
Package ‘Genominator’
September 24, 2012

Version 1.10.0

Title Analyze, manage and store genomic data

Description Tools for storing, accessing, analyzing and visualizing genomic data.

Author James Bullard, Kasper Daniel Hansen

Maintainer James Bullard <bullard@stat.berkeley.edu>

Depends R (>= 2.10), methods, RSQLite, DBI (>= 0.2-5), BiocGenerics
(>= 0.1.0), IRanges, GenomeGraphs

Imports graphics, stats, utils

Suggests biomaRt, ShortRead, yeastRNASeq

Collate Genominator.R importAndManage.R annotation.R goodnessOfFit.R
plotRegion.R coverage.R diffExp.R emZero.R primingWeights.R

License Artistic-2.0

LazyLoad yes

biocViews Infrastructure

R topics documented:
Genominator-package . 2
addPrimingWeights . 2
aggregateExpData . 3
applyMapped . 4
collapseExpData . 5
computeCoverage . 7
computePrimingWeights . 8
ExpData-class . 9
getRegion . 10
importFromAlignedReads . 11
importToExpData . 13
joinExpData . 14
makeGeneRepresentation . 15
mergeWithAnnotation . 16
plot.genominator.coverage . 17

1

2 addPrimingWeights

plot.genominator.goodness.of.fit . 18
regionGoodnessOfFit-methods . 20
splitByAnnotation . 21
summarizeByAnnotation . 22
summarizeExpData . 24
validAnnotation . 25
yeastAnno . 26

Index 27

Genominator-package Data backend for Genomic data

Description

This package implements a data backend for genomic data, ie. data mapped to a genome with
chromosome, location and possibly strand information. The data is stored in an SQLite database.

We are primarily using the package for analyzing mRNA-Seq data generated from a Solexa ma-
chine, but have also used it in part of a larger project incorporating Solexa data, tiling array data
from various experiments and cDNA sequencing data.

It interfaces well with the GenomeGraphs package.

Read the package vignettes for extensive use cases.

To cite this package, please see the output of citation("Genominator").

Author(s)

James Bullard <bullard@stat.berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

addPrimingWeights Adding priming weights to an AlignedRead object.

Description

This function adds priming weights to an AlignedRead object.

Usage

addPrimingWeights(aln, weights = NULL, overwrite = FALSE, ...)

Arguments

aln An object of class AlignedRead.

weights A vector of weights as produced by computePrimingWeights.

overwrite A logical, will a weights entry in the alignData of the aln argument be over-
written?

... These arguments are passed to computePrimingWeights and are only used if
weights are NULL.

aggregateExpData 3

Details

If the weights are not supplied, the weights are calculated using the aln object itself.

Value

An object of class AlignedRead with a weights component in its alignData slot.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

References

Hansen, K. D., Brenner, S. E. and Dudoit, S (2010) Biases in Illumina transcriptome sequencing
caused by random hexamer priming. Nucleic Acids Res, doi:10.1093/nar/gkq224

See Also

computePrimingWeights and the extended example in the ’Working with ShortRead’ vignette.

Examples

if(require(ShortRead)) {
bwt.file <- system.file("extdata", "bowtie", "s_1_aligned_bowtie.txt",

package="ShortRead")
aln <- readAligned(bwt.file, type = "Bowtie")
weights <- computePrimingWeights(aln, weightsLength = 2L)
aln <- addPrimingWeights(aln, weights = weights)
head(alignData(aln)$weights)

}

aggregateExpData Collapse data into unique entries

Description

Collapses data based on unique combinations of values in a set of columns, by default adding a
column giving counts of data entries with a particular combination.

Usage

aggregateExpData(expData, by = getIndexColumns(expData),
tablename = NULL, deleteOriginal = FALSE, overwrite = FALSE,
verbose = getOption("verbose"), colname = "counts",
aggregator = paste("count(", by[1], ")", sep = ""))

4 applyMapped

Arguments

expData An object of class ExpData.

by Vector containing column names used to define unique entries.

tablename Name of database table to write output data to.

deleteOriginal Logical indicating whether original database table in ExpData object should be
deleted.

overwrite Logical indicating whether database table referred to in tablename argument
should be overwritten.

verbose Logical indicating whether details should be printed.

colname Name of column for recording aggregation output (by default, counts).

aggregator SQLite code used for aggregating. See Details for more information.

Details

By default this function counts instances of data entries with a particular combination of the values
in the set of columns indicated in the by argument. Other SQLite commands can be indicated using
the aggregator argument.

Value

Returns an ExpData object.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information.

Examples

N <- 10000 # the number of observations.
df <- data.frame(chr = sample(1:16, size = N, replace = TRUE),

location = sample(1:1000, size = N, replace = TRUE),
strand = sample(c(1L,-1L), size = N, replace = TRUE))

eDataRaw <- aggregateExpData(importToExpData(df, dbFilename = tempfile(),
tablename = "ex_tbl", overwrite = TRUE))

applyMapped Apply a function over mapped data.

Description

Apply a function over each element of a list containing data subsets, organized by annotation, with
an additional argument for the annotation element associated with the list item.

Usage

applyMapped(mapped, annoData, FUN, bindAnno = FALSE)

collapseExpData 5

Arguments

mapped A list of data subsets, typically the return value of a call to splitByAnnotation.
Names should correspond to names of annoData object.

annoData A data frame which must contain the columns chr, start, end and strand
which specifies annotation regions of interest.

FUN A function of two arguments, the first being an element of mapped, the second
being the corresponding element of annoData.

bindAnno Logical indicating whether annotation information should be included in the
output. If TRUE it assumes the output of FUN is conformable into a data.frame.

Value

If bindAnno is FALSE, returns a list containing the output of FUN for each element of the original
mapped argument. If bindAnno is TRUE, returns a data frame, containing annotation information
and output of FUN.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
s <- splitByAnnotation(ed, yeastAnno[1:100,],

what = getColnames(ed, all = FALSE),
ignoreStrand = TRUE, addOverStrand = TRUE)

compute the per-base rate for this dataset.
applyMapped(s, yeastAnno, function(dta, anno) {

colSums(dta, na.rm = TRUE)/(anno$end - anno$start + 1)
}, bindAnno = TRUE)[1:4,]

collapseExpData Combine multiple data sets

Description

This function takes a dataset with data from multiple experiments, and combines the data across
multiple experiments according to a user-specified function.

Usage

collapseExpData(expData, tablename = NULL,
what = getColnames(expData, all = FALSE), groups = "COL",
collapse = c("sum", "avg", "weighted.avg"), overwrite = FALSE,
deleteOriginal = FALSE, verbose = getOption("verbose"))

6 collapseExpData

Arguments

expData An object of class ExpData.

tablename Name of database table to write output data to.

what Data columns to apply collapse function to.

groups Vector of length what indicating how columns should be grouped when applying
collapse function.

collapse Function to apply to grouped columns.

overwrite Logical indicating whether database referred to in tablename argument should
be overwritten.

deleteOriginal Logical indicating whether original database in ExpData object should be deleted.

verbose Logical indicating whether details should be printed.

Details

This function can be thought of as similar to tapply, operating over the entries in the data set,
applying the function specified in the collapse argument, grouping the data as indicated in the
groups argument.

Value

Returns an object of class ExpData.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

nd <- importToExpData(head(ed, -1), dbFilename = tempfile(),
tablename = "collapsed")

head(nd)
cd <- collapseExpData(nd, tablename = "bio", overwrite = TRUE,

groups = c("mut", "mut", "wt", "wt"))

head(cd)

computeCoverage 7

computeCoverage Compute effort-coverage values

Description

Compute fraction coverage obtained for a certain degree of sequencing effort.

Usage

computeCoverage(expData, annoData,
cutoff = function(x, anno, group) { x > 10 },
effort = seq(1e+05, 5e+07, length = 20),
smooth = function(probs) { probs },
groups = rep("ALL", length(what)),
what = getColnames(expData, all = FALSE),
totals = summarizeExpData(expData, what = what, verbose = verbose),
ignoreStrand = FALSE, verbose = getOption("verbose"), ...)

Arguments

expData An ExpData object.

annoData A data frame which must contain the columns chr, start, end and strand
which specifies annotation regions of interest.

cutoff A predicate which determines when a region of annotation has been "sequenced".
This function takes three arguments x = number of reads in region, anno = the
annotation description of the region, group = the group it is in.

effort Effort is a vector of how much sequencing has been done.

smooth A function which takes as input the vector of probabilities and must return the
probabilities.

groups The different groups for which to calculate coverage.

what The different columns, must be the same length as the groups.

totals The lane totals, or some other totals. This allows us to estimate the sampling
probability vector.

ignoreStrand Whether or not to add over strands.

verbose Do you want to see output.

... Extra argument passed to cutoff.

Details

This argument is pretty general as different ways of specifying the arguments allows one to compute
"coverage" under a lot of different definitions.

Value

Returns an object of class genominator.coverage. Pretty much you’ll want to call plot on this
object.

8 computePrimingWeights

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See the plot.genominator.coverage for the plotting method and the Genominator vignette for
details.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
a <- computeCoverage(ed, yeastAnno, effort = 2^(5:18),

cutoff = function(x, ...) x > 1, smooth = FALSE)
names(a)

computePrimingWeights Compute weights to correct for random hexamer priming.

Description

This function computes weights used to correct for random hexamer priming, as per the reference.

Usage

computePrimingWeights(aln, biasedIndex = 1:2, unbiasedIndex = 24:29,
weightsLength = 7L, returnSep = FALSE)

Arguments

aln An object of class AlignedRead.

biasedIndex A vector of start positions for the biased k-mers.

unbiasedIndex A vector of start positions for the unbiased k-mers.

weightsLength The length of the k-mers.

returnSep A logical indicating whether the numerator and denominator of the weights
should be return or the weights themselves.

Value

If returnSep = FALSE a named vector of weights. Otherwise a list with two elements giving the
numerator (p_unbiased) and the denominator (p_biased) of the weights.

Author(s)

Kasper Daniel Hansen <khansen@jhsph.edu>.

References

Hansen, K. D., Brenner, S. E. and Dudoit, S (2010) Biases in Illumina transcriptome sequencing
caused by random hexamer priming. Nucleic Acids Res, doi:10.1093/nar/gkq224

ExpData-class 9

See Also

addPrimingWeights and the extended example in the ’Working with ShortRead’ vignette.

Examples

if(require(ShortRead)) {
bwt.file <- system.file("extdata", "bowtie", "s_1_aligned_bowtie.txt",

package="ShortRead")
aln <- readAligned(bwt.file, type = "Bowtie")
weights <- computePrimingWeights(aln, weightsLength = 2L)
aln <- addPrimingWeights(aln, weights = weights)
head(alignData(aln)$weights)

}

ExpData-class Class "ExpData"

Description

A class for representing experimental data organized along a genome.

Objects from the Class

The preferred way to construct objects of class ExpData is to use the constructor function ExpData(dbFilename = "filename.db", tablename
= "tablename")

Slots

dbFilename: A "character" containing the filename of the SQLite database.

tablename: A "character" containing the tablename of the relevant SQLite table.

indexColumns: A "character", listing which columns (and in which order) in the table has been
indexed.

mode: A "character" indicating whether the database is in read or write mode. Write mode
implies read mode.

chrMap: A "character" which is a placeholder, for now.

.tmpFile: A "character". Only for developers..

Details

For all practical purposes, the class may be considered to point to a specific table in an SQLite
database. A connection to the database is opened automatically and a pool of connections is main-
tained.

Methods

ExpData(dbFilename, tablename, mode, indexColumns, pragma) A constructor function. The
last three arguments are for expert users.

getDBConnection Returns a connection to the database associated with the ExpData object.

getDBFilename Returns the filename of the database associated with the ExpData object.

10 getRegion

getTablename Returns the tablename of the ExpData object

getSchema Returns the schema of the table associated with the ExpData object.

getIndexColumns Returns the indexColumns of the object.

getColnames Returns all columns (argument all = TRUE) or all columns except the indexColumns
(argument all = FALSE).

listTables Returns all vector of tables in a database.

getMode Returns the mode of the ExpData object.

[signature(x = "ExpData"): subsetting of the object. ExpData objects do not have rownames.

$ signature(x = "ExpData"): selects a column of the table.

head signature(x = "ExpData"): prints the first 10 rows of the object.

initialize signature(.Object = "ExpData"): The initialize method; use the constructor func-
tion ExpData instead.

show signature(object = "ExpData"): the show method.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

The package vignettes.

Examples

showClass("ExpData")

getRegion Select a region from an ExpData object.

Description

This function selects a subset of the data that falls into a particular contiguous genomic region.

Usage

getRegion(expData, chr, start, end, strand, what = "*",
whereClause = "", verbose = getOption("verbose"))

Arguments

expData An object of class ExpData.

chr Chromosome number of desired region.

start Start position of desired region. If omitted, it is set to 0.

end End position of desired region. If omitted, it is set to 1e12.

strand Strand of desired region. Values of 1 or -1 return data from forward or reverse
strand. A value of 0 or a missing argument returns data from any strand, includ-
ing data with missing strand information.

importFromAlignedReads 11

what A vector of column names specifying which columns of the data should be re-
turned. Defaults to all columns.

whereClause Additional filtration criteria, customizable to refer to additional data columns.
See Details for more explanation.

verbose Logical indicating whether details should be printed.

Details

The argument whereClause should be a string indicating a subset of the data to be selected, using
SQL syntax. For example, if you have a column called category, you could specify category = 1
to select only those data entries where category has a value of 1. This function operates as a database
query, and this argument can include logical combinations of multiple criteria.

Value

Returns a data frame containing the data from the desired region, with the desired columns.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

c1 <- getRegion(ed, chr = 1)
dim(c1)
head(c1)

importFromAlignedReads

Import aligned reads to database

Description

This function takes a named list of AlignedRead objects (from the ShortRead package) and creates
an ExpData object from them, with one column for each list element. Column names are taken from
list names, which must be unique.

Usage

importFromAlignedReads(x, chrMap, dbFilename,
tablename, overwrite = TRUE, deleteIntermediates = TRUE,
readPosition = c("5prime", "left", "center"),
verbose = getOption("verbose"), ...)

12 importFromAlignedReads

Arguments

x This argument can be one of two things: either a named list of objects of class
AlignedRead or a named character vector of filenames. In both cases, the names
of the object are used as column names inthe resulting database (not that it is not
easy to change those names). Therefore the names of x needs to be present
and non-empty and also to satisfy the requirements of column names in SQLite.
If x is a list of AlignedRead, the column names needs to be unique. If x is
a character vector of filenames, the names do not have to be unique, in which
case two filenames with the same (column) name gets collapsed into the same
column.

chrMap A vector of chromosome names from the aligned output. On importation to
the database, chromosome names will be converted to integers corresponding to
position within the chrMap vector.

dbFilename The filename of the database to which the data will be imported.

tablename Name of database table to write output data to.

overwrite Logical indicating whether database table referred to in tablename argument
should be overwritten.

deleteIntermediates

Logical indicating whether intermediate database tables constructed in the pro-
cess should be removed.

readPosition How each read is assigned a unique genomic location. Default is "5prime" indi-
cating that the location is the position of the 5’ end of the reads, "left" indicates
that the position of the left part of the read is used (5’ end for reads mapping to
the forward strand, 3’ for reads mapping to the reverse strand), "center" indi-
cates that the position of the center of the read is used.

verbose Logical indicating whether details should be printed.

... Additional arguments to be passed to readAligned from ShortRead.

Details

The reads are aggregated and joined to form a database where each file/list element is a column.
Positions are stored as the position of the 5’ end of the reads (note that this differs from the con-
vention for the AlignedRead class from ShortRead.) This can be changed by the readPosition
argument.

If the x argument is a character vector of filenames, the function will require enough memory to
parse each input file in turn. If there are duplicates in names of x the function requires enough
memory to parse all files with the same column name at the same time.

If the AlignedRead class object has a weights column in its alignData slot, this weights column
is used as the data to aggregate over.

Value

Outputs an object of class ExpData with a column for each element of the x argument.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

importToExpData 13

See Also

See Genominator vignette for more information. See also ExpData-class, AlignedRead-class
and readAligned.

Examples

Not run:
require(ShortRead)
require(yeastRNASeq)
data("yeastAligned")
chrMap <- levels(chromosome(yeastAligned[[1]]))
eData <- importFromAlignedReads(yeastAligned, chrMap = chrMap,

dbFilename = tempfile(), tablename = "raw",
overwrite = TRUE)

End(Not run)

importToExpData Import data to database

Description

This function imports data from a data frame to a table in a database.

Usage

importToExpData(df, dbFilename, tablename, overwrite = FALSE,
verbose = getOption("verbose"), columns = NULL)

Arguments

df A data frame containing data to be imported. Must have columns chr, location
and strand.

dbFilename The filename of the database to which the data will be imported.

tablename Name of database table to write output data to.

overwrite Logical indicating whether database table referred to in tablename argument
should be overwritten.

verbose Logical indicating whether details should be printed.

columns Vector of column names of columns to be imported.

Value

Returns an object of class ExpData.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information. See also ExpData-class.

14 joinExpData

Examples

N <- 10000 # the number of observations.
df <- data.frame(chr = sample(1:16, size = N, replace = TRUE),

location = sample(1:1000, size = N, replace = TRUE),
strand = sample(c(1L,-1L), size = N, replace = TRUE))

eDataRaw <- importToExpData(df, dbFilename = tempfile(),
tablename = "ex_tbl", overwrite = TRUE)

joinExpData Merge ExpData objects

Description

This function merges multiple ExpData object into one in an efficient manner.

Usage

joinExpData(expDataList, fields = NULL, tablename = "aggtable",
overwrite = TRUE, deleteOriginals = FALSE,
verbose = getOption("verbose"))

Arguments

expDataList List of ExpData objects. Must all be contained in the same database.

fields A named list whose names correspond to tables of ExpData objects and whose
entries indicate the column names to be pulled from each table.

tablename Name of database table to write output data to.

overwrite Logical indicating whether database table referred to in tablename argument
should be overwritten.

deleteOriginals

Logical indicating whether original database tables in ExpData objects should
be deleted.

verbose Logical indicating whether details should be printed.

Value

An object of class ExpData containing data columns from all the original ExpData objects.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information.

makeGeneRepresentation 15

Examples

N <- 10000 # the number of observations.
df1 <- data.frame(chr = sample(1:16, size = N, replace = TRUE),

location = sample(1:1000, size = N, replace = TRUE),
strand = sample(c(1L,-1L), size = N, replace = TRUE))

df2 <- data.frame(chr = sample(1:16, size = N, replace = TRUE),
location = sample(1:1000, size = N, replace = TRUE),
strand = sample(c(1L,-1L), size = N, replace = TRUE))

eDataRaw1 <- aggregateExpData(importToExpData(df1, dbFilename = "my.db",
tablename = "ex_tbl_1", overwrite = TRUE))

eDataRaw2 <- aggregateExpData(importToExpData(df1, dbFilename = "my.db",
tablename = "ex_tbl_2", overwrite = TRUE))

jd <- joinExpData(list(eDataRaw1, eDataRaw2), tablename = "combined",
fields = list("ex_tbl_1" = c("counts" = "e1"),

"ex_tbl_2" = c("counts" = "e2")))
head(jd)

makeGeneRepresentation

Compute a gene representation from annotation.

Description

Computing a gene representation from annotation using a variety of methods.

Usage

makeGeneRepresentation(annoData, type = c("UIgene", "Ugene", "ROCE",
"background"), gene.id = "ensembl_gene_id", transcript.id = "ensembl_transcript_id", bind.columns, ignoreStrand = TRUE, verbose = getOption("verbose"))

Arguments

annoData A data frame which must contain the columns chr, start, end and strand
which specifies annotation regions of interest, and optionally additional columns.

type The type of gene representation, see details.

gene.id The column in annoData that holds the gene identifiers (only needed for certain
types of representation).

transcript.id The column in annoData that holds the transcript identifiers (only needed for
certain types of representation).

bind.columns A character vector of column names that will be kept in the return object. It
is assumed (but not checked) that these values are constant for all regions in a
gene.

ignoreStrand Is strand ignored? Little testing has been done for the value ’TRUE’.

verbose Want verbose output?

16 mergeWithAnnotation

Details

A union representation (Ugene) is simply the union of all bases of all transcripts of the gene, with
bases belonging to other genes removed.

A union-intersection representation (UIgene) for a gene is defined as bases that are annotated as
belonging to all transcripts of the gene, and not to any other gene.

Regions of constant expression (ROCE) are regions where one would assume that the expression
is constant. They are best explained by an example: if transcript A goes from 1 to 4 and transcript
B goes from 1 to 6 there are two ROCEs, one from 1 to 4 and one from 5 to 6. It is possible to
define ROCEs independent of the gene concept, but in its current implementation regions belonging
to more than one gene are removed.

Background is essentially the complement of the annotation.

Value

A data.frame with rownames and columns chr, strand, start, end, and possibly additional columns.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

Examples

data(yeastAnno)
ui <- makeGeneRepresentation(yeastAnno, type = "background")

mergeWithAnnotation Combine data with annotation

Description

This function creates a data frame containing the data and the corresponding annotation information
for each data row included in the annotation.

Usage

mergeWithAnnotation(expData, annoData, what = "*",
ignoreStrand = FALSE, splitBy = NULL, verbose = getOption("verbose"))

Arguments

expData An object of class ExpData.

annoData A data frame which must contain the columns chr, start, end and strand
which specifies annotation regions of interest.

what Which columns of expData to include.

ignoreStrand Logical indicating whether strand should be ignored. If TRUE, data from either
strand that falls into an annotation region is included.

splitBy Field on which merged data frame should be split before returning.

verbose Logical indicating whether details should be printed.

plot.genominator.coverage 17

Details

Generally this function is good for creating a list of data split by some annotation feature, which
can then be applied across.

Value

If splitBy is NULL, returns a data frame containing the data from expData that fall into regions
defined by annoData, and which includes the annotation information, with columns as specified by
what. If splitBy is non-NULL, returns a list of data frames with an element for each unique value
of splitBy field.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
mergeWithAnnotation(ed, yeastAnno[1:5,])

plot.genominator.coverage

Create coverage plot

Description

S3 method to plot genominator.coverage object. Shows coverage as a function of plotting effort.

Usage

S3 method for class ’genominator.coverage’
plot(x, type = "l", col = NULL,
draw.totals = TRUE, draw.legend = TRUE, legend.location = NULL, ...)

Arguments

x An object of class genominator.coverage, as returned by computeCoverage.

type Plot type. See plot.

col Vector of plotting colors.

draw.totals Logical indicating whether totals should be drawn.

draw.legend Logical indicating whether legend should be drawn.
legend.location

Vector giving x and y coordinates of legend position.

... Additional arguments for lower-level functions.

18 plot.genominator.goodness.of.fit

Value

This method is used for its side effect.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information. See also computeCoverage.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
a <- computeCoverage(ed, yeastAnno, effort = 2^(5:18),

cutoff = function(x, ...) x > 1)
plot(a, lwd = 5, col = "grey")
plot(a, draw.totals = FALSE)
ygroups <- rep(c("mut", "wt"), c(2,2))
b <- computeCoverage(ed, yeastAnno, grups = ygroups,

effort = 2^(5:18), cutoff = function(x, ...) x > 1)
plot(b)
b <- computeCoverage(ed, yeastAnno, groups = ygroups,

effort = 2^(5:18), cutoff = function(x, ...) x > 3,
smooth = function(probs) {

probs = probs + min(probs[probs!=0])
probs = probs/sum(probs)

})
plot(b)

plot.genominator.goodness.of.fit

Create goodness-of-fit quantile-quantile plot

Description

S3 method to plot genominator.goodness.of.fit object. Creates a quantile-quantile plot of the
observed versus theoretical quantiles of goodness-of-fit statistics based on a chi-squared distribu-
tion.

Usage

S3 method for class ’genominator.goodness.of.fit’
plot(x, chisq = FALSE, plotCol = TRUE,
qqline = FALSE, xlab = "theoretical quantiles",
ylab = "observed quantiles", main, pch = 16, cex = 0.75, ...)

plot.genominator.goodness.of.fit 19

Arguments

x An object of class genominator.goodness.of.fit, as returned by regionGoodnessOfFit.

chisq Logical indicating whether chi-squared statistics should be plotted (as opposed
to p-values from a chi-squared distribution).

plotCol Logical indicating whether points at extreme quantiles should be colored.

qqline Logical indicating whether a qqline should be added, this is a line through the
25%- and 75%-quantiles.

xlab X-axis label for plot.

ylab Y-axis label for plot.

main Main label for plot.

pch Plotting character type for plot.

cex A numerical value giving the amount by which plotting text and symbols should
be magnified relative to the default. See par.

... Additional arguments for lower-level functions, namely plot.

Details

This function constructs a quantile-quantile plot comparing the distribution of observed statistics to
either the uniform 0,1 distribution or the appropriate chi-squared distribution. This plotting function
provides a tool to assess whether replicate lanes, flow cells, sample preparations, etc. fit the model
described in regionGoodnessOfFit.

Value

This method is used for its side effect.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information. See also regionGoodnessOfFit.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
plot(regionGoodnessOfFit(ed, yeastAnno), chisq = TRUE)

20 regionGoodnessOfFit-methods

regionGoodnessOfFit-methods

Calculate goodness-of-fit statistics

Description

A generic method for calculating chi-squared goodness-of-fit statistics (See details). Dispatches on
either a data.frame or and ExpData object.

Usage

S4 method for signature ’data.frame’
regionGoodnessOfFit(obj,
denominator = colSums(obj),
groups = rep("A", ncol(obj)))

S4 method for signature ’ExpData’
regionGoodnessOfFit(obj, annoData,
groups = rep("A", length(what)),
what = getColnames(obj, all = FALSE),
denominator = c("regions", "lanes"),
verbose = getOption("verbose"))

Arguments

obj data.frame or ExpData

annoData A data.frame of annotation.

groups A factor or character vector describing which are the replicates.

denominator How to scale the columns to take into account sequencing depth.

what Which columns to choose from the database. Default is all data columns.

verbose Whether or not debugging / timing info should be printed.

Details

This function implements the homogenous Poisson model across lanes as described in the article
cited below. This model corresponds to common expression parameter across lanes scaled by a
lane-specific offset. Goodness of fit to this model across replicates is a good indication of Poisson
variation across lanes. Deviation from this is an indication of overdispersion between replicate
lanes.

Value

An list containing the statistics and degrees of freedom. See details. Technically, an S3 object with
class genominator.goodness.of.fit

splitByAnnotation 21

Methods

signature(obj = "ExpData") Here obj represents the results of a call to summarizeByAnnotation
or a data.frame with columns representing samples and rows representing regions, i.e. genes.
Denominator is how we scale each column, therefore it this must be true: length(denominator) ==
ncol(obj). Finally, groups determines how columns are aggregated across one another, i.e.
which columns are replicates.

signature(obj = "data.frame") Here annoData is an annotation data frame. groups is as
above. what represents the columns to select choose. denominator is either the total lane
counts, or the lane counts restricted to annoData, or a vector of length length(groups)

References

James H. Bullard, Elizabeth A. Purdom, Kasper D. Hansen, Steffen Durinck, and Sandrine Dudoit,
"Statistical Inference in mRNA-Seq: Exploratory Data Analysis and Differential Expression" (April
2009). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 247. http:
//www.bepress.com/ucbbiostat/paper247

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
names(regionGoodnessOfFit(ed, yeastAnno))

splitByAnnotation Split data into a list by annotation element.

Description

This function splits the data into a list of matrices, by annotation element.

Usage

splitByAnnotation(expData, annoData, what = "*",
ignoreStrand = FALSE, expand = FALSE,
addOverStrands = FALSE, verbose = getOption("verbose"))

Arguments

expData An object of class ExpData.
annoData A data frame which must contain the columns chr, start, end and strand

which specifies annotation regions of interest.
what Vector of names of columns of expData to be included in output.
ignoreStrand Logical indicating whether strand should be ignored. If TRUE, data that falls into

the annotation region, regardless of strand, is included.
expand Logical indicating whether positions with no data should be included in output.

If TRUE, lines are added to the output to give a value for each position, even if
this value is 0.

addOverStrands Logical indicating whether data should be added across strands. Only applies
when expand is TRUE.

verbose Logical indicating whether details should be printed.

http://www.bepress.com/ucbbiostat/paper247
http://www.bepress.com/ucbbiostat/paper247

22 summarizeByAnnotation

Details

This function retrieves the data contained in the regions of the annoData object. The return object
may be significant in size.

Value

Returns a list of length equal to the number of annotation entries split upon. Each list element is
either a matrix of data, or a list with data matrices for each strand included (if expand is TRUE and
addOverStrands is FALSE).

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

See Also

See Genominator vignette for more information.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
splitByAnnotation(ed, yeastAnno[1:30,])

summarizeByAnnotation Summarize data based on genome annotation.

Description

This function creates a summarization of columns of the data using specified SQLite functions,
applying these summarization function to regions defined in an annotation data frame.

Usage

summarizeByAnnotation(expData, annoData,
what = getColnames(expData, all = FALSE), fxs = c("TOTAL"),
groupBy = NULL, splitBy = NULL, ignoreStrand = FALSE, bindAnno = FALSE,
preserveColnames = TRUE, verbose = getOption("verbose"))

Arguments

expData An object of class ExpData.

annoData A data frame which must contain the columns chr, start, end and strand
which specifies annotation regions of interest.

what Vector of names of data columns to be summarized.

fxs Vector of strings giving the names of SQLite functions to call on the data col-
umn(s).

groupBy Character vector refering to a column in annoData. Regions will be aggregated
over distinct values of this column. Setting this argument will set bindAnno to
TRUE. If splitBy is set, meta.id will override.

summarizeByAnnotation 23

splitBy String indicating column of annoData object on which to split results.

ignoreStrand Logical indicating whether strand should be taken into account in aggregation.
If TRUE strand will be ignored.

bindAnno Logical indicating whether annotation information should be included in the
output.

preserveColnames

Logical indicating whether column names should be preserved. Only possible
when a single function is being applied.

verbose Logical indicating whether details should be printed.

Details

Most of the computation is done using SQLite. Depending on the use case, this approach may
be significantly faster and use much less memory than the alternative: use splitByAnnotation
to retrieve a list with all the data and then use R to summarize over each element of the list. It is
(naturally) constrained to the use of operations expressible in (SQLite) SQL.

If meta.id is set to a column in annoData, all regions with the same value of the meta.id will be
joined together; a standard use case is labelleing exons of a gene.

Value

If splitBy is not specified, returns a data frame containing results of aggregation functions per-
formed on each region defined in annoData. If splitBy is specified, returns a list of data frames
with one entry for each unique value of the column which was split on.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

References

The SQLite website http://www.sqlite.org/lang_aggfunc.html has details on what mathe-
matical functions are implemented.

See Also

See Genominator vignette for more information, as well as the ExpData-class.

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

data("yeastAnno")
summarizeByAnnotation(ed, yeastAnno[1:50,])

http://www.sqlite.org/lang_aggfunc.html

24 summarizeExpData

summarizeExpData Summarize a data column

Description

This function returns a summary of one or more data columns, as indicated by a particular SQLite
query function.

Usage

summarizeExpData(expData, what = getColnames(expData, all = FALSE),
fxs = c("TOTAL"), preserveColnames = TRUE, whereClause = "",
verbose = getOption("verbose"))

Arguments

expData An object of class ExpData.

what Vector of names of data columns to be summarized.

fxs Vector of strings giving the names of SQLite functions to call on the data col-
umn.

preserveColnames

Logical indicating whether column names should be preserved.

whereClause Additional filtration criteria, customizable to refer to additional data columns.
See Details for more explanation.

verbose Logical indicating whether details should be printed.

Details

The argument whereClause should be a string indicating a subset of the data to be selected. For
example, if you have a column called category, you could specify "category = 1" to select only
those data entries where category has a value of 1. This function operates as a database query,
and thus the argument can include logical combinations of multiple criteria using SQL boolean
operators.

Value

A vector with results of summarization.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@jhsph.edu>

References

The available SQLite functions are listed here: http://www.sqlite.org/lang_aggfunc.html

See Also

See Genominator vignette for more information.

http://www.sqlite.org/lang_aggfunc.html

validAnnotation 25

Examples

ed <- ExpData(system.file(package = "Genominator", "sample.db"),
tablename = "raw")

summarizeExpData(ed)
summarizeExpData(ed, fxs = c("MIN", "MAX", "AVG"))

validAnnotation Check for validity of a annotation object.

Description

Checks whether a data.frame satisfy the requirements for an annotation object.

Usage

validAnnotation(annoData)

Arguments

annoData A data.frame.

Value

This function throws an error if the data.frame is not valid.

Author(s)

James Bullard <bullard@berkeley.edu>, Kasper Daniel Hansen <khansen@berkeley.edu>

See Also

The Genominator user guide.

Examples

data(yeastAnno)
validAnnotation(yeastAnno)

26 yeastAnno

yeastAnno Example datasets from Genominator

Description

3 example datasets from Genominator; 2 contain annotation information from yeast and 1 contain
actual data from yeast as well. A bigger dataset is available in the experimental data package
yeastRNASeq.

Usage

data(yeastAnno)
data(yeastAnno.sources)
data(chr1_yeast)

Format

yeastAnno is a data frame with 7124 observations on the following 5 variables: chr, start, end,
strand, gene_biotype.

yeastAnno.sources is a list with four components names ensembl.gene, ensembl.transcript,
ucsc.sgdGene, ucsc.ensGene containing annotation on yeast from 2 different sources (Ensembl
and UCSC), each sources has two different queries (one gene-level, one transcript-level). The
annotation was obtained in January 2010 and should not be used for analysis.

chr1_yeast is a data frame containing mock data in yeast from two different samples (labelled
mRNA_1 and mRNA_2), linked to distinct genomic locations. There may be several data values linked
to each genomic location.

Source

Ensembl and UCSC January 2010.

See Also

There is a discussion of the yeastAnno.sources in the withShortRead vignette.

Examples

data(yeastAnno)
head(yeastAnno)
data(yeastAnno.sources)
names(yeastAnno.sources)
head(yeastAnno.sources$ensembl.gene)
data(chr1_yeast)
head(chr1_yeast)

Index

∗Topic classes
ExpData-class, 9

∗Topic datasets
yeastAnno, 26

∗Topic hplot
plot.genominator.coverage, 17
plot.genominator.goodness.of.fit,

18
∗Topic iteration

applyMapped, 4
∗Topic manip

addPrimingWeights, 2
aggregateExpData, 3
collapseExpData, 5
computePrimingWeights, 8
getRegion, 10
importFromAlignedReads, 11
importToExpData, 13
joinExpData, 14
makeGeneRepresentation, 15
mergeWithAnnotation, 16
splitByAnnotation, 21
summarizeByAnnotation, 22
summarizeExpData, 24

∗Topic methods
regionGoodnessOfFit-methods, 20
validAnnotation, 25

∗Topic misc
computeCoverage, 7

∗Topic package
Genominator-package, 2

[,ExpData-method (ExpData-class), 9
$,ExpData-method (ExpData-class), 9

addPrimingWeights, 2, 9
aggregateExpData, 3
applyMapped, 4

chr1_yeast (yeastAnno), 26
collapseExpData, 5
computeCoverage, 7, 17, 18
computePrimingWeights, 2, 3, 8

ExpData (ExpData-class), 9

ExpData-class, 9

Genominator (Genominator-package), 2
Genominator-package, 2
getColnames (ExpData-class), 9
getDBConnection (ExpData-class), 9
getDBFilename (ExpData-class), 9
getIndexColumns (ExpData-class), 9
getMode (ExpData-class), 9
getRegion, 10
getSchema (ExpData-class), 9
getTablename (ExpData-class), 9

head,ExpData-method (ExpData-class), 9

importFromAlignedReads, 11
importToExpData, 13
initialize,ExpData-method

(ExpData-class), 9

joinExpData, 14

listTables (ExpData-class), 9

makeGeneRepresentation, 15
mergeWithAnnotation, 16

par, 19
plot, 17, 19
plot.genominator.coverage, 8, 17
plot.genominator.goodness.of.fit, 18

readAligned, 13
regionGoodnessOfFit, 19
regionGoodnessOfFit

(regionGoodnessOfFit-methods),
20

regionGoodnessOfFit,data.frame-method
(regionGoodnessOfFit-methods),
20

regionGoodnessOfFit,ExpData-method
(regionGoodnessOfFit-methods),
20

regionGoodnessOfFit-methods, 20

show,ExpData-method (ExpData-class), 9

27

28 INDEX

splitByAnnotation, 21
summarizeByAnnotation, 22
summarizeExpData, 24

validAnnotation, 25

yeastAnno, 26

	Genominator-package
	addPrimingWeights
	aggregateExpData
	applyMapped
	collapseExpData
	computeCoverage
	computePrimingWeights
	ExpData-class
	getRegion
	importFromAlignedReads
	importToExpData
	joinExpData
	makeGeneRepresentation
	mergeWithAnnotation
	plot.genominator.coverage
	plot.genominator.goodness.of.fit
	regionGoodnessOfFit-methods
	splitByAnnotation
	summarizeByAnnotation
	summarizeExpData
	validAnnotation
	yeastAnno
	Index

