
compare(x, y)
rangeComparisonCodeToLetter(code)

Arguments

e1, e2, x, y Ranges objects.

incomparables Must be FALSE.

fromLast See default S3 method for duplicated.

method Use a Quicksort-based (method="quick") or a hash-based (method="hash")
algorithm. The latter tends to give better performance, except maybe for some
pathological input that we’ve not been able to determine so far. When method="auto"
is specified, the hash-based algorithm is used as long as the length of x is <=
2^29, otherwise the Quicksort-based algorithm is used.

... Ranges objects for order.

na.last Ignored.

decreasing TRUE or FALSE.

ties.method A character string specifying how ties are treated. Only "first" is supported
for now.

code A vector of codes as returned by compare.

Details

Two ranges are considered equal iff they share the same start and width. Note that with this defi-
nition, 2 empty ranges are generally not equal (they need to share the same start to be considered
equal). This means that, when it comes to comparing ranges, an empty range is interpreted as a
position between its end and start. For example, a typical usecase is comparison of insertion points
defined along a string (like a DNA sequence) and represented as empty ranges.

Ranges are ordered by starting position first, and then by width. This way, the space of ranges is
totally ordered. The order, sort and rank methods for Ranges objects are consistent with this
order.
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duplicated(x): Determines which elements of x are equal to elements with smaller subscripts,
and returns a logical vector indicating which elements are duplicates. It is semantically equiv-
alent to duplicated(as.data.frame(x)). See duplicated in the base package for more
details.

unique(x): Removes duplicate ranges from x. See unique in the base package for more details.
order(...): Returns a permutation which rearranges its first argument (a Ranges object) into

ascending order, breaking ties by further arguments (also Ranges objects). See order in the
BiocGenerics package for more information.

sort(x): Sorts x. See sort in the base package for more details.
rank(x, na.last=TRUE, ties.method=c("average", "first", "random", "max", "min")):

Returns the sample ranks of the ranges in x. See rank in the base package for more details.
compare(x, y): Performs "generalized range-wise comparison" of x and y, that is, returns an

integer vector where the i-th element is a code describing how the i-th element in x is qualita-
tively positioned relatively to the i-th element in y.
Here is a summary of the 13 predefined codes and their meanings:

-6: x[i]: .oooo....... 6: x[i]: .......oooo.
y[i]: .......oooo. y[i]: .oooo.......

-5: x[i]: ..oooo...... 5: x[i]: ......oooo..
y[i]: ......oooo.. y[i]: ..oooo......

-4: x[i]: ...oooo..... 4: x[i]: .....oooo...
y[i]: .....oooo... y[i]: ...oooo.....

-3: x[i]: ...oooooo... 3: x[i]: .....oooo...
y[i]: .....oooo... y[i]: ...oooooo...

-2: x[i]: ..oooooooo.. 2: x[i]: ....oooo....
y[i]: ....oooo.... y[i]: ..oooooooo..

-1: x[i]: ...oooo..... 1: x[i]: ...oooooo...
y[i]: ...oooooo... y[i]: ...oooo.....

0: x[i]: ...oooooo...
y[i]: ...oooooo...

Note that this way of comparing ranges is a refinement over the standard ranges comparison
defined by the ==, !=, <=, >=, < and > operators. In particular a code that is < 0, = 0, or > 0,
corresponds to x[i] < y[i], x[i] == y[i], or x[i] > y[i], respectively.
The compare method for Ranges objects is guaranteed to return predefined codes only but
methods for other objects (e.g. for GenomicRanges objects) can return non-predefined codes.
Like for the predefined codes, the sign of any non-predefined code must tell whether x[i] is
less than, or greater than y[i].

rangeComparisonCodeToLetter(x): Translate the codes returned by compare. The 13 prede-
fined codes are translated as follow: -6 -> a; -5 -> b; -4 -> c; -3 -> d; -2 -> e; -1 -> f; 0 -> g;
1 -> h; 2 -> i; 3 -> j; 4 -> k; 5-> l; 6 -> m. Any non-predefined code is translated to X. The
translated codes are returned in a factor with 14 levels: a, b, ..., l, m, X.

See Also

Ranges-class, IRanges-class, duplicated, unique, order, sort, rank



70 Ranges-utils

Examples

x <- IRanges(start=c(20L, 8L, 20L, 22L, 25L, 20L, 22L, 22L),
width=c( 4L, 0L, 11L, 5L, 0L, 9L, 5L, 0L))

x

## ---------------------------------------------------------------------
## A. EQUALITY AND RELATED METHODS
## ---------------------------------------------------------------------
which(width(x) == 0) # 3 empty ranges
x[2] == x[2] # TRUE
x[2] == x[5] # FALSE
x == x[4]
duplicated(x)
unique(x)

## ---------------------------------------------------------------------
## B. ORDERING AND RELATED METHODS
## ---------------------------------------------------------------------
x >= x[3]
order(x)
sort(x)
rank(x, ties.method="first")

## ---------------------------------------------------------------------
## C. GENERALIZED RANGE-WISE COMPARISON OF 2 Ranges OBJECTS
## ---------------------------------------------------------------------
x0 <- IRanges(1:11, width=4)
x0
y0 <- IRanges(6, 9)
compare(x0, y0)
compare(IRanges(4:6, width=6), y0)
compare(IRanges(6:8, width=2), y0)
compare(x0, y0) < 0 # equivalent to ’x0 < y0’
compare(x0, y0) == 0 # equivalent to ’x0 == y0’
compare(x0, y0) > 0 # equivalent to ’x0 > y0’

rangeComparisonCodeToLetter(-10:10)
rangeComparisonCodeToLetter(compare(x0, y0))

Ranges-utils Ranges utility functions

Description

Utility functions for modifying Ranges objects.

Usage

flank(x, width, start=TRUE, both=FALSE, use.names=TRUE,...)
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)
reflect(x, bounds, use.names=TRUE)
resize(x, width, fix="start", use.names=TRUE,...)
restrict(x, start=NA, end=NA, keep.all.ranges=FALSE, use.names=TRUE)
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shift(x, shift=0L, use.names=TRUE)

## S4 method for signature ’Ranges’
range(x, ..., na.rm = FALSE)
## S4 method for signature ’Ranges’
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.inframe.attrib=FALSE)
## S4 method for signature ’Ranges,Ranges’
distance(x, y)
threebands(x, start=NA, end=NA, width=NA)

Arguments

x A Ranges object.

y A Ranges object.

width For narrow and threebands, a vector of integers, eventually with NAs. See the
SEW (Start/End/Width) interface for the details (?solveUserSEW).
For resize and flank, the width of the resized or flanking regions. Note that
if both is TRUE, this is effectively doubled. Recycled as necessary so that each
element corresponds to a range in x.

start, end A vector of integers for all functions except for flank.
For restrict, the supplied start and end arguments must be vectors of inte-
gers, eventually with NAs, that specify the restriction interval(s). Recycled as
necessary so that each element corresponds to a range in x.
Same thing for narrow and threebands, except that here start and end must
contain coordinates relative to the ranges in x. See the Details section below.
For flank, start is a logical indicating whether x should be flanked at the
start (TRUE) or the end (FALSE). Recycled as necessary so that each element
corresponds to a range in x.

both If TRUE, extends the flanking region width positions into the range. The resulting
range thus straddles the end point, with width positions on either side.

use.names TRUE or FALSE. Should names be preserved?

bounds An IRanges object to serve as the reference bounds for the reflection, see below.

fix For resize, a character vector or character Rle of length 1 or length(x) con-
taining the values "start", "end", and "center" denoting what to use as an
anchor for each element in x.

keep.all.ranges

TRUE or FALSE. Should ranges that don’t overlap with the restriction interval(s)
be kept? Note that "don’t overlap" means that they end strictly before start - 1
or start strictly after end + 1. Ranges that end at start - 1 or start at end + 1
are always kept and their width is set to zero in the returned IRanges object.

shift An integer vector containing the shift information. Recycled as necessary so
that each element corresponds to a range in x.

drop.empty.ranges

TRUE or FALSE. Should empty ranges be dropped?

min.gapwidth Ranges separated by a gap of at least min.gapwidth positions won’t be merged
in the Ranges object returned by reduce. Otherwise, they will.

with.inframe.attrib

TRUE or FALSE. For internal use.
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... For range, additional Ranges to consider.

na.rm Ignored

Details

flank generates flanking ranges for each range in x. If start is TRUE for a given range, the flanking
occurs at the start, otherwise the end. The widths of the flanks are given by the width parameter.
The widths can be negative, in which case the flanking region is reversed so that it represents a
prefix or suffix of the range in x. The flank operation is illustrated below for a call of the form
flank(x, 3, TRUE), where x indicates a range in x and - indicates the resulting flanking region:

---xxxxxxx

If start were FALSE:

xxxxxxx---

For negative width, i.e. flank(x, -3, FALSE), where * indicates the overlap between x and the
result:

xxxx***

If both is TRUE, then, for all ranges in x, the flanking regions are extended into (or out of, if width
is negative) the range, so that the result straddles the given endpoint and has twice the width given
by width. This is illustrated below for flank(x, 3, both=TRUE):

---***xxxx

narrow narrows the ranges in x i.e. each range in the returned Ranges object is a subrange of the cor-
responding range in x. The supplied start/end/width values are solved by a call to solveUserSEW(width(x), start=start, end=end, width=width)
and therefore must be compliant with the rules of the SEW (Start/End/Width) interface (see ?solveUserSEW
for the details). Then each subrange is derived from the original range according to the solved
start/end/width values for this range. Note that those solved values are interpreted relatively to the
original range.

reflect "reflects" or reverses each range in x relative to the corresponding range in bounds, which
is recycled as necessary. Reflection preserves the width of a range, but shifts it such the distance
from the left bound to the start of the range becomes the distance from the end of the range to the
right bound. This is illustrated below, where x represents a range in x and [ and ] indicate the
bounds:

[..xxx.....]
becomes
[.....xxx..]

resize resizes the ranges to the specified width where either the start, end, or center is used as an
anchor.

restrict restricts the ranges in x to the interval(s) specified by the start and end arguments.
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shift shifts all the ranges in x.

range first combines x and the arguments in .... If the combined IRanges object contains at least
1 range, then range returns an IRanges instance with a single range, from the minimum start to the
maximum end of the combined object. Otherwise (i.e. if the combined object contains no range),
IRanges() is returned (i.e. an IRanges instance of length 0).

reduce first orders the ranges in x from left to right, then merges the overlapping or adjacent ones.

threebands extends the capability of narrow by returning the 3 ranges objects associated to the
narrowing operation. The returned value y is a list of 3 ranges objects named "left", "middle" and
"right". The middle component is obtained by calling narrow with the same arguments (except
that names are dropped). The left and right components are also instances of the same class as x and
they contain what has been removed on the left and right sides (respectively) of the original ranges
during the narrowing.

Note that original object x can be reconstructed from the left and right bands with punion(y$left, y$right, fill.gap=TRUE).

distance returns the number of steps between the end (or start) of one range in x and the start
(or end) of the corresponding range in y, depending on their order. If the two ranges overlap, the
distance is zero. If they are adjacent, the distance is one.

Author(s)

H. Pages, M. Lawrence, P. Aboyoun

See Also

threebands could be described as a parallel variant of disjoin.

Ranges-class, IRanges-setops, solveUserSEW

Examples

vec <- as.integer(c(19, 5, 0, 8, 5))
x <- successiveIRanges(vec)
x

shift(x, -3)

restrict(x, start=12, end=34)
restrict(x, start=20)
restrict(x, start=21)
restrict(x, start=21, keep.all.ranges=TRUE)

y <- x[width(x) != 0]
narrow(y, start=4, end=-2)
narrow(y, start=-4, end=-2)
narrow(y, end=5, width=3)
narrow(y, start = c(3, 4, 2, 3), end = c(12, 5, 7, 4))

resize(y, width = 200)
resize(y, width = 2, fix = "end")

z <- threebands(y, start=4, end=-2)
y0 <- punion(z$left, z$right, fill.gap=TRUE)
identical(y, y0) # TRUE
threebands(y, start=-5)
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x <- IRanges(start=c(-2, 6, 9, -4, 1, 0, -6, 3, 10),
width=c( 5, 0, 6, 1, 4, 3, 2, 0, 3))

range(x)
reduce(x)
reduce(x, drop.empty.ranges=TRUE)

ir1 <- IRanges(c(2,5,1), c(3,7,3))

bounds <- IRanges(c(0, 5, 3), c(10, 6, 9))
reflect(ir1, bounds)

flank(ir1, 2)
flank(ir1, 2, FALSE)
flank(ir1, 2, c(FALSE, TRUE, FALSE))
flank(ir1, c(2, -2, 2))
flank(ir1, 2, both = TRUE)
flank(ir1, 2, FALSE, TRUE)
flank(ir1, -2, FALSE, TRUE)

RangesList-class List of Ranges

Description

An extension of List that holds only Ranges objects. Useful for storing ranges over a set of spaces
(e.g. chromosomes), each of which requires a separate Ranges object. As a Vector, RangesList
may be annotated with its universe identifier (e.g. a genome) in which all of its spaces exist.

Accessors

In the code snippets below, x is a RangesList object.

All of these accessors collapse over the spaces:

start(x), start(x) <- value: Get or set the starts of the ranges. When setting the starts,
value can be an integer vector of length(sum(elementLengths(x))) or an IntegerList ob-
ject of length length(x) and names names(x).

end(x), end(x) <- value: Get or set the ends of the ranges. When setting the starts, value can
be an integer vector of length(sum(elementLengths(x))) or an IntegerList object of length
length(x) and names names(x).

width(x), width(x) <- value: Get or set the widths of the ranges. When setting the starts,
value can be an integer vector of length(sum(elementLengths(x))) or an IntegerList ob-
ject of length length(x) and names names(x).

space(x): Gets the spaces of the ranges as a character vector. This is equivalent to names(x),
except each name is repeated according to the length of its element.

These accessors are for the universe identifier:

universe(x): gets the name of the universe as a single string, if one has been specified, NULL
otherwise.

universe(x) <- value: sets the name of the universe to value, a single string or NULL.
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Constructor

RangesList(..., universe = NULL): Each Ranges in ... becomes an element in the new
RangesList, in the same order. This is analogous to the list constructor, except every ar-
gument in ... must be derived from Ranges. The universe is specified by the universe
parameter, which should be a single string or NULL, to leave unspecified.

Subsetting

In the code snippets below, x is a RangesList object.

x[i]: Subset x by index i, with the same semantics as a basic Vector, except i may itself be a
RangesList, in which case only the ranges in x that overlap with those in i are kept. See the
findOverlaps method for more details.

Coercion

In the code snippets below, x and from are a RangesList object.

as.data.frame(x, row.names = NULL, optional = FALSE): Coerces x to a data.frame. Es-
sentially the same as calling data.frame(space=rep(names(x), elementLengths(x)), as.data.frame(unlist(x, use.names=FALSE))).

as(from, "RangedData"): Coerces from to a RangedData with zero columns and the same
ranges as in from.

as(from, "SimpleIRangesList"): Coerces from, to a SimpleIRangesList, requiring that all
Ranges elements are coerced to internal IRanges elements. This is a convenient way to ensure
that all Ranges have been imported into R (and that there is no unwanted overhead when
accessing them).

as(from, "CompressedIRangesList"): Coerces from, to a CompressedIRangesList, requir-
ing that all Ranges elements are coerced to internal IRanges elements. This is a convenient
way to ensure that all Ranges have been imported into R (and that there is no unwanted over-
head when accessing them).

as(from, "SimpleNormalIRangesList"): Coerces from, to a SimpleNormalIRangesList, re-
quiring that all Ranges elements are coerced to internal NormalIRanges elements.

as(from, "CompressedNormalIRangesList"): Coerces from, to a CompressedNormalIRangesList,
requiring that all Ranges elements are coerced to internal NormalIRanges elements.

Arithmetic Operations

Any arithmetic operation, such as x + y, x * y, etc, where x is a RangesList, is performed iden-
tically on each element. Currently, Ranges supports only the * operator, which zooms the ranges
by a numeric factor.

Author(s)

Michael Lawrence

Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
named <- RangesList(one = range1, two = range2)
length(named) # 2
start(named) # same as start(c(range1, range2))
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names(named) # "one" and "two"
named[[1]] # range1
unnamed <- RangesList(range1, range2)
names(unnamed) # NULL

# edit the width of the ranges in the list
edited <- named
width(edited) <- rep(c(3,2), elementLengths(named))
edited

# same as list(range1, range2)
as.list(RangesList(range1, range2))

# coerce to data.frame
as.data.frame(named)

# set the universe
universe(named) <- "hg18"
universe(named)
RangesList(range1, range2, universe = "hg18")

## zoom in 2X
collection <- RangesList(one = range1, range2)
collection * 2

RangesList-utils RangesList utility functions

Description

Utility functions for manipulating RangesList objects.

Usage

# Intra-interval operations
## S4 method for signature ’RangesList’
flank(x, width, start=TRUE, both=FALSE, use.names=TRUE)
## S4 method for signature ’RangesList’
narrow(x, start=NA, end=NA, width=NA, use.names=TRUE)
## S4 method for signature ’RangesList’
resize(x, width, fix="start", use.names=TRUE)
## S4 method for signature ’RangesList’
restrict(x, start=NA, end=NA, keep.all.ranges=FALSE, use.names=TRUE)
## S4 method for signature ’RangesList’
shift(x, shift, use.names=TRUE)

# Inter-interval operations
## S4 method for signature ’RangesList’
disjoin(x)
## S4 method for signature ’RangesList’
disjointBins(x)
## S4 method for signature ’RangesList’
gaps(x, start=NA, end=NA)
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## S4 method for signature ’RangesList’
range(x, ..., na.rm = FALSE)
## S4 method for signature ’RangesList’
reduce(x, drop.empty.ranges=FALSE, min.gapwidth=1L,

with.inframe.attrib=FALSE)

# Set operations
## S4 method for signature ’RangesList,RangesList’
union(x, y)
## S4 method for signature ’RangesList,RangesList’
intersect(x, y)
## S4 method for signature ’RangesList,RangesList’
setdiff(x, y)

Arguments

x, y A RangesList

start, end For flank, start must be either a logical vector or a LogicalList object indicat-
ing whether x should be flanked at the start (TRUE) or the end (FALSE). Recycled
as necessary so that each element corresponds to a range in x.
For narrow, start and end must be either an integer vector or a IntegerList
object containing coordinates relative to the current ranges.
For restrict, start and end must be either an integer vector or a IntegerList
object (possibly containing NA’s).
For gaps, start and end must be an integer vector containing the coordinate
bounds for each RangesList element.

width For flank and resize, either an integer vector or an IntegerList object contain-
ing the width of the flanking or resized regions. Recycled as necessary so that
each element corresponds to a range in x. (Note for flank: if both is TRUE, this
is effectively doubled.)
For narrow, either an integer vector or a IntegerList object containing the widths
to narrow to. See the SEW (Start/End/Width) interface for the details (?solveUserSEW).

both If TRUE, extends the flanking region width positions into the range. The resulting
range thus straddles the end point, with width positions on either side.

use.names TRUE or FALSE. Should names be preserved?

fix For resize, a character vector of length 1, a CharacterList object, or a ’charac-
ter’ RleList object containing the values "start", "end", and "center" denot-
ing what to use as an anchor for each element in x.

keep.all.ranges

TRUE or FALSE. Should ranges that don’t overlap with the interval specified by
start and end be kept? Note that "don’t overlap" means that they end strictly
before start - 1 or start strictly after end + 1. Ranges that end at start - 1
or start at end + 1 are always kept and their width is set to zero in the returned
RangesList object.

shift Either an integer vector or a IntegerList object containing the shift information.
Recycled as necessary so that each element corresponds to a range in x.

drop.empty.ranges

TRUE or FALSE. Should empty ranges be dropped?

min.gapwidth Ranges separated by a gap of at least min.gapwidth positions won’t be merged
in the Ranges object returned by reduce. Otherwise, they will.



78 RangesList-utils

with.inframe.attrib

TRUE or FALSE. For internal use.

... For range, additional RangesList to consider.

na.rm Ignored

Details

The flank method generates flanking ranges for each range in x.

The narrow method narrows the ranges in x i.e. each range in the returned RangesList object is a
subrange of the corresponding range in x.

The resize method resizes the ranges to the specified width where either the start or end is used as
an anchor.

The restrict method restricts the ranges in x to the interval specified by the start and end argu-
ments.

The shift method shifts all the ranges in x.

The disjoin method returns disjoint ranges by finding the within element union of the end points
of x.

The disjointBins method computes, independently for each element of x, bin assignments such
that a range does not overlap any other range in its bin.

The gaps method takes the complement (via gaps) of each element in the list and returns the result
as a RangesList.

range finds the range, i.e. a Ranges with one range, from the minimum start to the maximum end,
on each element in x and returns the result as a RangesList. If there are additional RangesList
objects in ..., they are merged into x by name, if all objects have names, otherwise, if they are all
of the same length, by position. Else, an exception is thrown.

The reduce method merges (via reduce) each of the elements in the list and returns the result as a
RangesList.

The union method performs elementwise union operations for two RangesList objects.

The intersect method performs elementwise intersect operations for two RangesList objects.

The setdiff method performs elementwise setdiff operations for two RangesList objects.

Value

A RangesList object. For flank, narrow, resize, restrict, and shift, the length is the same
as that of x.

For disjointBins, an IntegerList with the bin assignments for each element of x.

Author(s)

M. Lawrence, H. Pages, P. Aboyoun

See Also

RangesList, Ranges-utils
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Examples

range1 <- IRanges(start=c(1,2,3), end=c(5,2,8))
range2 <- IRanges(start=c(15,45,20,1), end=c(15,100,80,5))
range3 <- IRanges(start=c(-2,6,7), width=c(8,0,0)) # with empty ranges
collection <- RangesList(one = range1, range2, range3)

shift(collection, shift=5)
restrict(collection, start=2, end=8)
resize(collection, width=200)
flank(collection, width=10)
disjoin(collection)

# these three are the same
reduce(collection)
RangesList(one = reduce(range1), reduce(range2), reduce(range3))
do.call(RangesList, lapply(collection, reduce))

# drop empty ranges
reduce(collection, drop.empty.ranges=TRUE)

# these three are the same
gaps(collection)
RangesList(one = gaps(range1), gaps(range2), gaps(range3))
do.call(RangesList, lapply(collection, gaps))

# ’range’
rl <- RangesList(a = IRanges(c(1,2),c(4,3)), b = IRanges(c(4,6),c(10,7)))
rl2 <- RangesList(c = IRanges(c(0,2),c(4,5)), a = IRanges(c(4,5),c(6,7)))
range(rl, rl2) # matched by names
names(rl2) <- NULL
range(rl, rl2) # now by position

# set operations
union(rl, rl2)
intersect(rl, rl2)
setdiff(rl, rl2)

RangesMapping-class Mapping of ranges to another sequence

Description

The map generic converts a set of ranges to the equivalent ranges on another sequence, through
some sort of alignment between sequences, and outputs an RangesMapping object. There are three
primary components of that object: the transformed ranges, the space (destination sequence) for
the ranges, and the hits, a Hits object of the same length that matches each input range to a
destination sequence (useful when the alignment is one/many to many).

Usage

map(from, to, ...)
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Arguments

from Typically an object containing ranges to map.

to Typically an object representing an alignment.

... Arguments to pass to methods

Value

A RangesMapping object, as documented here.

RangesMapping Accessors

ranges(x): Gets the mapped ranges.

space(x): Gets the destination spaces (sequence names).

hits(x): Gets the matching between the input ranges and the destination sequences (of which
there may be more than one).

dim(x): Same as dim(hits(x)).

length(x): Same as length(hits(x)).

subjectHits(x): Same as subjectHits(hits(x)).

queryHits(x): Same as queryHits(hits(x)).

RangesMapping Coercion

as(from, "RangedData"): Converts a RangesMapping into a RangedData. The ranges/space
in the RangedData are the ranges/space of from, and the values result from the coercion of
the hits to a DataFrame.

Author(s)

Michael Lawrence

See Also

Methods on the generic map, which generates an instance of this class, are defined in other packages,
like GenomicRanges.

rdapply Applying over spaces

Description

The rdapply function applies a user function over the spaces of a RangedData. The parameters to
rdapply are collected into an instance of RDApplyParams, which is passed as the sole parameter to
rdapply.

Usage

rdapply(x, ...)
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Arguments

x The RDApplyParams instance, see below for how to make one.

... Additional arguments for methods

Details

The rdapply function is an attempt to facilitate the common operation of performing the same
operation over each space (e.g. chromosome) in a RangedData. To facilitate a wide array of such
tasks, the function takes a large number of options. The RDApplyParams class is meant to help man-
age this complexity. In particular, it facilitates experimentation through its support for incremental
changes to parameter settings.

There are two RangedData settings that are required: the user function object and the RangedData
over which it is applied. The rest of the settings determine what is actually passed to the user
function and how the return value is processed before relaying it to the user. The following is the
description and rationale for each setting.

rangedData REQUIRED. The RangedData instance over which applyFun is applied.

applyFun REQUIRED. The user function to be applied to each space in the RangedData. The
function must expect the RangedData as its first parameter and also accept the parameters
specified in applyParams.

applyParams The list of additional parameters to pass to applyFun. Usually empty.

filterRules The instance of FilterRules that is used to filter each subset of the RangedData
passed to the user function. This is an efficient and convenient means for performing the
same operation over different subsets of the data on a space-by-space basis. In particular, this
avoids the need to store subsets of the entire RangedData. A common workflow is to invoke
rdapply with one set of active filters, enable different filters, reinvoke rdapply, and compare
the results.

simplify A scalar logical (TRUE or FALSE) indicating whether the list to be returned from rdapply
should be simplified as by sapply. Defaults to FALSE.

reducerFun The function that is used to convert the list that would otherwise be returned from
rdapply to something more convenient. The function should take the list as its first parameter
and also accept the parameters specified in reducerParams. This is an alternative to the
primitive behavior of the simplify option (so simplify must be FALSE if this option is set).
The aim is to orthogonalize the applyFun operation (i.e. the statistics) from the data structure
of the result.

reducerParams A list of additional parameters to pass to reducerFun. Can only be set if
reducerFun is set. Usually empty.

iteratorFun The function used for applying over the RangedData. By default, this is lapply, but
it could also be a specialized function, like mclapply.

Value

By default a list holding the result of each invocation of the user function, but see details.

Constructing an RDApplyParams object

RDApplyParams(rangedData, applyFun, applyParams, filterRules, simplify, reducerFun, reducerParams):
Constructs a RDApplyParams object with each setting specified by the argument of the same
name. See the Details section for more information.
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Accessors

In the following code snippets, x is an RDApplyParams object.

rangedData(x), rangedData(x) <- value: Get or set the RangedData instance over which
applyFun is applied.

applyFun(x), applyFun(x) <- value: Get or set the user function to be applied to each space
in the RangedData.

applyParams(x), applyParams(x) <- value: Get or set the list of additional parameters to
pass to applyFun.

filterRules(x), filterRules(x) <- value: Get or set the instance of FilterRules that is
used to filter each subset of the RangedData passed to the user function.

simplify(x), simplify(x) <- value: Get or set a a scalar logical (TRUE or FALSE) indicating
whether the list to be returned from rdapply should be simplified as by sapply.

reducerFun(x), reducerFun(x) <- value: Get or set the function that is used to convert the
list that would otherwise be returned from rdapply to something more convenient.

reducerParams(x), reducerParams(x) <- value: Get or set a list of additional parameters
to pass to reducerFun.

iteratorFun(x), iteratorFun(x) <- value: Get or set the function used for applying over the
RangedData.

Author(s)

Michael Lawrence

See Also

RangedData, FilterRules

Examples

ranges <- IRanges(c(1,2,3),c(4,5,6))
score <- c(2L, 0L, 1L)
rd <- RangedData(ranges, score, space = c("chr1","chr2","chr1"))

## a single function
countrows <- function(rd) nrow(rd)
params <- RDApplyParams(rd, countrows)
rdapply(params) # list(chr1 = 2L, chr2 = 1L)

## with a parameter
params <- RDApplyParams(rd, function(rd, x) nrow(rd)*x, list(x = 2))
rdapply(params) # list(chr1 = 4L, chr2 = 2L)

## add a filter
cutoff <- 0
rules <- FilterRules(filter = score > cutoff)
params <- RDApplyParams(rd, countrows, filterRules = rules)
rdapply(params) # list(chr1 = 2L, chr2 = 0L)
rules <- FilterRules(list(fun = function(rd) rd[["score"]] < 2),

filter = score > cutoff)
params <- RDApplyParams(rd, countrows, filterRules = rules)
rdapply(params) # list(chr1 = 1L, chr2 = 0L)
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active(filterRules(params))["filter"] <- FALSE
rdapply(params) # list(chr1 = 1L, chr2 = 1L)

## simplify
params <- RDApplyParams(rd, countrows, simplify = TRUE)
rdapply(params) # c(chr1 = 2L, chr2 = 1L)

## reducing
params <- RDApplyParams(rd, countrows, reducerFun = unlist,

reducerParams = list(use.names = FALSE))
rdapply(params) ## c(2L, 1L)

read.Mask Read a mask from a file

Description

read.agpMask and read.gapMask extract the AGAPS mask from an NCBI "agp" file or a UCSC
"gap" file, respectively.

read.liftMask extracts the AGAPS mask from a UCSC "lift" file (i.e. a file containing offsets of
contigs within sequences).

read.rmMask extracts the RM mask from a RepeatMasker .out file.

read.trfMask extracts the TRF mask from a Tandem Repeats Finder .bed file.

Usage

read.agpMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.gapMask(file, seqname="?", mask.width=NA, gap.types=NULL, use.gap.types=FALSE)
read.liftMask(file, seqname="?", mask.width=NA)
read.rmMask(file, seqname="?", mask.width=NA, use.IDs=FALSE)
read.trfMask(file, seqname="?", mask.width=NA)

Arguments

file Either a character string naming a file or a connection open for reading.

seqname The name of the sequence for which the mask must be extracted. If no sequence
is specified (i.e. seqname="?") then an error is raised and the sequence names
found in the file are displayed. If the file doesn’t contain any information for
the specified sequence, then a warning is issued and an empty mask of width
mask.width is returned.

mask.width The width of the mask to return i.e. the length of the sequence this mask will be
put on. See ?‘MaskCollection-class‘ for more information about the width
of a MaskCollection object.

gap.types NULL or a character vector containing gap types. Use this argument to filter
the assembly gaps that are to be extracted from the "agp" or "gap" file based
on their type. Most common gap types are "contig", "clone", "centromere",
"telomere", "heterochromatin", "short_arm" and "fragment". With gap.types=NULL,
all the assembly gaps described in the file are extracted. With gap.types="?",
an error is raised and the gap types found in the file for the specified sequence
are displayed.
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use.gap.types Whether or not the gap types provided in the "agp" or "gap" file should be used
to name the ranges constituing the returned mask. See ?‘IRanges-class‘ for
more information about the names of an IRanges object.

use.IDs Whether or not the repeat IDs provided in the RepeatMasker .out file should be
used to name the ranges constituing the returned mask. See ?‘IRanges-class‘
for more information about the names of an IRanges object.

See Also

MaskCollection-class, IRanges-class

Examples

## ---------------------------------------------------------------------
## A. Extract a mask of assembly gaps ("AGAPS" mask) with read.agpMask()
## ---------------------------------------------------------------------
## Note: The hs_b36v3_chrY.agp file was obtained by downloading,
## extracting and renaming the hs_ref_chrY.agp.gz file from
##
## ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/Assembled_chromosomes/
## hs_ref_chrY.agp.gz 5 KB 24/03/08 04:33:00 PM
##
## on May 9, 2008.

chrY_length <- 57772954
file1 <- system.file("extdata", "hs_b36v3_chrY.agp", package="IRanges")
mask1 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,

use.gap.types=TRUE)
mask1
mask1[[1]]

mask11 <- read.agpMask(file1, seqname="chrY", mask.width=chrY_length,
gap.types=c("centromere", "heterochromatin"))

mask11[[1]]

## ---------------------------------------------------------------------
## B. Extract a mask of assembly gaps ("AGAPS" mask) with read.liftMask()
## ---------------------------------------------------------------------
## Note: The hg18liftAll.lft file was obtained by downloading,
## extracting and renaming the liftAll.zip file from
##
## http://hgdownload.cse.ucsc.edu/goldenPath/hg18/bigZips/
## liftAll.zip 03-Feb-2006 11:35 5.5K
##
## on May 8, 2008.

file2 <- system.file("extdata", "hg18liftAll.lft", package="IRanges")
mask2 <- read.liftMask(file2, seqname="chr1")
mask2
if (interactive()) {

## contigs 7 and 8 for chrY are adjacent
read.liftMask(file2, seqname="chrY")

## displays the sequence names found in the file
read.liftMask(file2)
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## specify an unknown sequence name
read.liftMask(file2, seqname="chrZ", mask.width=300)

}

## ---------------------------------------------------------------------
## C. Extract a RepeatMasker ("RM") or Tandem Repeats Finder ("TRF")
## mask with read.rmMask() or read.trfMask()
## ---------------------------------------------------------------------
## Note: The ce2chrM.fa.out and ce2chrM.bed files were obtained by
## downloading, extracting and renaming the chromOut.zip and
## chromTrf.zip files from
##
## http://hgdownload.cse.ucsc.edu/goldenPath/ce2/bigZips/
## chromOut.zip 21-Apr-2004 09:05 2.6M
## chromTrf.zip 21-Apr-2004 09:07 182K
##
## on May 7, 2008.

## Before you can extract a mask with read.rmMask() or read.trfMask(), you
## need to know the length of the sequence that you’re going to put the
## mask on:
if (interactive()) {

library(BSgenome.Celegans.UCSC.ce2)
chrM_length <- seqlengths(Celegans)[["chrM"]]

## Read the RepeatMasker .out file for chrM in ce2:
file3 <- system.file("extdata", "ce2chrM.fa.out", package="IRanges")
RMmask <- read.rmMask(file3, seqname="chrM", mask.width=chrM_length)
RMmask

## Read the Tandem Repeats Finder .bed file for chrM in ce2:
file4 <- system.file("extdata", "ce2chrM.bed", package="IRanges")
TRFmask <- read.trfMask(file4, seqname="chrM", mask.width=chrM_length)
TRFmask
desc(TRFmask) <- paste(desc(TRFmask), "[period<=12]")
TRFmask

## Put the 2 masks on chrM:
chrM <- Celegans$chrM
masks(chrM) <- RMmask # this would drop all current masks, if any
masks(chrM) <- append(masks(chrM), TRFmask)
chrM

}

reverse reverse

Description

A generic function with methods for reversing a character vector, a Views object, an XVector object,
an XVectorList object, or a MaskCollection object. Note that reverse is similar to but not the same
as rev.

Usage

reverse(x, ...)
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Arguments

x A character vector, a Views object, an XVector object, an XVectorList object, or
a MaskCollection object.

... Additional arguments to be passed to or from methods.

Details

On an XVector object, reverse and rev are equivalent, i.e. they both reverse the order of their
elements.

On a character vector, a Views object, or an XVectorList object, reverse reverses each element
individually, without modifying the top-level order of the elements. In particular, on XVectorList
object x, reverse is equivalent to endoapply(x, rev).

Value

An object of the same class and length as the original object.

See Also

Views-class, XVector-class, XVectorList-class, MaskCollection-class, endoapply, rev

Examples

## On a character vector:
reverse(c("Hi!", "How are you?"))

## On a Views object:
v <- successiveViews(as(12:-2, "XInteger"), 1:5)
v
reverse(v)

## On an XVectorList object:
## Not run:

library(Biostrings)
library(drosophila2probe)
probes <- DNAStringSet(drosophila2probe)
reverse(probes)

## End(Not run)

## On a MaskCollection object:
mask1 <- Mask(mask.width=29, start=c(11, 25, 28), width=c(5, 2, 2))
mask2 <- Mask(mask.width=29, start=c(3, 10, 27), width=c(5, 8, 1))
mask3 <- Mask(mask.width=29, start=c(7, 12), width=c(2, 4))
mymasks <- append(append(mask1, mask2), mask3)
reverse(mymasks)
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Rle-class Rle objects

Description

The Rle class is a general container for storing an atomic vector that is stored in a run-length
encoding format. It is based on the rle function from the base package.

Constructors

Rle(values): This constructor creates an Rle instances out of an atomic vector values.

Rle(values, lengths): This constructor creates an Rle instances out of an atomic vector or
factor object values and an integer or numeric vector lengths with all positive elements that
represent how many times each value is repeated. The length of these two vectors must be the
same.

as(from, "Rle"): This constructor creates an Rle instances out of an atomic vector from.

Accessors

In the code snippets below, x is an Rle object:

runLength(x): Returns the run lengths for x.

runValue(x): Returns the run values for x.

nrun(x): Returns the number of runs in x.

start(x): Returns the starts of the runs for x.

end(x): Returns the ends of the runs for x.

width(x): Same as runLength(x).

Replacers

In the code snippets below, x is an Rle object:

runLength(x) <- value: Replaces x with a new Rle object using run values runValue(x) and
run lengths value.

runValue(x) <- value: Replaces x with a new Rle object using run values value and run
lengths runLength(x).

Coercion

In the code snippets below, x and from are Rle objects:

as.vector(x, mode = "any"), as(from, "vector"): Creates an atomic vector based on the
values contained in x. The vector will be coerced to the requested mode, unless mode is "any",
in which case the most appropriate type is chosen.

as.vectorORfactor(x): Creates an atomic vector or factor, based on the type of values contained
in x. This is the most general way to decompress the Rle to a native R data structure.

as.logical(x), as(from, "logical"): Creates a logical vector based on the values contained
in x.
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as.integer(x), as(from, "integer"): Creates an integer vector based on the values contained
in x.

as.numeric(x), as(from, "numeric"): Creates a numeric vector based on the values contained
in x.

as.complex(x), as(from, "complex"): Creates a complex vector based on the values contained
in x.

as.character(x), as(from, "character"): Creates a character vector based on the values con-
tained in x.

as.raw(x), as(from, "raw"): Creates a raw vector based on the values contained in x.

as.factor(x), as(from, "factor"): Creates a factor object based on the values contained in x.

as.data.frame(x), as(from, "data.frame"): Creates a data.frame with a single column
holding the result of as.vector(x).

as(from, "IRanges"): Creates an IRanges instance from a logical Rle. Note that this instance is
guaranteed to be normal.

as(from, "NormalIRanges"): Creates a NormalIRanges instance from a logical Rle.

Group Generics

Rle objects have support for S4 group generic functionality:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="

Logic "&", "|"

Ops "Arith", "Compare", "Logic"

Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax", "cummin", "cumprod",
"cumsum", "log", "log10", "log2", "log1p", "acos", "acosh", "asin", "asinh", "atan",
"atanh", "exp", "expm1", "cos", "cosh", "sin", "sinh", "tan", "tanh", "gamma", "lgamma",
"digamma", "trigamma"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

See S4groupGeneric for more details.

General Methods

In the code snippets below, x is an Rle object:

x[i, drop = !is.null(getOption("dropRle")) && getOption("dropRle")]: Subsets x by
index i, where i can be positive integers, negative integers, a logical vector of the same length
as x, an Rle object of the same length as x containing logical values, or an IRanges object.
When drop = FALSE returns an Rle object. When drop = TRUE, returns an atomic vector.

x[i] <- value: Equivalent to seqselect(x, i) <- value.

x %in% table: Returns a logical Rle representing set membership in table.

aggregate(x, by, FUN, start = NULL, end = NULL, width = NULL, frequency = NULL, delta = NULL, ..., simplify = TRUE)):
Generates summaries on the specified windows and returns the result in a convenient form:

by An object with start, end, and width methods.
FUN The function, found via match.fun, to be applied to each window of x.
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start, end, width the start, end, or width of the window. If by is missing, then must supply
two of the three.

frequency, delta Optional arguments that specify the sampling frequency and increment
within the window.

. . . Further arguments for FUN.
simplify A logical value specifying whether or not the result should be simplified to a vector

or matrix if possible.

append(x, values, after = length(x)): Insert one Rle into another Rle.

values the Rle to insert.
after the subscript in x after which the values are to be inserted.

c(x, ...): Combines a set of Rle objects.

findRange(x, vec): Returns an IRanges object representing the ranges in Rle vec that are refer-
enced by the indices in the integer vector x.

findRun(x, vec): Returns an integer vector indicating the run indices in Rle vec that are refer-
enced by the indices in the integer vector x.

head(x, n = 6L): If n is non-negative, returns the first n elements of x. If n is negative, returns
all but the last abs(n) elements of x.

is.na(x): Returns a logical Rle indicating with values are NA.

is.unsorted(x, na.rm = FALSE, strictly = FALSE): Returns a logical value specifying if x
is unsorted.

na.rm remove missing values from check.
strictly check for _strictly_ increasing values.

length(x): Returns the underlying vector length of x.

match(x, table, nomatch = NA_integer_, incomparables = NULL): Matches the values in
x to table:

table the values to be matched against.
nomatch the value to be returned in the case when no match is found.
incomparables a vector of values that cannot be matched. Any value in x matching a value

in this vector is assigned the nomatch value.

rep(x, times, length.out, each), rep.int(x, times): Repeats the values in x through one
of the following conventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

rev(x): Reverses the order of the values in x.

seqselect(x, start = NULL, end = NULL, width = NULL): Creates a new Rle object using
consecutive subsequences from x specified by two of the three following values: start, end,
and width. See seqselect for more details.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-, ex-
cept that multiple consecutive subsequences can be replaced by a constant value. As such
two of the three start, end, and width arguments can be used to specify the consecutive sub-
sequences. Alternatively, start can take a Ranges object or something that can be converted
to a Ranges object like an integer vector, logical vector or logical Rle.
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shiftApply(SHIFT, X, Y, FUN, ..., OFFSET = 0L, simplify = TRUE, verbose = FALSE):
Let i be the indices in SHIFT, X_i = window(X, 1 + OFFSET, length(X) - SHIFT[i]),
and Y_i = window(Y, 1 + SHIFT[i], length(Y) - OFFSET). Calculates the set of FUN(X_i, Y_i, ...)
values and return the results in a convenient form:

SHIFT A non-negative integer vector of shift values.

X, Y The Rle objects to shift.

FUN The function, found via match.fun, to be applied to each set of shifted vectors.

. . . Further arguments for FUN.

OFFSET A non-negative integer offset to maintain throughout the shift operations.

simplify A logical value specifying whether or not the result should be simplified to a vector
or matrix if possible.

verbose A logical value specifying whether or not to print the i indices to track the iterations.

show(object): Prints out the Rle object in a user-friendly way.

sort(x, decreasing = FALSE, na.last = NA): Sorts the values in x.

decreasing If TRUE, sort values in decreasing order. If FALSE, sort values in increasing order.

na.last If TRUE, missing values are placed last. If FALSE, they are placed first. If NA, they
are removed.

split(x, f, drop = FALSE): Splits x according to f to create a CompressedRleList object.
Empty list elements are removed if drop is TRUE.

splitRanges(x): Returns a CompressedIRangesList object that contain the ranges for each of
the unique run values.

subset(x, subset): Returns a new Rle object made of the subset using logical vector subset.

summary(object, ..., digits = max(3, getOption("digits") - 3)): Summarizes the Rle
object using an atomic vector convention. The digits argument is used for number formatting
with signif().

table(...): Returns a table containing the counts of the unique values.

tail(x, n = 6L): If n is non-negative, returns the last n elements of x. If n is negative, returns
all but the first abs(n) elements of x.

unique(x, incomparables = FALSE, ...): Returns the unique run values. The incomparables
argument takes a vector of values that cannot be compared with FALSE being a special value
that means that all values can be compared.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta = NULL, ...):
Extract the subsequence window from x specified by:

start, end, width The start, end, or width of the window. Two of the three are required.

frequency, delta Optional arguments that specify the sampling frequency and increment
within the window.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value: Replace
the subsequence window specified on the left (i.e. the subsequence in x specified by start,
end and width) by value. value must either be of class Rle, belong to a subclass of Rle, be
coercible to Rle, or be NULL. If keepLength is TRUE, the elements of value are repeated to
create an Rle with the same number of elements as the width of the subsequence window it
is replacing. If keepLength is FALSE, this replacement method can modify the length of x,
depending on how the length of the left subsequence window compares to the length of value.
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Logical Data Methods

In the code snippets below, x is an Rle object:

!x: Returns logical negation (NOT) of x.

which(x): Returns an integer vector representing the TRUE indices of x.

ifelse(x, yes, no): For each element of x, returns the corresponding element in yes if TRUE,
otherwise the element in no. yes and no may be Rle objects or anything else coercible to a
vector.

Numerical Data Methods

In the code snippets below, x is an Rle object:

diff(x, lag = 1, differences = 1: Returns suitably lagged and iterated differences of x.

lag An integer indicating which lag to use.
differences An integer indicating the order of the difference.

pmax(..., na.rm = FALSE), pmax.int(..., na.rm = FALSE): Parallel maxima of the Rle in-
put values. Removes NAs when na.rm = TRUE.

pmin(..., na.rm = FALSE), pmin.int(..., na.rm = FALSE): Parallel minima of the Rle in-
put values. Removes NAs when na.rm = TRUE.

which.max(x): Returns the index of the first element matching the maximum value of x.

mean(x, na.rm = FALSE): Calculates the mean of x. Removes NAs when na.rm = TRUE.

var(x, y = NULL, na.rm = FALSE): Calculates the variance of x or covariance of x and y if
both are supplied. Removes NAs when na.rm = TRUE.

cov(x, y, use = "everything"), cor(x, y, use = "everything"): Calculates the covari-
ance and correlation respectively of Rle objects x and y. The use argument is an optional char-
acter string giving a method for computing covariances in the presence of missing values. This
must be (an abbreviation of) one of the strings "everything", "all.obs", "complete.obs",
"na.or.complete", or "pairwise.complete.obs".

sd(x, na.rm = FALSE): Calculates the standard deviation of x. Removes NAs when na.rm = TRUE.

median(x, na.rm = FALSE): Calculates the median of x. Removes NAs when na.rm = TRUE.

quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 7, ...):
Calculates the specified quantiles of x.

probs A numeric vector of probabilities with values in [0,1].
na.rm If TRUE, removes NAs from x before the quantiles are computed.
names If TRUE, the result has names describing the quantiles.
type An integer between 1 and 9 selecting one of the nine quantile algorithms detailed in

quantile.
. . . Further arguments passed to or from other methods.

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE, low = FALSE, high = FALSE):
Calculates the median absolute deviation of x.

center The center to calculate the deviation from.
constant The scale factor.
na.rm If TRUE, removes NAs from x before the mad is computed.
low If TRUE, compute the ’lo-median’.
high If TRUE, compute the ’hi-median’.
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IQR(x, na.rm = FALSE): Calculates the interquartile range of x.

na.rm If TRUE, removes NAs from x before the IQR is computed.

smoothEnds(y, k = 3): Smooth end points of an Rle y using subsequently smaller medians and
Tukey’s end point rule at the very end.

k An integer indicating the width of largest median window; must be odd.

runmean(x, k, endrule = c("drop", "constant")): Calculates the means for fixed width
running windows across x.

k An integer indicating the fixed width of the running window. Must be odd when endrule == "constant".
endrule A character string indicating how the values at the beginning and the end (of the

data) should be treated.
"drop" do not extend the running statistics to be the same length as the underlying vec-

tors;
"constant" copies running statistic to the first values and analogously for the last ones

making the smoothed ends constant;

runmed(x, k, endrule = c("median", "keep", "drop", "constant")): Calculates the me-
dians for fixed width running windows across x.

k An integer indicating the fixed width of the running window. Must be odd when endrule != "drop".
endrule A character string indicating how the values at the beginning and the end (of the

data) should be treated.
"keep" keeps the first and last k2 values at both ends, where k2 is the half-bandwidth

k2 = k %/% 2, i.e., y[j] = x[j] for j ∈ {1, . . . , k2;n − k2 + 1, . . . , n} j =
1, .., k2and(n− k2 + 1), .., n;

"constant" copies the running statistic to the first values and analogously for the last
ones making the smoothed ends constant;

"median" the default, smooths the ends by using symmetrical medians of subsequently
smaller bandwidth, but for the very first and last value where Tukey’s robust end-
point rule is applied, see smoothEnds.

runsum(x, k, endrule = c("drop", "constant")): Calculates the sums for fixed width run-
ning windows across x.

k An integer indicating the fixed width of the running window. Must be odd when endrule == "constant".
endrule A character string indicating how the values at the beginning and the end (of the

data) should be treated.
"drop" do not extend the running statistics to be the same length as the underlying vec-

tors;
"constant" copies running statistic to the first values and analogously for the last ones

making the smoothed ends constant;

runwtsum(x, k, wt, endrule = c("drop", "constant")): Calculates the sums for fixed width
running windows across x.

k An integer indicating the fixed width of the running window. Must be odd when endrule == "constant".
wt A numeric vector of length k that provides the weights to use.
endrule A character string indicating how the values at the beginning and the end (of the

data) should be treated.
"drop" do not extend the running statistics to be the same length as the underlying vec-

tors;
"constant" copies running statistic to the first values and analogously for the last ones

making the smoothed ends constant;
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runq(x, k, i, endrule = c("drop", "constant")): Calculates the order statistic for fixed
width running windows across x.

k An integer indicating the fixed width of the running window. Must be odd when endrule == "constant".
i An integer indicating which order statistic to calculate.
endrule A character string indicating how the values at the beginning and the end (of the

data) should be treated.
"drop" do not extend the running statistics to be the same length as the underlying vec-

tors;
"constant" copies running statistic to the first values and analogously for the last ones

making the smoothed ends constant;

Character Data Methods

In the code snippets below, x is an Rle object:

nchar(x, type = "chars", allowNA = FALSE): Returns an integer Rle representing the num-
ber of characters in the corresponding values of x.

type One of c("bytes", "chars", "width").
allowNA Should NA be returned for invalid multibyte strings rather than throwing an error?

substr(x, start, stop), substring(text, first, last = 1000000L): Returns a charac-
ter or factor Rle containing the specified substrings beginning at start/first and ending at
stop/last.

chartr(old, new, x): Returns a character or factor Rle containing a translated version of x.

old A character string specifying the characters to be translated.
new A character string specifying the translations.

tolower(x): Returns a character or factor Rle containing a lower case version of x.

toupper(x): Returns a character or factor Rle containing an upper case version of x.

sub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE):
Returns a character or factor Rle containing replacements based on matches determined by
regular expression matching. See sub for a description of the arguments.

gsub(pattern, replacement, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE):
Returns a character or factor Rle containing replacements based on matches determined by
regular expression matching. See gsub for a description of the arguments.

paste(..., sep = " ", collapse = NULL): Returns a character or factor Rle containing a
concatenation of the values in ....

Factor Data Methods

In the code snippets below, x is an Rle object:

levels(x), levels(x) <- value: Gets and sets the factor levels, respectively.

nlevels(x): Returns the number of factor levels.

Author(s)

P. Aboyoun

See Also

rle, Vector-class, S4groupGeneric, IRanges-class
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Examples

x <- Rle(10:1, 1:10)
x

runLength(x)
runValue(x)
nrun(x)

diff(x)
unique(x)
sort(x)
sqrt(x)
x^2 + 2 * x + 1
x[c(1,3,5,7,9)]
window(x, 4, 14)
range(x)
sum(x)
mean(x)
x > 4
aggregate(x, x > 4, mean)
aggregate(x, FUN = mean, start = 1:(length(x) - 50), end = 51:length(x))

x2 <- Rle(LETTERS[c(21:26, 25:26)], 8:1)
table(x2)

y <- Rle(c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE))
y
as.vector(y)
rep(y, 10)
c(y, x > 5)

z <- c("the", "quick", "red", "fox", "jumps", "over", "the", "lazy", "brown", "dog")
z <- Rle(z, seq_len(length(z)))
chartr("a", "@", z)
toupper(z)

RleViews-class The RleViews class

Description

The RleViews class is the basic container for storing a set of views (start/end locations) on the same
Rle object.

Details

An RleViews object contains a set of views (start/end locations) on the same Rle object called "the
subject vector" or simply "the subject". Each view is defined by its start and end locations: both are
integers such that start <= end. An RleViews object is in fact a particular case of a Views object (the
RleViews class contains the Views class) so it can be manipulated in a similar manner: see ?Views
for more information. Note that two views can overlap and that a view can be "out of limits" i.e. it
can start before the first element of the subject or/and end after its last element.
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Author(s)

P. Aboyoun

See Also

Views-class, Rle-class, Views-utils

Examples

subject <- Rle(rep(c(3L, 2L, 18L, 0L), c(3,2,1,5)))
myViews <- Views(subject, 3:0, 5:8)
myViews
subject(myViews)
length(myViews)
start(myViews)
end(myViews)
width(myViews)
myViews[[2]]

set.seed(0)
vec <- Rle(sample(0:2, 20, replace = TRUE))
vec
Views(vec, vec > 0)

RleViewsList-class List of RleViews

Description

An extension of ViewsList that holds only RleViews objects. Useful for storing coverage vectors
over a set of spaces (e.g. chromosomes), each of which requires a separate RleViews object.

Details

For more information on methods available for RleViewsList objects consult the man pages for
ViewsList-class and Views-utils.

Constructor

RleViewsList(..., rleList, rangesList, universe = NULL): Either ... or the rleList/rangesList
couplet provide the RleViews for the list. If ... is provided, each of these arguments must
be RleViews objects. Alternatively, rleList and rangesList accept Rle and Ranges objects
respectively that are meshed together for form the RleViewsList. The universe is specified by
the universe parameter, which should be a single string or NULL, to leave unspecified.

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): Same as RleViewsList(rleList = subject, rangesList = start).
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Coercion

In the code snippets below, from is an RleViewsList object:

as(from, "IRangesList"): Creates a CompressedIRangesList object containing the view lo-
cations in from.

as(from, "CompressedIRangesList"): Creates a CompressedIRangesList object containing
the view locations in from.

as(from, "SimpleIRangesList"): Creates a SimpleIRangesList object containing the view
locations in from.

as(from, "RangedData"): Creates a RangedData using the ranges given by the runs of subject(from)
in each of the windows, with a value column score taken as the corresponding subject values.

Author(s)

P. Aboyoun

See Also

ViewsList-class, Views-utils

Examples

## Rle objects
subject1 <- Rle(c(3L,2L,18L,0L), c(3,2,1,5))
set.seed(0)
subject2 <- Rle(c(0L,5L,2L,0L,3L), c(8,5,2,7,4))

## Views
rleViews1 <- Views(subject1, 3:0, 5:8)
rleViews2 <- Views(subject2, subject2 > 0)

## RleList and RangesList objects
rleList <- RleList(subject1, subject2)
rangesList <- IRangesList(IRanges(3:0, 5:8), IRanges(subject2 > 0))

## methods for construction
method1 <- RleViewsList(rleViews1, rleViews2)
method2 <- RleViewsList(rleList = rleList, rangesList = rangesList)
identical(method1, method2)

## calculation over the views
viewSums(method1)

runstat Fixed width running window summaries across vector-like objects

Description

The runsum, runmean, runwtsum, runq functions calculate the sum, mean, weighted sum, and order
statistics for fixed width running windows.
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Usage

runsum(x, k, endrule = c("drop", "constant"))
runmean(x, k, endrule = c("drop", "constant"))
runwtsum(x, k, wt, endrule = c("drop", "constant"))
runq(x, k, i, endrule = c("drop", "constant"))

Arguments

x The data object.

k An integer indicating the fixed width of the running window. Must be odd when
endrule == "constant".

wt A numeric vector of length k that provides the weights to use.

i An integer indicating which order statistic to calculate.

endrule A character string indicating how the values at the beginning and the end (of the
data) should be treated.

"drop" do not extend the running statistics to be the same length as the under-
lying vectors;

"constant" copies running statistic to the first values and analogously for the
last ones making the smoothed ends constant;

Details

The runsum, runmean, runwtsum, and runq functions provide efficient methods for calculating the
specified numeric summary by performing the looping in compiled code.

Value

An object of the same class as x.

Author(s)

P. Aboyoun

See Also

runmed, Rle-class, RleList-class

Examples

x <- Rle(1:10, 1:10)
runsum(x, k = 3)
runsum(x, k = 3, endrule = "constant")
runmean(x, k = 3)
runwtsum(x, k = 3, wt = c(0.25, 0.5, 0.25))
runq(x, k = 5, i = 3, endrule = "constant")
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score Score accessor and setter

Description

Gets and sets the score of an object.

Usage

score(x, ...)
score(x, ...) <- value

Arguments

x An object to get or set the score value of.
value A new score value.
... Additional arguments.

seqapply Apply function and cast to Vector

Description

The seqapply family of functions behaves much like the existing lapply family, except the return
value is cast to a Vector subclass. This facilitates constraining computation to the Vector framework
across iteration and (for seqsplit) splitting.

Usage

seqapply(X, FUN, ...)
mseqapply(FUN, ..., MoreArgs = NULL, USE.NAMES = TRUE)
tseqapply(X, INDEX, FUN = NULL, ...)
seqsplit(x, f, drop = FALSE)
seqby(data, INDICES, FUN, ...)

Arguments

X The object over which to iterate, usually a vector or Vector
x Like X

data Like X

FUN The function that is applied to each element of X
MoreArgs Additional arguments to FUN that are treated like scalars
USE.NAMES Whether the return values should inherit names from one of the arguments
INDEX A list of factors to split X into subsets, each of which is passed in a separate

invocation of FUN
INDICES Like INDEX, except a single factor need not be in a list.
f A factor or list of factors
drop Whether to drop empty elements from the returned list
... Extra arguments to pass to FUN
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Details

These functions should be used just like their base equivalent:

seqapply => lapply

mseqapply => mapply

tseqapply => tapply

seqsplit => split

seqby => by

The only difference is that the result is cast to a Vector object. The casting logic simply looks for a
common class from which all returned values inherit. It then checks for the existence of a function
of the form ClassList where Class is the name of the class. If such a function is not found,
the search proceeds up the hierarchy of classes. An error is thrown when hierarchy is exhausted.
If ClassList is found, it is called with the list of return values as its only argument, under the
assumption that a Vector-derived instance will be constructed.

Value

A Vector object

Author(s)

Michael Lawrence

Examples

starts <- IntegerList(c(1, 5), c(2, 8))
ends <- IntegerList(c(3, 8), c(5, 9))
rangesList <- mseqapply(IRanges, starts, ends)
rangeDataFrame <- stack(rangesList, "space", "ranges")
dataFrameList <- seqsplit(rangeDataFrame, rangeDataFrame$space)
starts <- seqapply(dataFrameList[,"ranges"], start)

SimpleList-class Simple and Compressed List Classes

Description

The (non-virtual) SimpleList and (virtual) CompressedList classes extend the List virtual class.

Details

The SimpleList and CompressedList classes provide an implementation that subclasses can easily
extend. The underlying storage in a SimpleList subclass is a list object. The underlying storage in
a CompressedList object is a virtually partitioned vector-like object. For more information on the
available methods, see the List man page.

Constructor

The SimpleList class constructor is used to create SimpleList objects:

SimpleList(...): takes possibly named objects as elements for the new SimpleList object.
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Coercion

In the following code snippets, x is a SimpleList or CompressedList object.

as.list(x): Copies the elements of x into a new R list object.

unlist(x, recursive = TRUE, use.names = TRUE): Concatenates the elements of x into a
single elementType(x) object.

Subsetting

In the following code snippets, x is a SimpleList or CompressedList object.

x[i]: In addition to normal usage, the i parameter can be a RangesList, logical RleList,
LogicalList, or IntegerList object to perform subsetting within the list elements rather
than across them.

x[i] <- value: In addition to normal usage, the i parameter can be a RangesList, logical
RleList, LogicalList, or IntegerList object to perform subsetting within the list elements
rather than across them.

seqselect(x, start=NULL, end=NULL, width=NULL): In addition to normal usage, the start
parameter can be a RangesList, logical RleList, LogicalList, or IntegerList object to
perform sequence extraction within the list elements rather than across them.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: In addition to normal us-
age, the start parameter can be a RangesList, logical RleList, LogicalList, or IntegerList
object to perform sequence replacement within the list elements rather than across them.

Looping

In the following code snippets, x is a SimpleList or CompressedList object.

aggregate(x, by, FUN, start = NULL, end = NULL, width = NULL, frequency = NULL, delta = NULL, ..., simplify = TRUE)):
In addition to normal usage, the by parameter can be a RangesList to aggregate within
the list elements rather than across them. When by is a RangesList, the output is either a
SimpleAtomicList object, if possible, or a SimpleList object, if not.

Author(s)

P. Aboyoun

See Also

List, AtomicList and RangesList for example implementations

Examples

SimpleList(a = letters, ranges = IRanges(1:10, 1:10))
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strutils Low-level string utilities

Description

Some low-level string utilities that operate on ordinary character vectors. For more advanced string
manipulations, see the Biostrings package.

Usage

strsplitAsListOfIntegerVectors(x, sep=",")

Arguments

x A character vector where each element is a string containing comma-separated
decimal integer values.

sep The value separator character.

Value

A list of integer vectors. The list is of the same length as the input.

Note

strsplitAsListOfIntegerVectors is similar to the strsplitAsListOfIntegerVectors2 func-
tion shown in the Examples section below, except that the former generally raises an error where
the latter would have inserted an NA in the returned object. More precisely:

• The latter accepts NAs in the input, the former doesn’t (raises an error).

• The latter introduces NAs by coercion (with a warning), the former doesn’t (raises an error).

• The latter supports "inaccurate integer conversion in coercion" when the value to coerce is >
INT_MAX (then it’s coerced to INT_MAX), the former doesn’t (raises an error).

• The latter coerces non-integer values (e.g. 10.3) to an int by truncating them, the former
doesn’t (raises an error).

When it fails, strsplitAsListOfIntegerVectors will print an informative error message. Fi-
nally, strsplitAsListOfIntegerVectors is faster and uses much less memory than strsplitAsListOfIntegerVectors2.

Author(s)

H. Pages

See Also

strsplit
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Examples

x <- c("1116,0,-19",
" +55291 , 2476,",
"19184,4269,5659,6470,6721,7469,14601",
"7778889, 426900, -4833,5659,6470,6721,7096",
"19184 , -99999")

y <- strsplitAsListOfIntegerVectors(x)
y

## In normal situations (i.e. when the input is well-formed),
## strsplitAsListOfIntegerVectors() does actually the same as the
## function below but is more efficient (both in speed and memory
## footprint):
strsplitAsListOfIntegerVectors2 <- function(x, sep=",")
{

tmp <- strsplit(x, sep, fixed = TRUE)
lapply(tmp, as.integer)

}
y2 <- strsplitAsListOfIntegerVectors2(x)
stopifnot(identical(y, y2))

updateObject-methods Update an object of a class defined in IRanges to its current class
definition

Description

The IRanges package provides an extensive collection of updateObject methods for updating al-
most any instance of a class defined in this package.

Usage

## Showing usage of method defined for IntegerList objects only (usage
## is the same for all methods).

## S4 method for signature ’IntegerList’
updateObject(object, ..., verbose=FALSE)

Arguments

object Object to be updated. Many (but not all) IRanges classes are supported. If no
specific method is available for the object, then the default method (defined in
the BiocGenerics package) is used. See ?updateObject for a description of the
default method.

..., verbose See ?updateObject.

Value

Returns a valid instance of object.

Author(s)

The Bioconductor Dev Team
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See Also

updateObject

Vector-class Vector objects

Description

The Vector virtual class serves as the heart of the IRanges package and has over 90 subclasses.
It serves a similar role as vector in base R. The Vector class includes two slots: metadata (via
extension of the Annotated class) and elementMetadata. Their purpose is defined below.

The Vector class supports the storage of global and element-wise metadata with its metadata and
elementMetadata slots. The metadata slot can store a list of metadata pertaining to the whole
object and the elementMetadata slot can store a DataTable (or NULL) for element-wise metadata
with a row for each element and a column for each metadata variable.

To be functional, a class that inherits from Vector must define at least a length, names and "["
method.

Accessors

In the following code snippets, x is a Vector object.

length(x): Get the number of elements in x.

NROW(x): Defined as length(x) for any Vector object that is not a DataTable object. If x is a
DataTable object, then it’s defined as nrow(x).

names(x), names(x) <- value: Get or set the names of the elements in the Vector.

rename(x, value, ...): Replace the names of x according to a mapping defined by a named
character vector, formed by concatenating value with any arguments in .... The names of
the character vector indicate the source names, and the corresponding values the destination
names.

nlevels(x): Returns the number of factor levels.

elementMetadata(x), elementMetadata(x) <- value: Get or set the DataTable holding local
metadata on each element. The rows are either not named or named according to the names
of the elements. Optional, may be NULL.

values(x), values(x) <- value: Alternative to elementMetadata functions.

Subsetting

In the code snippets below, x is a Vector object or regular R vector object. The R vector object
methods for window and seqselect are defined in this package and the remaining methods are
defined in base R.

x[i, drop=TRUE]: If defined, returns a new Vector object made of selected elements i, which
can be missing; an NA-free logical, numeric, or character vector; or a logical Rle object. The
drop argument specifies whether or not to coerce the returned sequence to a standard vector.

x[i] <- value: Equivalent to seqselect(x, i) <- value.

window(x, start = NA, end = NA, width = NA, frequency = NULL, delta = NULL, ...):
Extract the subsequence window from the Vector object using:
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start, end, width The start, end, or width of the window. Two of the three are required.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.

In general, this is more efficient than using "[" operator.

window(x, start = NA, end = NA, width = NA, keepLength = TRUE) <- value: Replace
the subsequence window specified on the left (i.e. the subsequence in x specified by start,
end and width) by value. value must either be of class class(x), belong to a subclass
of class(x), be coercible to class(x), or be NULL. If keepLength is TRUE, the elements of
value are repeated to create a Vector with the same number of elements as the width of the
subsequence window it is replacing. If keepLength is FALSE, this replacement method can
modify the length of x, depending on how the length of the left subsequence window compares
to the length of value.

seqselect(x, start=NULL, end=NULL, width=NULL): Similar to window, except that multiple
consecutive subsequences can be requested for concatenation. As such two of the three start,
end, and width arguments can be used to specify the consecutive subsequences. Alternatively,
start can take a Ranges object or something that can be converted to a Ranges object like
an integer vector, logical vector or logical Rle. If the concatenation of the consecutive subse-
quences is undesirable, consider using Views.

seqselect(x, start=NULL, end=NULL, width=NULL) <- value: Similar to window<-, ex-
cept that multiple consecutive subsequences can be replaced by a value whose length is a
divisor of the number of elements it is replacing. As such two of the three start, end, and
width arguments can be used to specify the consecutive subsequences. Alternatively, start
can take a Ranges object or something that can be converted to a Ranges object like an integer
vector, logical vector or logical Rle.

split(x, f, drop = FALSE) <- value: Virtually splits x by the factor f, replaces the elements
of the resulting list with the elements from the list value, and restores x to its original form.
Note that this works for any Vector, even though split itself is not universally supported.

head(x, n = 6L): If n is non-negative, returns the first n elements of the Vector object. If n is
negative, returns all but the last abs(n) elements of the Vector object.

tail(x, n = 6L): If n is non-negative, returns the last n elements of the Vector object. If n is
negative, returns all but the first abs(n) elements of the Vector object.

rev(x): Return a new Vector object made of the original elements in the reverse order.

rep(x, times, length.out, each), rep.int(x, times): Repeats the values in x through one
of the following conventions:

times Vector giving the number of times to repeat each element if of length length(x), or
to repeat the whole vector if of length 1.

length.out Non-negative integer. The desired length of the output vector.
each Non-negative integer. Each element of x is repeated each times.

subset(x, subset): Return a new Vector object made of the subset using logical vector subset,
where missing values are taken as FALSE.

Combining

In the code snippets below, x is a Vector object.

c(x, ...): Combine x and the Vector objects in ... together. Any object in ... must belong to
the same class as x, or to one of its subclasses, or must be NULL. The result is an object of the
same class as x.
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append(x, values, after = length(x)): Insert the Vector values onto x at the position
given by after. values must have an elementType that extends that of x.

mstack(..., .indName = "name"): A variant of stack, where the list is taken as the list of
arguments in ..., each of which should be a Vector or vector (mixing the two will not
work).

Looping

In the code snippets below, x is a Vector object.

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE): Like the standard tapply function
defined in the base package, the tapply method for Vector objects applies a function to each
cell of a ragged array, that is to each (non-empty) group of values given by a unique combina-
tion of the levels of certain factors.

shiftApply(SHIFT, X, Y, FUN, ..., OFFSET = 0L, simplify = TRUE, verbose = FALSE):
Let i be the indices in SHIFT, X_i = window(X, 1 + OFFSET, length(X) - SHIFT[i]),
and Y_i = window(Y, 1 + SHIFT[i], length(Y) - OFFSET). Calculates the set of FUN(X_i, Y_i, ...)
values and return the results in a convenient form:

SHIFT A non-negative integer vector of shift values.
X, Y The Vector or R vector objects to shift.
FUN The function, found via match.fun, to be applied to each set of shifted vectors.
. . . Further arguments for FUN.
OFFSET A non-negative integer offset to maintain throughout the shift operations.
simplify A logical value specifying whether or not the result should be simplified to a vector

or matrix if possible.
verbose A logical value specifying whether or not to print the i indices to track the iterations.

aggregate(x, by, FUN, start = NULL, end = NULL, width = NULL, frequency = NULL, delta = NULL, ..., simplify = TRUE)):
Generates summaries on the specified windows and returns the result in a convenient form:

by An object with start, end, and width methods.
FUN The function, found via match.fun, to be applied to each window of x.
start, end, width the start, end, or width of the window. If by is missing, then must supply

two of the three.
frequency, delta Optional arguments that specify the sampling frequency and increment

within the window.
. . . Further arguments for FUN.
simplify A logical value specifying whether or not the result should be simplified to a vector

or matrix if possible.

Utilities

unique(x): Returns the unique elements in x. Requires that the Vector derivative support
duplicated.

Coercion

as(from, "data.frame"), as.data.frame(from): Coerces from, a Vector, to a data.frame
by first coercing the Vector to a vector via as.vector. Note that many Vector derivatives
do not support as.vector, so this coercion is possible only for certain types.
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Author(s)

P. Aboyoun

See Also

Rle and XRaw for example implementations.

List for a direct extension that serves a similar role as list in base R.

DataTable which is the type of objects returned by the elementMetadata accessor.

Annotated which Vector extends.

Examples

showClass("Vector") # shows (some of) the known subclasses

Views-class Views objects

Description

The Views virtual class is a general container for storing a set of views on an arbitrary Vector object,
called the "subject".

Its primary purpose is to introduce concepts and provide some facilities that can be shared by the
concrete classes that derive from it.

Some direct subclasses of the Views class are: XIntegerViews, XDoubleViews, RleViews, XStringViews
(defined in the Biostrings package), etc...

Constructor

Views(subject, start=NULL, end=NULL, width=NULL, names=NULL): This constructor is a
generic function with dispatch on argument subject. Specific methods must be defined for
the subclasses of the Views class. For example a method for XString subjects is defined in the
Biostrings package that returns an XStringViews object. There is no default method.
The treatment of the start, end and width arguments is the same as with the IRanges
constructor, except that, in addition, Views allows start to be a Ranges object. With this
feature, Views(subject, IRanges(my_starts, my_ends, my_widths, my_names)) and
Views(subject, my_starts, my_ends, my_widths, my_names) are equivalent (except when
my_starts is itself a Ranges object).

Coercion

In the code snippets below, from is a Views object:

as(from, "IRanges"): Creates an IRanges object containing the view locations in from.

Accessor-like methods

All the accessor-like methods defined for IRanges objects work on Views objects. In addition, the
following accessors are defined for Views objects:

subject(x): Return the subject of the views.
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Subsetting and appending

"[", c and "[[" work on a Views object. The first two operations are just inherited from the
IRanges class but now they return a Views object. However, the "[[" method for Views objects
has a different semantic than the method for IRanges objects.

x[[i]]: Extracts the view selected by i as an object of the same class as subject(x). Subscript
i can be a single integer or a character string. The result is the subsequence of subject(x)
defined by window(subject(x), start=start(x)[i], end=end(x)[i]) or an error if the
view is "out of limits" (i.e. start(x)[i] < 1 or end(x)[i] > length(subject(x))).

Other methods

trim(x, use.names=TRUE): Equivalent to restrict(x, start=1L, end=length(subject(x)), keep.all.ranges=TRUE, use.names=use.names).

subviews(x, start=NA, end=NA, width=NA, use.names=TRUE): start, end, and width ar-
guments must be vectors of integers, eventually with NAs, that contain coordinates relative to
the current ranges. Equivalent to trim(narrow(x, start=start, end=end, width=width, use.names=use.names)).

gaps(x, start=NA, end=NA): start and end can be single integers or NAs. The gap extraction
will be restricted to the window specified by start and end. start=NA and end=NA are inter-
preted as start=1 and end=length(subject(x)), respectively, so, if start and end are not
specified, then gaps are extracted with respect to the entire subject.

successiveViews(subject, width, gapwidth=0, from=1): Equivalent to Views(subject, successiveIRanges(width, gapwidth, from)).
See ?successiveIRanges for a description of the width, gapwidth and from arguments.

Author(s)

H. Pages

See Also

IRanges-class, Vector-class, IRanges-utils, XVector.

Some direct subclasses of the Views class: XIntegerViews-class, XDoubleViews-class, RleViews-
class, XStringViews-class.

Examples

showClass("Views") # shows (some of) the known subclasses

## Create a set of 4 views on an XInteger subject of length 10:
subject <- XInteger(10, 3:-6)
v1 <- Views(subject, start=4:1, end=4:7)

## Extract the 2nd view:
v1[[2]]

## Some views can be "out of limits"
v2 <- Views(subject, start=4:-1, end=6)
trim(v2)
subviews(v2, end=-2)

## gaps()
v3 <- Views(subject, start=c(8, 3), end=c(14, 4))
gaps(v3)
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## Views on a big XInteger subject:
subject <- XInteger(99999, sample(99, 99999, replace=TRUE) - 50)
v4 <- Views(subject, start=1:99*1000, end=1:99*1001)
v4
v4[-1]
v4[[5]]

## 31 adjacent views:
successiveViews(subject, 40:10)

Views-utils Utility functions and numeric summary of Views of numerics

Description

The slice function creates a Views object that contains the indices where the data are within the
specified bounds.

The viewMins, viewMaxs, viewSums, viewMeans functions calculate the minima, maxima, sums,
and means on views respectively.

Usage

viewApply(X, FUN, ..., simplify = TRUE)

slice(x, lower=-Inf, upper=Inf, ...)
## S4 method for signature ’Rle’
slice(x, lower=-Inf, upper=Inf,

includeLower=TRUE, includeUpper=TRUE,
rangesOnly = FALSE)

viewMins(x, na.rm=FALSE)
## S4 method for signature ’Views’
min(x, ..., na.rm = FALSE)
viewMaxs(x, na.rm=FALSE)
## S4 method for signature ’Views’
max(x, ..., na.rm = FALSE)
viewSums(x, na.rm=FALSE)
## S4 method for signature ’Views’
sum(x, ..., na.rm = FALSE)
viewMeans(x, na.rm=FALSE)
## S4 method for signature ’Views’
mean(x, ...)

viewWhichMins(x, na.rm=FALSE)
## S4 method for signature ’Views’
which.min(x)
viewWhichMaxs(x, na.rm=FALSE)
## S4 method for signature ’Views’
which.max(x)

viewRangeMins(x, na.rm=FALSE)
viewRangeMaxs(x, na.rm=FALSE)
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Arguments

X A Views object.

FUN The function to be applied to each view in X.

... Additional arguments to be passed on.

simplify A logical value specifying whether or not the result should be simplified to a
vector or matrix if possible.

x An Rle, RleList, XInteger object or an integer vector for slice.
An RleViews, RleViewsList, XIntegerViews or XDoubleViews object for viewMins,
viewMaxs, viewSums, and viewMeans.
An Rle, RleViewsList, XIntegerViews or XDoubleViews object for viewWhichMins
and viewWhichMaxs.

lower, upper The lower and upper bounds for the slice.
includeLower, includeUpper

Logical indicating whether or not the specified boundary is open or closed.

rangesOnly For Rle and RleList objects, a logical indicating whether or not to drop the
original data from the output.

na.rm Logical indicating whether or not to include missing values in the results.

Details

The slice function is useful for finding areas of absolute maxima (peaks), absolute minima (troughs),
or fluctuations within specified limits.

The viewMins, viewMaxs, viewSums, and viewMeans functions provide efficient methods for cal-
culating the specified numeric summary by performing the looping in compiled code.

The viewWhichMins, viewWhichMaxs, viewRangeMins, and viewRangeMaxs functions provide ef-
ficient methods for finding the locations of the minima and maxima.

For convenience, methods for min, max, sum, mean, which.min and which.max are provided as
wrappers around the corresponding view* functions (which might be deprecated at some point).

Value

An RleViews object for Rle or an RleViewsList for RleList containing the views when using slice
with rangesOnly = FALSE. An IRanges object for Rle or a CompressedIRangesList for RleList
containing the ranges when using slice with rangesOnly = TRUE. An XIntegerViews for an XIn-
teger object when using slice. An XDoubleViews for an XDouble object when using slice.

A vector of length(x) for RleViews, XIntegerViews and XDoubleViews objects, or a SimpleList
object of length(x) for RleViewsList objects containing the numeric summaries for the views for
viewMins, viewMaxs, viewSums, viewMeans, viewWhichMins, and viewWhichMaxs.

An IRanges object for RleViews objects or a SimpleIRangesList for RleViewsList objects contain-
ing the location ranges for viewRangeMins and viewRangeMaxs.

Author(s)

P. Aboyoun

See Also

RleViews-class, RleViewsList-class, XIntegerViews-class, which.min, colSums
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Examples

## Views derived from vector
vec <- as.integer(c(19, 5, 0, 8, 5))
slice(vec, lower=5, upper=8)

set.seed(0)
vec <- sample(24)
vecViews <- slice(vec, lower=4, upper=16)
vecViews
viewApply(vecViews, function(x) diff(as.integer(x)))
viewMins(vecViews)
viewMaxs(vecViews)
viewSums(vecViews)
viewMeans(vecViews)
viewWhichMins(vecViews)
viewWhichMaxs(vecViews)

## Views derived from coverage
x <- IRanges(start=c(1L, 9L, 4L, 1L, 5L, 10L),

width=c(5L, 6L, 3L, 4L, 3L, 3L))
slice(coverage(x), lower=2)
slice(coverage(x), lower=2, rangesOnly = TRUE)

ViewsList-class List of Views

Description

An extension of List that holds only Views objects.

Details

ViewsList is a virtual class. Specialized subclasses like e.g. RleViewsList are useful for storing cov-
erage vectors over a set of spaces (e.g. chromosomes), each of which requires a separate RleViews
object.

As a Vector subclass, ViewsList may be annotated with its universe identifier (e.g. a genome) in
which all of its spaces exist.

As a List subclass, ViewsList inherits all the methods available for List objects.

Author(s)

P. Aboyoun and H. Pages

See Also

List-class, RleViewsList-class

Examples

showClass("ViewsList")
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XDoubleViews-class The XDoubleViews class

Description

The XDoubleViews class is the basic container for storing a set of views (start/end locations) on the
same XDouble object.

Details

An XDoubleViews object contains a set of views (start/end locations) on the same XDouble object
called "the subject numeric vector" or simply "the subject". Each view is defined by its start and end
locations: both are integers such that start <= end. An XDoubleViews object is in fact a particular
case of a Views object (the XDoubleViews class contains the Views class) so it can be manipulated
in a similar manner: see ?Views for more information. Note that two views can overlap and that a
view can be "out of limits" i.e. it can start before the first element of the subject or/and end after its
last element.

Other methods

In the code snippets below, x, object, e1 and e2 are XDoubleViews objects, and i can be a numeric
or logical vector.

x[[i]]: Extract a view as an XDouble object. i must be a single numeric value (a numeric vector
of length 1). Can’t be used for extracting a view that is "out of limits" (raise an error). The
returned object has the same XDouble subtype as subject(x).

e1 == e2: A vector of logicals indicating the result of the view by view comparison. The views
in the shorter of the two XDoubleViews object being compared are recycled as necessary.

e1 != e2: Equivalent to !(e1 == e2).

Author(s)

P. Aboyoun for the XIntegerViews* code, which was adapted to work over XDouble’s by S.
Lianoglou

See Also

Views-class, XDouble-class, Views-utils, XIntegerViews-class

Examples

## One standard way to create an XDoubleViews object is to use
## the Views() constructor:
subject <- as(rnorm(6), "XDouble")
v4 <- Views(subject, start=3:0, end=5:8)
v4
subject(v4)
length(v4)
start(v4)
end(v4)
width(v4)
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## Attach a comment to views #3 and #4:
names(v4)[3:4] <- "out of limits"
names(v4)

## A more programatical way to "tag" the "out of limits" views:
idx <- start(v4) < 1 | end(v4) > length(subject(v4))
names(v4)[idx] <- "out of limits"

## Extract a view as an XDouble object:
v4[[2]]

## It is an error to try to extract an "out of limits" view:
## Not run:

v4[[3]] # Error!

## End(Not run)

## Here the first view doesn’t even overlap with the subject:
subject <- as(c(97, 97, 97, 45, 45, 98), "XDouble")
Views(subject, start=-3:4, end=-3:4 + c(3:6, 6:3))

## Some fast view* functionalities:
x <- rnorm(55)
bounds <- IRanges(c(1, 11, 35, 20), width=c(5, 10, 15, 28))
v <- Views(x, bounds)
val <- viewMins(v)
expect <- sapply(1:length(bounds), function(i) {

min(x[start(bounds)[i]:end(bounds[i])])
})
stopifnot(all(val == expect))

XIntegerViews-class The XIntegerViews class

Description

The XIntegerViews class is the basic container for storing a set of views (start/end locations) on the
same XInteger object.

Details

An XIntegerViews object contains a set of views (start/end locations) on the same XInteger object
called "the subject integer vector" or simply "the subject". Each view is defined by its start and end
locations: both are integers such that start <= end. An XIntegerViews object is in fact a particular
case of a Views object (the XIntegerViews class contains the Views class) so it can be manipulated
in a similar manner: see ?Views for more information. Note that two views can overlap and that a
view can be "out of limits" i.e. it can start before the first element of the subject or/and end after its
last element.

Other methods

In the code snippets below, x, object, e1 and e2 are XIntegerViews objects, and i can be a numeric
or logical vector.
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x[[i]]: Extract a view as an XInteger object. i must be a single numeric value (a numeric vector
of length 1). Can’t be used for extracting a view that is "out of limits" (raise an error). The
returned object has the same XInteger subtype as subject(x).

e1 == e2: A vector of logicals indicating the result of the view by view comparison. The views
in the shorter of the two XIntegerViews object being compared are recycled as necessary.

e1 != e2: Equivalent to !(e1 == e2).

Author(s)

P. Aboyoun

See Also

Views-class, XInteger-class, Views-utils, XDoubleViews-class

Examples

## One standard way to create an XIntegerViews object is to use
## the Views() constructor:
subject <- as(c(45, 67, 84, 67, 45, 78), "XInteger")
v4 <- Views(subject, start=3:0, end=5:8)
v4
subject(v4)
length(v4)
start(v4)
end(v4)
width(v4)

## Attach a comment to views #3 and #4:
names(v4)[3:4] <- "out of limits"
names(v4)

## A more programatical way to "tag" the "out of limits" views:
idx <- start(v4) < 1 | end(v4) > length(subject(v4))
names(v4)[idx] <- "out of limits"

## Extract a view as an XInteger object:
v4[[2]]

## It is an error to try to extract an "out of limits" view:
## Not run:

v4[[3]] # Error!

## End(Not run)

## Here the first view doesn’t even overlap with the subject:
subject <- as(c(97, 97, 97, 45, 45, 98), "XInteger")
Views(subject, start=-3:4, end=-3:4 + c(3:6, 6:3))
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XRawList-class XRawList objects

Description

THIS IS A WORK-IN-PROGRESS!

An XRawList object is *conceptually* a list of XRaw objects.

Author(s)

H. Pages

See Also

XRaw-class, XVectorList-class

XVector-class XVector objects

Description

The XVector virtual class is a general container for storing an "external vector". It inherits from the
Vector, which has a very rich interface.

The following classes derive directly from the XVector class:

The XRaw class is a container for storing an "external raw vector" i.e. an external sequence of bytes
(stored as char values at the C level).

The XInteger class is a container for storing an "external integer vector" i.e. an external sequence
of integer values (stored as int values at the C level).

The XDouble class is a container for storing an "external double vector" i.e. an external sequence
of numeric values (stored as double values at the C level).

Also the XString class from the Biostrings package.

The purpose of the X* containers is to provide a "pass by address" semantic and also to avoid the
overhead of copying the sequence data when a linear subsequence needs to be extracted.

Additional Subsetting operations on XVector objects

In the code snippets below, x is an XVector object.

subseq(x, start=NA, end=NA, width=NA): Extract the subsequence from x specified by start,
end and width. The supplied start/end/width values are solved by a call to solveUserSEW(length(x), start=start, end=end, width=width)
and therefore must be compliant with the rules of the SEW (Start/End/Width) interface (see
?solveUserSEW for the details).
A note about performance: subseq does NOT copy the sequence data of an XVector object.
Hence it’s very efficient and is therefore the recommended way to extract a linear subsequence
(i.e. a set of consecutive elements) from an XVector object. For example, extracting a 100Mb
subsequence from Human chromosome 1 (a 250Mb DNAString object) with subseq is (al-
most) instantaneous and has (almost) no memory footprint (the cost in time and memory does
not depend on the length of the original sequence or on the length of the subsequence to
extract).
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subseq(x, start=NA, end=NA, width=NA) <- value: Replace the subsequence specified on
the left (i.e. the subsequence in x specified by start, end and width) by value. value must
belong to the same class as x, or to one of its subclasses, or must be NULL. This replacement
method can modify the length of x, depending on how the length of the left subsequence
compares to the length of value. It can be used for inserting elements in x (specify an empty
left subsequence for this) or deleting elements from x (use a NULL right value for this). Unlike
the extraction method above, this replacement method always copies the sequence data of x
(even for XVector objects). NOTE: Only works for XRaw (and derived) objects for now.

Author(s)

H. Pages

See Also

Vector-class, DNAString-class, XVectorList-class, Views-class, solveUserSEW, compact

Examples

## ---------------------------------------------------------------------
## A. XRaw OBJECTS
## ---------------------------------------------------------------------

x1 <- XRaw(4) # values are not initialized
x1
x2 <- as(c(255, 255, 199), "XRaw")
x2
y <- c(x1, x2, NULL, x1) # NULLs are ignored
y
subseq(y, start=-4)
subseq(y, start=-4) <- x2
y

## ---------------------------------------------------------------------
## B. XInteger OBJECTS
## ---------------------------------------------------------------------

x3 <- XInteger(12, val=c(-1:10))
x3
length(x3)

## Subsetting
x4 <- XInteger(99999, val=sample(99, 99999, replace=TRUE) - 50)
x4
subseq(x4, start=10)
subseq(x4, start=-10)
subseq(x4, start=-20, end=-10)
subseq(x4, start=10, width=5)
subseq(x4, end=10, width=5)
subseq(x4, end=10, width=0)

x3[length(x3):1]
x3[length(x3):1, drop=FALSE]
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XVectorList-class XVectorList objects

Description

THIS IS A WORK-IN-PROGRESS!

An XVectorList object is *conceptually* a list of XVector objects.

Author(s)

H. Pages

See Also

XVector-class, XRawList-class, compact
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