
Package ‘CellNOptR’
September 23, 2012

Type Package

Title R version of CellNOpt, boolean features only

Version 1.2.0

Date 2012-03-31

Author C.Terfve, T.Cokelaer

Maintainer T.Cokelaer <cokelaer@ebi.ac.uk>

Depends RBGL, graph

Suggests Rgraphviz

biocViews CellBasedAssays, CellBiology, Proteomics, Bioinformatics,TimeCourse

Description
This package does optimisation of boolean logic networks of signalling pathways based on a pre-
vious knowledge network and a set of data upon perturbation of the nodes in the network.

License GPL-2

LazyLoad yes

SystemRequirements Graphviz version >= 2.2

R topics documented:
CellNOptR-package . 2
checkSignals . 4
CNOlistDREAM . 5
CNOlistToy . 5
CNOlistToy2 . 6
CNORwrap . 7
compressModel . 8
cutAndPlotResultsT1 . 9
cutAndPlotResultsT2 . 11
cutNONC . 13
cutSimList . 14
defaultParameters . 14
expandGates . 15

1

2 CellNOptR-package

findNONC . 16
gaBinaryT1 . 17
gaBinaryT2 . 19
getFit . 21
indexFinder . 23
LiverDREAM . 24
makeCNOlist . 24
normaliseCNOlist . 26
plotCNOlist . 27
plotCNOlistLarge . 28
plotCNOlistLargePDF . 29
plotCNOlistPDF . 30
plotFit . 31
plotModel . 32
plotOptimResults . 34
plotOptimResultsPDF . 35
prep4Sim . 37
preprocessing . 38
readMIDAS . 39
readSif . 40
residualError . 41
simulateT1 . 42
simulatorT1 . 43
simulatorT2 . 45
ToyModel . 46
ToyModel2 . 47
writeDot . 47
writeNetwork . 49
writeReport . 51
writeScaffold . 53

Index 56

CellNOptR-package R version of CellNOptR, boolean features

Description

This package does optimisation of boolean logic networks of signalling pathways based on a pre-
vious knowledge network and a set of data collected upon perturbation of some of the nodes in the
network.

Details

Package: CellNOptR
Type: Package
Version: 1.1.2
Date: 2011-03-31
License: GPLv2
LazyLoad: yes

CellNOptR-package 3

Author(s)

C.Terfve, T.Cokelaer

Maintainer: C.Terfve <terfve@ebi.ac.uk>

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

Examples

library(CellNOptR)

tmpdir<-tempdir()
setwd(tmpdir)

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#From here there are 2 versions: 1. If you want to set the parameters yourself
pList<-list(
Data=CNOlistToy,
Model=ToyModel,
sizeFac = 1e-04,
NAFac = 1,
PopSize = 10,
Pmutation = 0.5,
MaxTime = 60,
maxGens = 5,
StallGenMax = 5,
SelPress = 1.2,
elitism = 5,
RelTol = 0.1,
verbose=TRUE)

CNORwrap(
paramsList=pList,
Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=NA,
Model=NA)

#2. If you want to keep the default parameters
Not run:
CNORwrap(
paramsList=NA,
Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=CNOlistToy,
Model=ToyModel)

End(Not run)

4 checkSignals

checkSignals Check the CNOlist and model matching

Description

This function checks that all the signals in the CNOlist match to species in the model. It also checks
that the CNOlist and Model lists have the right format and contain the right fields.

Usage

checkSignals(CNOlist, Model)

Arguments

CNOlist A CNOlist structure, as created by makeCNOlist

Model A model structure, as created by readSif

Details

If the formats are wrong, this function produces an error with an explanation message. If the signals
don’t match the species, this function produces a warning that explains which signals don’t match
any species, and advises to remove them (THIS SHOULD BE DONE IMPERATIVELY) which is
not done at this point but could be done in the form of this function returning a new CNOlist which
would be the original if all ok or a CNOlist with non matching signals removed when necessary.
I don’t see this as a priority at this stage so if it happens, the user should remove those signals
manually from the CNOlist (in both fields valueSignals and namesSignals).

Value

If all ok this function doesn’t return anything.

Author(s)

C. Terfve

See Also

makeCNOlist, readSif

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
checkSignals(CNOlistToy,ToyModel)

CNOlistDREAM 5

CNOlistDREAM Data used for the DREAM3 challenge

Description

This data object contains the DREAM data used in the package vignette, already loaded and format-
ted as a CNOlist object. This is to be used with the model "DreamModel". This is a data collected
on HepG2 cells cultivated with or without stimulation of tgfa, ilk, mek12, pi3k and p38, in com-
bination with inhibition of igf1 and/or il1a. Seven phosphoproteins are measured using Luminex
xMAP assays: akt, erk12, ikb, jnk12, p38, hsp27 and mek12.

Usage

CNOlistDREAM

Format

CNOlistDREAM is a list with the fields "namesCues" (character vector), "namesStimuli" (charac-
ter vector), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals"
(numerical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueS-
timuli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND,
Altan-Bonnet G, and Stolovitzky G. Towards a rigorous assessment of systems biology mod-
els: the DREAM3 challenges. PLoS One, 5(2):e9202, 2010.

CNOlistToy Toy data

Description

This data object contains the data associated with the Toy Model example from the package vignette,
already loaded and formatted as a CNOlist object.

Usage

CNOlistToy

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

6 CNOlistToy2

Format

CNOlistToy is a list with the fields "namesCues" (character vector), "namesStimuli" (character vec-
tor), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals" (nu-
merical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueStim-
uli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

CNOlistToy2 Toy data with 2 time points

Description

This data object contains the data associated with the Toy Model example from the package vignette,
already loaded and formatted as a CNOlist object, and modified to contain 2 time points. The second
time point is such a way that all of the signals stay as in time 1, except for cJun and Jnk which go
to zero.

Usage

CNOlistToy

Format

CNOlistToy is a list with the fields "namesCues" (character vector), "namesStimuli" (character vec-
tor), "namesInhibitors" (character vector), "namesSignals" (character vector), "timeSignals" (nu-
merical vector), "valueCues" (numerical matrix), "valueInhibitors" (numerical matrix), "valueStim-
uli"(numerical matrix), "valueSignals"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

CNORwrap 7

CNORwrap CNOR analysis wrapper

Description

This function is a wrapper around the whole CNOR analysis, it performs the following steps: 1. Plot
the CNOlist; 2. Checks data to model compatibility; 3. Find the indices, in the model, of the species
that are inhibited/stimulated/measured (signals); 4. Find the indices of the non-osbervables/non-
controllables (nonce); 5. Cut the nonc off the model; 6. Recompute the indices; 7. Compress the
model;8. Recompute the indices; 9. Expand the gates; 10. Compute the residual error; 11. Prepare
for simulation; 12. Optimisation; 13. Plot simulated and experimental results; 14. Plot the evolution
of fit; 15. Write the scaffold and PKN; 16. Write the report

Usage

CNORwrap(paramsList,Data,Model,Name,NamesData,Time=1)

Arguments

paramsList paramsList has entries: Data:the CNOlist, Model:the model; Parameters for the
optimisation:sizeFac: default to 1e-04; NAFac: default to 1;PopSize: default
to 50; Pmutation: default to 0.5; MaxTime: default to 60; maxGens: default
to 500; StallGenMax: default to 100; SelPress: default to 1.2; elitism: default
to 5; RelTol: default to 0.1; verbose: default to FALSE (default to true in the
functions used by CNORwrap but CNORwrap sets them to false by default).

Data the CNOlist that contains the data that you will use

Model the model that you want to optimise

Name a string that will be used to name the project and all graphs produced

NamesData a list with two elements:CNOlist and Model, each containing a string that is a
reference for the user to know which model/data set was used (it will be included
in the report)

Time either 1 or 2: Do you want to perform a one time point steady state optimisation
or a 2 time points pseudo steady state optimisation. By default this is set to 1.

Details

If you do not provide a parameters list, you can provide only essential elements, and all other
parameters will be set to their default values. In this case, you should set paramsList=NA, and
provide the following fields: Data, Model, Name, Time.

Value

This function does not return anything, it does the analysis, produces all the plots and puts them in
a folder that is in your working directory, and is called "Name".

Author(s)

C. Terfve

8 compressModel

Examples

#version with paramslist

tmpdir<-tempdir()
setwd(tmpdir)

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

pList<-list(
Data=CNOlistToy,
Model=ToyModel,
sizeFac = 1e-04,
NAFac = 1,
PopSize = 5,
Pmutation = 0.5,
MaxTime = 60,
maxGens = 5,
StallGenMax = 5,
SelPress = 1.2,
elitism = 5,
RelTol = 0.1,
verbose=TRUE)
CNORwrap(
paramsList=pList,
Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=NA,
Model=NA)

Not run:
#version with default parameters

dir.create("CNOR_analysis")
setwd("CNOR_analysis")

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

CNORwrap(
paramsList=NA,
Name="Toy",
NamesData=list(CNOlist="ToyData",Model="ToyModel"),
Data=CNOlistToy,
Model=ToyModel)

End(Not run)

compressModel Compress a model

Description

This function compresses a model by compressing species that are not signals/inhibited/stimulated
and that are not dead ends/in complex logic (i.e. only species with either one input or one output

cutAndPlotResultsT1 9

are compressed)/in self loops.

Usage

compressModel(Model, indexes)

Arguments

Model a model structure as produced by readSif

indexes list of indexes of sthe species stimulated/inhibited/measured in the model, as
created by indexFinder

Details

Be aware that in the multiple inputs/one output case, if one of the outputs is an ’&’ gate this function
handles it fine as long as it is an ’&’ with 2 inputs and no more.

Value

a compressed model list, with an additional field called ’speciesCompressed’ that contains the
names of the species that have been compressed

Author(s)

C.Terfve

See Also

indexFinder, readSif

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyComp<-compressModel(ToyModel,indicesToy)

cutAndPlotResultsT1 Plot the results of an optimisation at t1

Description

This function takes a model and an optimised bitstring, it cuts the model according to the bitstring
and plots the results of the simulation along with the experimental data.

Usage

cutAndPlotResultsT1(Model, bString, SimList, CNOlist, indexList, plotPDF =
FALSE, tag = NULL, show=TRUE)

10 cutAndPlotResultsT1

Arguments

Model a model (the full one that was used for optimisation)

bString a bitstring for T1 as output by gabinaryT1 (i.e. a vector of 1s and 0s)

SimList a simlist corresponding to the model, as output by prep4Sim

CNOlist a CNOlist, corresponding to the optimisation one

indexList an indexList, produced by indexFinder ran on the model and the CNOlist above

plotPDF TRUE or FALSE; tells whether you want a pdf to be produced or not

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

show TRUE of FALSE; FALSE tells not to show the plot, which can be useful when
scripting.

Value

This function doesn’t return anything, it only plots the graph in your graphic window, and in a pdf
file if asked

Author(s)

C.Terfve

See Also

gabinaryT1, prep4Sim

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

checkSignals(CNOlistToy,ToyModel)
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,

cutAndPlotResultsT2 11

maxGens=2,
PopSize = 5,
verbose=FALSE)
cutAndPlotResultsT1(
Model=ToyNCNOcutCompExp,
bString=ToyT1opt$bString,
SimList=ToyFields4Sim,
CNOlist=CNOlistToy,
indexList=indicesToyNCNOcutComp,
plotPDF=FALSE)

cutAndPlotResultsT2 Plot the results of an optimisation at t2

Description

This function takes a model and an optimised bitstring, it cuts the model according to the bitstring
and plots the results of the simulation along with the experimental data. This function is designed
to work on results of a 2 step optimisation.

Usage

cutAndPlotResultsT2(Model, bStringT1, bStringT2, SimList, CNOlist, indexList, plotPDF = FALSE, tag=NULL)

Arguments

Model a model (the full one that was used for optimisation)

bStringT1 a bitstring for T1 as output by gabinaryT1

bStringT2 a bitstring for T2 as output by gabinaryT2

SimList a simlist corresponding to the model, as output by prep4Sim

CNOlist a CNOlist, corresponding to the optimisation one

indexList an indexList, produced by indexFinder ran on the model and the CNOlist above

plotPDF TRUE or FALSE, tells whether you want a pdf to be produced or not

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

Value

This function doesn’t return anything, it only plots the graph in your graphic window, and in a pdf
file if asked

Author(s)

C. Terfve

See Also

gabinaryT1, prep4Sim, cutAndPlotResultsT1

12 cutAndPlotResultsT2

Examples

#load data

data(CNOlistToy2,package="CellNOptR")
data(ToyModel2,package="CellNOptR")

#pre-process model

checkSignals(CNOlistToy2,ToyModel2)
indexesToy2<-indexFinder(CNOlistToy2,ToyModel2,verbose=FALSE)
ToyNCNOindexes2<-findNONC(ToyModel2,indexesToy2,verbose=FALSE)
ToyNCNOcut2<-cutNONC(ToyModel2,ToyNCNOindexes2)
indexesToyNCNOcut2<-indexFinder(CNOlistToy2,ToyNCNOcut2)
ToyNCNOcutComp2<-compressModel(ToyNCNOcut2,indexesToyNCNOcut2)
indexesToyNCNOcutComp2<-indexFinder(CNOlistToy2,ToyNCNOcutComp2)
ToyNCNOcutCompExp2<-expandGates(ToyNCNOcutComp2)

#optimise t1
ToyFields4Sim2<-prep4Sim(ToyNCNOcutCompExp2)
initBstring2<-rep(1,length(ToyNCNOcutCompExp2$reacID))
ToyT1opt2<-gaBinaryT1(
CNOlist=CNOlistToy2,
Model=ToyNCNOcutCompExp2,
SimList=ToyFields4Sim2,
indexList=indexesToyNCNOcutComp2,
initBstring=initBstring2,
maxGens=2,
PopSize = 5,
verbose=FALSE)

#Optimise T2
SimToyT12<-simulateT1(
CNOlist=CNOlistToy2,
Model=ToyNCNOcutCompExp2,
bStringT1=ToyT1opt2$bString,
SimList=ToyFields4Sim2,
indexList=indexesToyNCNOcutComp2)
ToyT1opt2T2<-gaBinaryT2(
CNOlist=CNOlistToy2,
Model=ToyNCNOcutCompExp2,
SimList=ToyFields4Sim2,
indexList=indexesToyNCNOcutComp2,
bStringT1=ToyT1opt2$bString,
SimResT1=SimToyT12,
maxGens=2,
PopSize = 5,
verbose=FALSE)
cutAndPlotResultsT2(
Model=ToyNCNOcutCompExp2,
bStringT1=ToyT1opt2$bString,
bStringT2=ToyT1opt2T2$bString,
SimList=ToyFields4Sim2,
CNOlist=CNOlistToy2,
indexList=indexesToyNCNOcutComp2,
plotPDF=FALSE)

cutNONC 13

cutNONC Cuts the non-observable/non-controllable species off the model

Description

This function cuts the non observable and/or non controllable species off the model, and returns a
cut model

Usage

cutNONC(Model, NONCindexes)

Arguments

Model a model structure, as produced by readSif

NONCindexes a vector of indices of species to remove in that model, as produced for example
by findNONC

Details

This function takes in a model and a vector of indices of species to remove in that model and it
removes those species and any reaction involving them (be aware, if you have x&y=z and x is to be
removed, then the function produces y=z, because it works by removing entire rows of the Model
matrices and then removes the columns that do not have either an input or an output). This function
could actually be used to cut any species, not only NONC species.

Value

a model

Author(s)

C.Terfve

See Also

findNONC, readSif

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)

14 defaultParameters

cutSimList Cut a simList structure according to a bitstring

Description

This function is for developers only.

Usage

cutSimList(SimList, bitString)

Arguments

SimList the SimList object to cut.

bitString the bitString to be used to cut the SimList object.

Value

cutSimList the new simList object

Author(s)

T. Cokelaer

defaultParameters Create a list of default parameters

Description

This function provides a list of default parameters including the Genetic Algorithm parameters.

Usage

defaultParameters(Data=NA, Model=NA)

Arguments

Data the CNOlist that contains the data that you will use

Model the model that you want to optimise

Details

The list contains the Genetic Algorithm parameter, a verbose option and can be used to store the
Data and Model.

Value

params a list of default parameters.

expandGates 15

Author(s)

T. Cokelaer

Examples

data(ToyModel,package="CellNOptR")
data(CNOlistToy,package="CellNOptR")
params = defaultParameters(CNOlistToy, ToyModel)

expandGates Expand the gates of a model

Description

This function takes in a model and splits all AND gates into ORs. In addition, wherever there are
more than one, it creates all possible ANDs combinations of them, but considering only ANDs with
2, 3 or 4 inputs according to the user argument (default is 2)

Usage

expandGates(Model, ignoreList=NA, maxInputsPerGate=2)

Arguments

Model a model structure

ignoreList a list of reactions indices to ignore
maxInputsPerGate

maximum number of input per gates (Default is 2; up to 4)

Details

This function returns a model with additional fields that help keep track of the processing done on
the network. I would advice not to overwrite on the initial model but rather to assign the result of
this function to a variable with a different name.

Value

returns a Model, with additional fields:

SplitANDs list that contains a named element for each AND reac that has been split, and
each element contains a vector with the names of the of the reactions that result
from the split if nothing was split, this element has the default value $initialReac
[1] "split1" "split2"

newANDs list that contains an element for each new ’&’ gate, named by the name of this
new and reac, and containing a vector of the names of the reactions from which
it was created (contains all the reacs in that pool, not the particular ones, this
could be improved)

Note

This function could be simplified in the future.

16 findNONC

Author(s)

C.Terfve. T. Cokelaer

Examples

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process the model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp, maxInputsPerGate=4)

findNONC Find the indexes of the non-observable and non controllable species

Description

This function finds the indexes of the non-observable and non controllable species and returns the
indices, in the model, of the species to remove

Usage

findNONC(Model, indexes, verbose)

Arguments

Model a model, as created by readSif

indexes a list of indices of species measured, stimulated or inhibited, as created by in-
dexFinder

verbose do you want information about the ncno species printed on the screen? Default
to FALSE but we would advise to put it to true the first time that the function is
called

Details

This function uses the function floyd.warshall.all.pairs.sp from the package RBGL. Non observable
nodes are those that do not have a path to any measured species in the model, whereas non con-
trollable nodes are those that do not receive any information from a species that is perturbed in the
data.

Value

a vector of indices of species to remove

gaBinaryT1 17

Author(s)

C. Terfve

See Also

cutNONC, indexFinder, readSif

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
checkSignals(CNOlistToy,ToyModel)
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)

gaBinaryT1 Genetic algorithm used to optimise a model

Description

This function is the genetic algorithm to be used to optimise a model by fitting to data containing
one time point.

Usage

gaBinaryT1(CNOlist, Model, SimList, indexList, sizeFac = 1e-04, NAFac = 1, initBstring, PopSize = 50, Pmutation = 0.5, MaxTime = 60, maxGens = 500, StallGenMax = 100, SelPress = 1.2, elitism = 5, RelTol = 0.1, verbose=TRUE)

Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[2]], i.e. data at
t1)

Model a Model list

SimList a list that contains additional fields for the simulator, as created by prep4Sim
applied to the model above

indexList a list of indexes of species stimulated/inhibited/signals, as produced by indexfinder
applied on the model and CNOlist above

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

NAFac the scaling factor for the NA term in the objective function, default to 1

initBstring an initial bitsring to be tested, should be of the same size as the number of
reactions in the model above

PopSize the population size for the genetic algorithm, default set to 50

Pmutation the mutation probability for the genetic algorithm, default set to 0.5

MaxTime the maximum optimisation time in seconds, default set to 60

maxGens the maximum number of generations in the genetic algorithm, default set to 500

StallGenMax the maximum number of stall generations in the genetic algorithm, default to
100

SelPress the selective pressure in the genetic algorithm, default set to 1.2

18 gaBinaryT1

elitism the number of best individuals that are propagated to the next generation in the
genetic algorithm, default set to 5

RelTol the relative tolerance for the best bitstring reported by the genetic algorithm, i.e.,
how different from the best solution, default set to 0.1

verbose logical (default to TRUE) do you want the statistics of each generation to be
printed on the screen?

Details

The whole procedure is described in details in Saez-Rodriguez et al. (2009). The basic principle
is that at each generation, the algorithm evaluates a population of models based on excluding or
including some gates in the initial pre-processed model (this is encoded in a bitstring with contains
0/1 entries for each gate). The population is then evolved based on the results of the evaluation of
these networks, where the evaluation is obtained by simulating the model (to steady state) under the
various conditions present in the data, and then computing the squared deviation from the data, to
which a penalty is added for size of the model and for species in the model that do not reach steady
state.

Value

This function returns a list with elements:

bString the best bitstring

Results a matrix with columns "Generation","Best_score","Best_bitString","Stall_Generation","Avg_Score_Gen","Best_score_Gen","Best_bit_Gen","Iter_time"

StringsTol the bitstrings whose scores are within the tolerance
StringsTolScores

the scores of the above-mentioned strings

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

GetFit, prep4Sim, indexFinder, simulatorT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=FALSE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)

gaBinaryT2 19

indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,
verbose=FALSE)

gaBinaryT2 Genetic algorithm for time point 2

Description

This is the genetic algorithm for time point 2, that should follow optimisation based on time point
1.

Usage

gaBinaryT2(CNOlist, Model, SimList, indexList, bStringT1, SimResT1, sizeFac = 1e-04, NAFac = 1, PopSize = 50, Pmutation = 0.5, MaxTime = 60, maxGens = 500, StallGenMax = 100, SelPress = 1.2, elitism = 5, RelTol = 0.1, verbose=TRUE)

Arguments

CNOlist a CNOlist on which the score is based (based on valueSignals[[3]], i.e. data at
t2)

Model a Model list

SimList a list that contains additional fields for the simulator, as created by prep4Sim
applied to the model above

indexList a list of indexes of species stimulated/inhibited/signals, as produced by indexfinder
applied on teh model and CNOlist above

bStringT1 the optimal bitstring from optimisation at time 1 (i.e. a vector of 0s and 1s)

SimResT1 the results of optimisation at t1 (i.e. the whole list as output by gabinaryT1)

sizeFac the scaling factor for the size term in the objective function, default to 0.0001

NAFac the scaling factor for the NA term in the objective function, default to 1

PopSize the population size for the genetic algorithm, default set to 50

Pmutation the mutation probability for the genetic algorithm, default set to 0.5

MaxTime the maximum optimisation time in seconds, default set to 60

maxGens the maximum number of generations in the genetic algorithm, default set to 500

StallGenMax the maximum number of stall generations in the genetic algorithm, default to
100

20 gaBinaryT2

SelPress the selective pressure in the genetic algorithm, default set to 1.2

elitism the number of best individuals that are propagated to the next generation in the
gen. al. default set to 5

RelTol the relative tolerance for the best bitstring reported by the genetic algorithm,
i.e.how different from the best solution can solutions be to be reported as well,
default set to 0.1

verbose logical (default to TRUE) do you want the statistics of each generation to be
printed on the screen

Details

This function takes in the same input as the T1 ga, but in addition it takes in the bitstring optimised
for T1, and does not take an initial bitstring. It also takes a matrix SimResT1, which is the results
of simulatorT1 ran on the model optimised for T1. Be aware that the bitString that this function
returns is one that only includes the bits that it actually looks at, i.e. the bits that were 0 in the
bStringT1

Value

This function returns a list with elements:

bString the best bitstring

Results a matrix with columns "Generation","Best_score","Best_bitString","Stall_Generation","Avg_Score_Gen","Best_score_Gen","Best_bit_Gen","Iter_time"

StringsTol the bitstrings whose scores are within the tolerance
StringsTolScores

the scores of the above-mentionned strings

Author(s)

C.Terfve

See Also

GetFit, prep4Sim, indexFinder, simulatorT1, simulatorT2, gaBinaryT2

Examples

#load data

data(CNOlistToy2,package="CellNOptR")
data(ToyModel2,package="CellNOptR")

#pre-process model

checkSignals(CNOlistToy2,ToyModel2)
indexesToy2<-indexFinder(CNOlistToy2,ToyModel2,verbose=FALSE)
ToyNCNOindexes2<-findNONC(ToyModel2,indexesToy2,verbose=FALSE)
ToyNCNOcut2<-cutNONC(ToyModel2,ToyNCNOindexes2)
indexesToyNCNOcut2<-indexFinder(CNOlistToy2,ToyNCNOcut2)
ToyNCNOcutComp2<-compressModel(ToyNCNOcut2,indexesToyNCNOcut2)
indexesToyNCNOcutComp2<-indexFinder(CNOlistToy2,ToyNCNOcutComp2)
ToyNCNOcutCompExp2<-expandGates(ToyNCNOcutComp2)

#optimise t1

getFit 21

ToyFields4Sim2<-prep4Sim(ToyNCNOcutCompExp2)
initBstring2<-rep(1,length(ToyNCNOcutCompExp2$reacID))
ToyT1opt2<-gaBinaryT1(
CNOlist=CNOlistToy2,
Model=ToyNCNOcutCompExp2,
SimList=ToyFields4Sim2,
indexList=indexesToyNCNOcutComp2,
initBstring=initBstring2,
maxGens=2,
PopSize = 5,
verbose=FALSE)

#Optimise T2
SimToyT12<-simulateT1(
CNOlist=CNOlistToy2,
Model=ToyNCNOcutCompExp2,
bStringT1=ToyT1opt2$bString,
SimList=ToyFields4Sim2,
indexList=indexesToyNCNOcutComp2)
ToyT1opt2T2<-gaBinaryT2(
CNOlist=CNOlistToy2,
Model=ToyNCNOcutCompExp2,
SimList=ToyFields4Sim2,
indexList=indexesToyNCNOcutComp2,
bStringT1=ToyT1opt2$bString,
SimResT1=SimToyT12,
maxGens=2,
PopSize = 5,
verbose=FALSE)

getFit Compute the score of a model

Description

This function computes the value of the objective function for a model and an associated data set, as
a sum of a term that computes the fit of model to data, a term that penalises the NA values produced
by the model, and a term that penalises increasing size of the model.

Usage

getFit(SimResults, CNOlist, Model, indexList, timePoint = c("t1", "t2"), sizeFac
= 1e-04, NAFac = 1, nInTot, SimResultsT0=NA)

Arguments

SimResults matrix of simulated results (the full one as output by the simulator)

CNOlist a CNOlist to compare the simulated results with

Model a model that has already been cut to contain only the reactions in the optimal
bitstring

indexList list of indexes as produced by indexFinder

22 getFit

timePoint "t1" or "t2" tells which time point we are looking at. If timePoint=t1 then we
will compare the SimResults to the results stored in CNOlist$valueSignals[[2]].
If timePoint=t1 then we will compare the SimResults to the results stored in
CNOlist$valueSignals[[2]]

sizeFac weights the penalty for the size of the model, default=0.0001

NAFac weights the penalty for the number of NAs

nInTot the number of inputs in the model prior to cutting, used to normalised the size
penalty

SimResultsT0 Results of the time 0 simulator (internal usage of gaBinaryT1)

Details

BE AWARE: contrary to what is done in the Matlab version of CellNOpt, here the simulation results
are computed beforehand and the Model that is input into this function is a model that has already
been cut i.e. that only contains the reactions present in the optimised model (i.e.should be the same
model as the one that you input into the simulator). Also, the SimResults matrix is the full one as
output by the simulator, i.e. it contains results for all species in the model, not only the signals

Value

This function returns a single number, the value of the objective function.

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

gabinaryT1, indexFinder, simulatorT1

Examples

#Here we will evaluate the fit of the full initial model,
#without pre-processing or any optimisation

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyFields4Sim<-prep4Sim(ToyModel)
SimResults<-simulatorT1(
CNOlist=CNOlistToy,
Model=ToyModel,
SimList=ToyFields4Sim,
indexList=indicesToy)
Score<-getFit(
SimResults=SimResults,
CNOlist=CNOlistToy,

indexFinder 23

Model=ToyModel,
indexList=indicesToy,
timePoint="t1",

nInTot=length(which(ToyModel$interMat == -1))
)

indexFinder Finds the indices, in the Model fields, of the species that are mea-
sured/inhibited/stimulated

Description

This function finds the indices, in the Model fields, of the species that are measured/inhibited/stimulated.
It looks for their position in Model$namesSpecies which has the same order as the rows of interMat
and notMat, and therefore these indexes can be used there as well.

Usage

indexFinder(CNOlist, Model,verbose=FALSE)

Arguments

CNOlist a CNOlist structure, as produced by makeCNOlist

Model a model structure, as produced by readSif

verbose do you want information about the cues and signals identities printed on the
screen? Default if false but we would advise to set it to true when the function
is called for the first time.

Value

a list with fields:

signals vector of indices of the measured species

stimulated vector of indices of the stimulated species

inhibited vector of indices of the inhibited species

Author(s)

C. Terfve

See Also

makeCNOlist, ReadSif

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)

24 makeCNOlist

LiverDREAM Model used for the DREAM3 challenge

Description

This data object contains the model used in the package vignette, already loaded and formatted as a
Model object. This is to be used with the data in "CNOListDREAM"

Usage

DreamModel

Format

DreamModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector),
"interMat" (numerical matrix), "notMat"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND,
Altan-Bonnet G, and Stolovitzky G. Towards a rigorous assessment of systems biology mod-
els: the DREAM3 challenges. PLoS One, 5(2):e9202, 2010.

makeCNOlist Make a CNOlist structure

Description

This function takes as input the output of readMIDAS and extracts the elements that are needed in
a CNO project

Usage

makeCNOlist(dataset, subfield, verbose=TRUE)

Arguments

dataset output of readMIDAS

subfield TRUE or FALSE, specifies if the column headers contain subfields or not i.e. if
I should look for TR:sthg:sthg or just TR:sthg

verbose logical (default to TRUE) print information on the screen.

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

makeCNOlist 25

Details

Be aware that most of the functions in this package, including this one, expect the data to contain
measurements at time 0, but these should all be equal to zero according to the normalisation proce-
dure that should be used. Therefore, if you have on time point, the files valueSignals contains two
matrices, one for t0 and one for t1.

I there are replicate rows in the MIDAS file (i.e. identical cues and identical time), this function
averages the values of the measurements for these replicates.

Value

a CNOlist with fields

namesCues a vector of names of cues

namesStimuli a vector of names of stimuli
namesInhibitors

a vector of names of inhibitors

namesSignals a vector of names of signals

timeSignals a vector of times

valueCues a matrix of dimensions nConditions x nCues, with 0 or 1 if the cue is present or
absent in the particular condition

valueInhibitors

a matrix of dimensions nConditions x nInhibitors, with 0 or 1 if the inhibitor is
present or absent in the particular condition

valueStimuli of dimensions nConditions x nStimuli, with 0 or 1 if the stimuli is present or
absent in the particular condition

valueSignals a list of the same length as timeSignals, each element containing a matrix of
dimensions nConditions x nsignals, with the measurements.

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

readMIDAS

Examples

tmpdir<-tempdir()
setwd(tmpdir)
cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
dataToy<-readMIDAS(MIDASfile=’ToyDataMMB.csv’)
CNOlistToy<-makeCNOlist(dataset=dataToy,subfield=FALSE)

26 normaliseCNOlist

normaliseCNOlist Normalisation for boolean modelling.

Description

This function takes in a CNOlist and does the normalisation of the data between 0 and 1, according
to two different procedures (see details)

Usage

normaliseCNOlist(CNOlist, EC50Data = 0.5, HillCoef = 2, EC50Noise = 0.1, Detection = 0, Saturation = Inf, ChangeTh = 0, Norm2TorCtrl = "time")

Arguments

CNOlist a CNOlist

EC50Data parameter for the scaling of the data between 0 and 1, default=0.5

HillCoef Hill coefficient for the scaling of the data, defat to 2

EC50Noise parameter for the computation of a penalty for data comparatively smaller than
other time points or conditions

Detection minimum detection level of the instrument, everything smaller will be treated as
noise (NA), default to 0

Saturation saturation level of the instrument, everything over this will be treated as NA,
default to Inf.

ChangeTh threshold for relative change considered significant, default to 0

Norm2TorCtrl "time" or "ctrl": choice of a normalisation method: compute the relative change
compared to the control at the same time, or to the same condition and measure-
ment at time 0

Details

The normalisation procedure works as follows: a) every value that is out of the dynamic range of the
equipment (as specified by the parameters Detection and Saturation are set to NA, b) values are
transformed to fold changes relative to the same condition at t0 (if Norm2TorCtrl="time") or the
control condition (i.e. same inhibitors, no stimuli) at the same time (if Norm2TorCtrl="ctrl"), c)
the fold changes are transformed with a Hill function (i.e. for each data point x^HillCoef/((EC50Data^HillCoef)+(x^HillCoef))),
d) a penalty for "noisiness" is computed for each measurement as the value divided by the maximum
value for that readout across all conditions and times (excluding values out of the dynamic range), e)
the noise penalty is transformed by a saturation function (for each measurement x/(EC50Noise+x)
where x=x/max(x)), f) the noise penalty and Hilled fold changes are multiplied, g) if the fold change
is negative and bigger than ChangeTh, the resulting product is multiplied by -1, if the fold change
is smaller than ChangeTh (either positive or negative), it is set to 0. The normalisation procedure
applied here is explained in details in Saez-Rodriguez et al. (2009).

As the normalisation procedure works by computing a fold change relative to the same condition at
time 0 or the control condition, if the aforementioned conditions have a value of zero (which is not
expected with any common biochemical technique), then the fold change calculation will return a
"NaN" value. If this is a problem for your particular case then we would suggest putting a dummy,
very low value, instead of the zero, or setting that measurement to "NA" in the MIDAS file.

plotCNOlist 27

Value

a normalised CNOlist

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

See Also

makeCNOlist

Examples

#Load a CNOlist

data(CNOlistToy,package="CellNOptR")

#Replace the values in the list by random values
#(for demonstration purposes, when actually using this function you would simply load a non-normalised CNOlist)

CNOlistToy$valueSignals$t0<-matrix(
data=runif(n=(dim(CNOlistToy$valueSignals$t0)[1]*dim(CNOlistToy$valueSignals$t0)[2]),min=0,max=400),
nrow=dim(CNOlistToy$valueSignals$t0)[1],
ncol=dim(CNOlistToy$valueSignals$t0)[2])
CNOlistToy$valueSignals[[2]]<-CNOlistToy$valueSignals[[1]]+matrix(
data=runif(n=(dim(CNOlistToy$valueSignals$t0)[1]*dim(CNOlistToy$valueSignals$t0)[2]),min=0,max=100),
nrow=dim(CNOlistToy$valueSignals$t0)[1],
ncol=dim(CNOlistToy$valueSignals$t0)[2])

CNOlistToyN<-normaliseCNOlist(
CNOlistToy,
EC50Data = 0.5,
HillCoef = 2,
EC50Noise = 0.1,
Detection = 0,
Saturation = Inf,
ChangeTh = 0,
Norm2TorCtrl = "time")

plotCNOlist Plot the data in a CNOlist

Description

This function plots the data in a CNOlist as a matrix of plots with a row for each condition and a
column for each signal, and an extra plot for each row that specifies which cues are present..

28 plotCNOlistLarge

Usage

plotCNOlist(CNOlist)

Arguments

CNOlist a CNOlist

Details

This function can plot the normalised values or the un-normalised ones, it just needs a CNOlist.

Value

This function just produces a plot on your graphics window

Author(s)

C. Terfve

See Also

plotCNOlistPDF, plotCNOlistLarge, plotCNOlistLargePDF

Examples

data(CNOlistToy,package="CellNOptR")
plotCNOlist(CNOlistToy)

plotCNOlistLarge Plot the data in a CNOlist, for lists with many conditions.

Description

This function plots the data in a CNOlist as a matrix of plots with a row for each condition and a
column for each signal, and an extra plot for each row that specifies which cues are present.

Usage

plotCNOlistLarge(CNOlist,nsplit=4, newDevice=FALSE)

Arguments

CNOlist a CNOlist

nsplit the number of splits in the condition dimension (one new plot window will be
produced for each split, i.e. if you have 80 conditions and specify 4 splits you
will get 4 plots with 20 conditions each).

newDevice nsplit plots are created within the same device. In principle, most of the R
Graphical USer Interface will allow the user to navigate between the different
plots. However, if scripting only the last plot will be seen. If you want to create
new device for each different plot, then set this option to TRUE.

plotCNOlistLargePDF 29

Details

This function can plot normalised values or the un-normalised ones, it just needs a CNOlist. This
function makes plots of CNOlists that are more readable when many conditions are present in the
data. In addition to plotting the conditions divided into multiple plots, this function also plots the
cues divided in two columns, one for inhibitors and one for stimuli.

Value

This function just produces plots on your graphics window.

Author(s)

C. Terfve

See Also

plotCNOlist, plotCNOlistPDF, plotCNOlistLargePDF

Examples

data(CNOlistDREAM,package="CellNOptR")
plotCNOlistLarge(CNOlistDREAM, nsplit=2)

plotCNOlistLargePDF Plots a CNOlist into a pdf file, for lists with many conditions.

Description

This function is a wrapper for plotCNOlistLarge, that plots the output directly in a pdf file.

Usage

plotCNOlistLargePDF(CNOlist, filename, nsplit, width=14, height=7)

Arguments

CNOlist a CNOlist

filename a name for your pdf file, eg. "plot.pdf"

nsplit the number os splits along the condition dimension (see plotCNOlistLarge)

width set the width of the PDF document.

height set the height of the PDF document.

Details

This function makes plots of CNOlists that are more readable when many conditions are present in
the data. In addition to plotting the conditions divided into multiple plots, this function also plots
the cues divided in two columns, one for inhibitors and one for stimuli.

Value

This function doesn’t return anything, it just produces a pdf file with your plots, in your current
working directory.

30 plotCNOlistPDF

Author(s)

C. Terfve

See Also

plotCNOlistLarge, plotCNOlist, plotCNOlistPDF

Examples

tmpdir<-tempdir()
setwd(tmpdir)
data(CNOlistDREAM,package="CellNOptR")
plotCNOlistLargePDF(CNOlistDREAM, filename="dreamData.pdf",nsplit=2)

plotCNOlistPDF Plots a CNOlist into a pdf file.

Description

This function is a wrapper for plotCNOlist, that plots the output directly in a pdf file.

Usage

plotCNOlistPDF(CNOlist, filename)

Arguments

CNOlist a CNOlist

filename a name for your pdf file, eg. "plot.pdf"

Value

This function doesn’t return anything, it just produces a pdf file containing your plot, in your work-
ing directory.

Author(s)

C. Terfve

See Also

plotCNolist, plotCNOlistLarge, plotCNOlistLargePDF

Examples

tmpdir<-tempdir()
setwd(tmpdir)
data(CNOlistToy,package="CellNOptR")
plotCNOlistPDF(CNOlist=CNOlistToy,filename="ToyModelGraph.pdf")

plotFit 31

plotFit Plot the evolution of an optimisation

Description

This function takes in the results of an optimisation by gaBinaryT1 and plots the evolution of best
fit and average fit against generations.

Usage

plotFit(OptRes, filename = NULL)

Arguments

OptRes an object created by the optimisation engine (gabinaryT1)

filename NULL or string: if provided, the plot is save in PDF format in the filename.

Value

This function doesn’t return anything, it just produces a plot in your graphics window.

Author(s)

C. Terfve

See Also

gabinaryT1

Examples

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#process the model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyComp<-compressModel(ToyModel,indicesToy)
indicesToyComp<-indexFinder(CNOlistToy,ToyComp)
ToyCompExp<-expandGates(ToyComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyCompExp)
initBstring<-rep(1,length(ToyCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,

32 plotModel

verbose=FALSE)

plotFit(OptRes=ToyT1opt)

plotModel Plot a model

Description

This function can be used to plot a prior model network before any pre-processing step. However,
additional information can be provided such as a CNOlist (see makeCNOlist and readMIDAS) or
information related to the pre-processing steps (compression, NONC nodes, expansion gates). It
can also be used to plot optimised model given the optimisation bitstring.

Usage

plotModel(model, cnolist=NULL, bString=NULL, indexIntegr=NA, signals=NULL, stimuli=NULL,
inhibitors=NULL, ncno=NULL, compressed=NULL, output="STDOUT",filename=NULL,
graphvizParams=list())

Arguments

model a model as returned by readSif. Alternatively, the filename can also be pro-
vided.

cnolist output of makeCNOlist

bString a sequence made of numbers between 0 and 1 of same length as the one returned
by the Genetic Algorithm (GA). This is a generalisation of the bitString returned
by the GA function: several bit strings can be averaged and used

indexIntegr additional indices to highlight some edge (optional).

signals a list of nodes belonging to the signals class

stimuli a list of nodes belonging to the stimuli class

inhibitors a list of nodes belonging to the inhibitors class

ncno a list of NCNO nodes.

compressed a list of compressed nodes

filename the filename (without extension) used to write the dot file

output the type of output (PNG, PDF, SVG accepted)

graphvizParams a list of optional arguments dedicated to Rgraphviz. Accepted arguments are:
arrowsize (default is 2); size (a string for the dot output default is "15,15");fontsize
(default is 22);edgecolor (default is "black").

plotModel 33

Details

This function plots the model and also saves it in a dot file that can be processed later on. However,
you can also save the plot in PNG or PDF or SVG format (one at a time).

The cnolist argument contains the signals/stimuli/inhibitors so if you provide a cnolist there is no
need to use these arguments. If you decide to use them they will overwrite the contents of the cnolist
argument.

optimRes is the output of gaBinary. One of its field is called bString and contains a list of 0 and 1
(the optimisation is perfomed with a binary procedure). This list of 0 and 1 is then used to plot or
not the edges of the model. However, you can provide a bitString made of floats (e.g., average of
several bitStrings). In such case, edges will appear in gray light or dark according to the bistring
value (between 0 and 1).

Value

a graph representation of the model

graph$g A graph representation of the model

graph$attrs graph attributes

graph$nodeAttrs

nodes attributes
graph$edgeAttrs

edges attributes

graph$clusters clusters of nodes

Note

This function depends on the Rgraphviz package.

Author(s)

T. Cokelaer

See Also

readMIDAS, readSif, makeCNOlist, writeNetwork, writeDot, and gaBinaryT1

Examples

Not run: library(CellNOptR)
data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
res<-plotModel(ToyModel, cnolist=CNOlistToy, compressed=c("TRAF6", "p38"))

End(Not run)

34 plotOptimResults

plotOptimResults Plot the data and simulated values

Description

This function is the equivalent of CNOPlotFits, it plots the data and the simulated values, along
with an image plot that tells which cues were present. The plots are coloured according to the fit
between data and simulated data.

Usage

plotOptimResults(SimResults = SimResults, expResults = expResults, times = times, namesCues = namesCues, namesSignals = namesSignals, valueCues = valueCues)

Arguments

SimResults a list with a field for each time point, each containing a matrix of dimensions
(number of conditions) * (number of signals), with the first field being t0. Typi-
cally produced by simulating a model and then extracting the columns that cor-
respond to signals

expResults same as above, but contains the experimental results, ie this is CNOlist$valueSignals

times a vector of times, its length should be the same as the number of fields in Sim-
Results and ExpResults

namesCues a vector of names, typically CNOlist$namesCues

namesSignals a vector of names, typically CNOlist$namesSignals

valueCues a matrix of dimensions (number of conditions) * (number of cues), typically
CNOlist$valueCues

Details

The colouring of the background is done as follows: the mean absolute difference between observed
and simulated values are computed, and colours are chosen based on this value: red (above 0.9),
indianred1 (between O.8 and 0.9), lightpink2 (between 0.7 and 0.8), lightpink (between 0.6 and
0.7), mistyrose (between 0.5 and 0.6), palegoldenrod (between 0.4 and 0.5), palegreen (between
0.3 and 0.4), darkolivegreen3 (between 0.2 and 0.3), chartreuse3 (between 0.1 and 0.2), forestgreen
(between 0 and 0.1). This function is used inside cutAndPlotResultsT1.

Value

This function doesn’t return anything, it just produces a plot in your graphics window.

Author(s)

C. Terfve

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

plotOptimResultsPDF 35

See Also

cutAndPlotResultsT1

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#We will plot the fit of the full initial model compared to the data, without any optimisation
#This is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

#load and prepare data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4Sim(ToyModel)

#simulate model

Sim<-simulatorT1(CNOlist=CNOlistToy,Model=ToyModel,SimList=ToyFields4Sim,indexList=indicesToy)

#format data and results

SimRes<-Sim[,indicesToy$signals]
SimResults<-list(t0=matrix(data=0,nrow=dim(SimRes)[1],ncol=dim(SimRes)[2]),t1=SimRes)
expResults<-list(t0=CNOlistToy$valueSignals[[1]],t1=CNOlistToy$valueSignals[[2]])

#plot

plotOptimResults(
SimResults=SimResults,
expResults=expResults,
times=CNOlistToy$timeSignals[1:2],
namesCues=CNOlistToy$namesCues,
namesSignals=CNOlistToy$namesSignals,
valueCues=CNOlistToy$valueCues)

plotOptimResultsPDF Plot the data and simulated values in a pdf file

Description

This is a wrapper for plotOptimResults

Usage

plotOptimResultsPDF(SimResults = SimResults, expResults = expResults, times = times, namesCues = namesCues, namesSignals = namesSignals, valueCues = valueCues, filename)

36 plotOptimResultsPDF

Arguments

SimResults a list with a field for each time point, each containing a matrix of dimensions
number of conditions * number of signals, with the first field being t0. Typically
produced by simulating a model and then extracting the columns that correspond
to signals

expResults same as above, but contains the experimental results, ie this is CNOlist$valueSignals

times a vector of times, its length should be the same as the number of fields in Sim-
Results and ExpResults

namesCues a vector of names, typically CNOlist$namesCues

namesSignals a vector of names, typically CNOlist$namesSignals

valueCues a matrix of dimensions (number of conditions) * (number of cues), typically
CNOlist$valueCues

filename a name for your file, eg. "plot.pdf"

Details

The coloring of the background is done as follows: the mean absolute difference between observed
and simulated values are computed, and colours are chosen based on this value: red (above 0.9),
indianred1 (between O.8 and 0.9), lightpink2 (between 0.7 and 0.8), lightpink (between 0.6 and
0.7), mistyrose (between 0.5 and 0.6), palegoldenrod (between 0.4 and 0.5), palegreen (between
0.3 and 0.4), darkolivegreen3 (between 0.2 and 0.3), chartreuse3 (between 0.1 and 0.2), forestgreen
(between 0 and 0.1). This function is used inside cutAndPlotResultsT1.

Value

This function doesn’t return anything, it just produces a plot in a pdf document in your working
directory.

Author(s)

C. Terfve

See Also

plotOptimResults, cutAndPlotResultsT1

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#We will plot the fit of the full initial model compared to the data, without any optimisation
#This is normally not done on a stand alone basis, but if you have a model and would like to visualise
#its output compared to your data, then this is what you should do

#load and prepare data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")
indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4Sim(ToyModel)

prep4Sim 37

#simulate the model

Sim<-simulatorT1(CNOlist=CNOlistToy,Model=ToyModel,SimList=ToyFields4Sim,indexList=indicesToy)

#format the results and data as expected by plotOptimResults

SimRes<-Sim[,indicesToy$signals]
SimResults<-list(t0=matrix(data=0,nrow=dim(SimRes)[1],ncol=dim(SimRes)[2]),t1=SimRes)
expResults<-list(t0=CNOlistToy$valueSignals[[1]],t1=CNOlistToy$valueSignals[[2]])

#plot

plotOptimResultsPDF(
SimResults=SimResults,
expResults=expResults,
times=CNOlistToy$timeSignals[1:2],
namesCues=CNOlistToy$namesCues,
namesSignals=CNOlistToy$namesSignals,
valueCues=CNOlistToy$valueCues,
filename="Toyfull.pdf")

prep4Sim Prepare a model for simulation

Description

Adds to the model some fields that are used by the simulation engine

Usage

prep4Sim(Model)

Arguments

Model a model list, as output by readSif, normally pre-processed but that is not a re-
quirement of this function

Details

This adds fields that are necessary for the simulation engine in a version that is extensible for
constrained Fuzzy logic extension of the methods applied here (in development).

Value

this function returns a list with fields:

finalCube stores, for each reac(row) the location of its inputs (col)

ixNeg stores, for each reac(row) and each input (col) whether it is a negative input

ignoreCube logical matrix of the same size as the 2 above, that tells whether the particular
cell is filled or not

maxIx row vector that stores, for each reac, the location of its output

modelname stores the name of the model from which these fields were derived

38 preprocessing

Author(s)

C. Terfve

See Also

simulatorT1

Examples

data(ToyModel,package="CellNOptR")
ToyFields4Sim<-prep4Sim(ToyModel)

preprocessing Performs the pre-processing steps

Description

This function performs any of the following preprocessing steps:

1. removes Non-Controllable and Non-Observables nodes

2. compress the model

3. and-gates expansion

Usage

preprocessing(Data, Model, cutnonc=TRUE, compression=TRUE,
expansion=TRUE,ignoreList=NA, maxInputsPerGate=2, verbose=TRUE)

Arguments

Data the CNOlist that contains the data that you will use

Model the model object as returned by readSif

cutnonc Removes the NONC nodes using cutNONC and findNONC (Default is TRUE).

compression Compress the model using compressModel (Default is TRUE).

expansion Add and gates using expandGates (Default is TRUE).

ignoreList list of reactions indices to ignore in the expansion step.
maxInputsPerGate

used by the expandGates function to set maximum inputs per and gates.

verbose verbose option (Default is TRUE).

Details

The function can apply any or none of the pre-processing steps. It returns the new model and the
indices returned by indexFinder.

Value

model the new model

indices the indices of the new model found in the CNOlist object using indexFinder.

readMIDAS 39

Author(s)

T. Cokelaer

See Also

readSif, readMIDAS, cutNONC, findNONC, compressModel and expandGates.

Examples

data(ToyModel,package="CellNOptR")
data(CNOlistToy,package="CellNOptR")
res = preprocessing(CNOlistToy, ToyModel, cutnonc=FALSE)
res is a list containing the new model (res$model) and its indices
(res$indices).

readMIDAS Reads in a csv MIDAS file

Description

This function takes in a single argument, the name of a csv MIDAS file containing the data, and
returns a list that contains all the elements to build a CNOlist. The output of this function should be
used as input for makeCNOlist.

Usage

readMIDAS(MIDASfile, verbose=TRUE)

Arguments

MIDASfile a csv MIDAS file

verbose logical (default to TRUE) print information on the screen.

Details

This function does not return a CNOlist, but the output of this function can be used directly into
makeCNOlist to create one. The MIDAS file format is described in Saez-Rodriguez et al. (2008).

If you have all of the readouts measured at the same series of time points, you can specify a unique
DA: column which must have the format "DA:ALL".

Value

this function returns a list with fields:

dataMatrix matrix containing the data in the MIDAS file

TRcol indexes of the columns that contain the treatments (excluding cell line)

DAcol indexes of the columns that contain the data time points

DVcol indexes of the columns that contain the actual values (measurements)

40 readSif

Author(s)

C.Terfve

References

J. Saez-Rodriguez, A. Goldsipe, J. Muhlich, L. Alexopoulos, B. Millard, D. A. Lauffenburger, P. K.
Sorger Flexible Informatics for Linking Experimental Data to Mathematical Models via DataRail.
Bioinformatics, 24:6, 840-847 (2008).

See Also

makeCNOlist

Examples

tmpdir<-tempdir()
setwd(tmpdir)
cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
dataToy<-readMIDAS(MIDASfile=’ToyDataMMB.csv’)
CNOlistToy<-makeCNOlist(dataset=dataToy,subfield=FALSE)

readSif Read a sif file and create a model object

Description

This function reads in a cityscape sif file and creates a model object that can be used in the
CellNOptR procedure.

Usage

readSif(sifFile)

Arguments

sifFile the name of a sif file

Details

This function takes in a single argument, sifFile, that points to a previous knowledge network in .sif
format i.e. sourceNode-tab-sign-tab-targetNode. If there are ANDs they should be introduced as
dummy nodes called and# (don’t forget the number after "and" otherwise this won’t be recognised).
Please be aware that "and" nodes are not expected to be negated, i.e. there are not supposed to be
!and1=xyz because that amounts to inverting the sign of all inputs of and1, which is more simply
done at the inputs level.

residualError 41

Value

a model list with fields:

interMat contains a matrix with column for each reaction and a row for each species, with
a -1 where the species is the source node and a +1 where the species is a target
node, and 0 otherwise

notMat has the same format as interMat but just contains a 1 if the source node enters
the reac with a negative effect, and 0 otherwise

namesSpecies vector that contains the names of the species in the same order as the rows of the
interMat and notMat matrices

reacID vector that holds character strings specifying the reaction in full letters, in the
same order as the columns of interMat and notMat

Author(s)

C. Terfve

References

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker
T. Cytoscape: a software environment for integrated models of biomolecular interaction networks.
Genome Research 2003 Nov; 13(11):2498-504.

Examples

tmpdir<-tempdir()
setwd(tmpdir)
cpfile<-dir(system.file("ToyModel",package="CellNOptR"),full=TRUE)
file.copy(from=cpfile,to=getwd(),overwrite=TRUE)
ToyModel<-readSif(sifFile="ToyPKNMMB.sif")

residualError Compute the residual error for a dataset

Description

This function takes in a CNOlist and computes the residual error, which is the minimum error
between the scaled continuous data and a binary boolean approximation of this data.

Usage

residualError(CNOlist)

Arguments

CNOlist a CNOlist

42 simulateT1

Details

Be aware that it is expected that $valueSignals[[1]] holds t0 (all signals=0) and $valueSignals[[2]]
holds t1, $valueSignals[[3]] holds t2. If you give a CNOlist with more than 3 elements in val-
ueSignals you will get a warning message but the function should still work based on the first 2
time points. If you give a CNOlist with only 2 elements in valueSignals (i.e. you don’t have a time
2), the function will fill in the residual error t1 and leave t2 and t1andt2 = NA

Value

a vector with named entries t1, t2 and t1andt2 that hold the residual error for when only t1 is
considered, only t2 is considered, or both are considered

Author(s)

C. Terfve

See Also

makeCNOlist, normaliseCNOlist, GetFit

Examples

data(CNOlistToy,package="CellNOptR")
resECNOlistToy<-residualError(CNOlistToy)

simulateT1 Cut and simulation of a boolean model at t1

Description

This function cuts a model according to a bitstring optimised at T1, and simulates the model ac-
cordingly.

Usage

simulateT1(CNOlist, Model, bStringT1, SimList, indexList)

Arguments

CNOlist a CNOlist object

Model a full model

bStringT1 a bitstring to cut the model, as output by gabinaryT1 (i.e. a vector of 1s and 0s,
of length equal to the number of reactions in the model)

SimList a list of additional fields for simulation as created by prep4Sim, corresponding
to the full model

indexList a list of indexes as created by indexFinder

Details

This function is a wrapper for simulatorT1, that cuts the model before simulating it

simulatorT1 43

Value

a matrix of simulated values, including all species in the model, i.e. to be used as input of gabina-
ryT2 (not implemented here) but not to be used directly in plotOptimResults.

Author(s)

C.Terfve

See Also

cutAndPlotOptimResultsT1, simulatorT1

Examples

This will compute the output of a random model obtained by randomly selecting
which gates of the initial models are included.

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=FALSE)
ToyFields4Sim<-prep4Sim(ToyModel)

SimRes<-simulateT1(
CNOlist=CNOlistToy,
Model=ToyModel,
bStringT1=round(runif(length(ToyModel$reacID))),
SimList=ToyFields4Sim,
indexList=indicesToy)

simulatorT1 Simulation of a boolean model

Description

This is the simulator, inspired from BoolSimEngMKM in the Matlab CellNOpt, to be used on one
time point simulations

Usage

simulatorT1(CNOlist, Model, SimList, indexList)

Arguments

CNOlist a CNOlist

Model a Model that only contains the reactions to be evaluated

SimList a SimList as created by prep4Sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

44 simulatorT1

Details

Differences from the BoolSimEngMKM simulator include: the valueInhibitors has not been pre-
viously flipped; the function outputs the values across all conditions for all species in the model,
instead of only for the signal species. This is because then the output of this function can be used
as initial values for the version of the simulator that works on time point 2 (not implemented in this
version).

If you would like to compute the output of a model that contains some of the gates in the model but
not all, we suggest that you use the function SimulateT1 and specify in the bStringT1 argument
which gates you want to be included. Indeed, SimulateT1 is a wrapper around simulatorT1 that
takes care of cutting the model for you before simulating it.

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 1, if you consider only the columns given by indexSignals.

Author(s)

C. Terfve

References

1. J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt
and P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with
functional analysis of mammalian signal transduction, Molecular Systems Biology, 5:331,
2009.

2. M. K. Morris, J. Saez-Rodriguez, D. Clarke, P. K. Sorger, D. A. Lauffenburger. Training Sig-
naling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Anal-
ysis of Liver Cell Responses to Inflammatory Stimuli, PLoS Comp. Biol., 7(3): e1001099,
2011.

See Also

SimulateT1, cutAndPlotResultsT1

Examples

#This computes the output of the full model, which is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyFields4Sim<-prep4Sim(ToyModel)

Sim<-simulatorT1(
CNOlist=CNOlistToy,
Model=ToyModel,
SimList=ToyFields4Sim,
indexList=indicesToy)

simulatorT2 45

simulatorT2 Simulation of a boolean model for time 2

Description

This function simulates a boolean model at time 2 where time 2 is assume to be a pseudo-steady
states at a time scale slower than the pseudo-steady state evaluated at time 1

Usage

simulatorT2(SimResultst1, CNOlist, Model, SimList, indexList)

Arguments

SimResultst1 a matrix that is the output of simulatorT1 (i.e. one row per condition and one
column per species IN THE MODEL)

CNOlist a CNOlist

Model a Model that only contains the reactions to be evaluated, and the additional field
Model$times that should have been created inside the gabinaryT2 optimisation
engine.

SimList a SimList as created by prep4Sim, that has also already been cut to contain only
the reactions to be evaluated

indexList an indexList as created by indexFinder

Details

This is the simulator for time T2, it is very similar to simulatorT1 but here we assume that we
start from the simulated results at t1 (i.e. we start from a pseudo-steady state) then it does a first
iteration, and whatever branch is set to be active at t2 has an effect that cannot be changed after
the first iteration, i.e. the output node of a t2 iteration is fixed. We assume here that the model has
already been cut, and that the cutting is based on keeping all the edges that are set to either 1 or 2,
and there is an additional field $times in the model that keeps the info of the t1/t2 (it is a vector
of 1s and 2s of length=number of reaches present). Structurally the function is almost identical to
simulatorT1 but it does a first iteration where all the gates that lead to a node that also receives a T2
gates are set to the same value as the t2 gate in the ANDs calculation.In the main loop, the nodes
that are targets of t2 interactions are constantly reset to their value at the first iteration, at the end of
each iteration (similarly to what is done with stimulated and inhibited species)

The Model$times field is a vector of 1s and 2s that tells the simulator which interactions are ex-
pected to be active at t1 and which are at t2.

Value

This function outputs a single matrix of format similar to valueSignals in the CNOlist but that con-
tains an output for each species in the model. This matrix is the simulated equivalent of valueSignals
at time 2 if you consider only the columns given by indexSignals

Author(s)

C. Terfve

46 ToyModel

See Also

SimulateT1, cutAndPlotResultsT1, simulatorT1

Examples

#This computes the output of the full model, which is normally not done on a stand alone basis, but if you have a model and would like to visualise its output compared to your data, then this is what you should do

data(CNOlistToy2,package="CellNOptR")
data(ToyModel2,package="CellNOptR")

indicesToy<-indexFinder(CNOlistToy2,ToyModel2,verbose=FALSE)
ToyFields4Sim<-prep4Sim(ToyModel2)

Sim<-simulatorT1(
CNOlist=CNOlistToy2,
Model=ToyModel2,
SimList=ToyFields4Sim,
indexList=indicesToy)
Sim2<-simulatorT2(
SimResultst1=Sim,
CNOlist=CNOlistToy2,
Model=ToyModel2,
SimList=ToyFields4Sim,
indexList=indicesToy)

ToyModel Toy model

Description

This data object contains the Toy model from the package vignette, already loaded and formatted
as a Model object.

Usage

ToyModel

Format

ToyModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector), "in-
terMat" (numerical matrix), "notMat"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

ToyModel2 47

ToyModel2 Toy model

Description

This data object contains the Toy model from the package vignette, already loaded and formatted
as a Model object, and modified for the 2 time points version (a negative fedback between cJun and
Jnk (!cJun=Jnk) is added).

Usage

ToyModel

Format

ToyModel is a list with fields "reacID" (character vector), "namesSpecies" (character vector), "in-
terMat" (numerical matrix), "notMat"(numerical matrix).

Source

This data and model is extracted from the Matlab version of CellNOpt1.0 (http://www.ebi.ac.
uk/saezrodriguez/software.html#CellNetOptimizer).

References

J. Saez-Rodriguez, L. G. Alexopoulos, J. Epperlein, R. Samaga, D. A. Lauffenburger, S. Klamt and
P. K. Sorger. Discrete logic modeling as a means to link protein signaling networks with functional
analysis of mammalian signal transduction, Molecular Systems Biology, 5:331, 2009.

writeDot Write a model, and attached features, to a dot file

Description

This function writes a model to a Graphviz dot file with encoded features such as edge weight and
nodes status (see details).

Usage

writeDot(dotNodes,dotMatrix,Model,filename)

Arguments

dotNodes internal variables created by writeNetwork or writeScaffold; dotNodes is a ma-
trix with 2 columns: the first has the node names,and the second the attributes
(signal, stimulated, inhibited, compressed, nano). A node can appear twice in
this matrix if it belongs to more of one of the above categories; a node could
also not appear here if it is is none of these categories

http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer
http://www.ebi.ac.uk/saezrodriguez/software.html#CellNetOptimizer

48 writeDot

dotMatrix internal variables created by writeNetwork or writeScaffold; dotMatrix is a ma-
trix with 4 or 5 columns, and a row for each reaction:the first column holds the
name of the input node, the second column holds the sign of the reaction (-1 if
negative, 1 if positive), the third column holds the name of the output node, the
fourth column holds the time stamp (0,1,2), an optional 5th column holds the
weights of the edges

Model A model to be plotted, if used inside writeNetwork then this should be the
previous knowledge network (ModelOriginal), if inside writeScaffold then this
should be the scaffold (ModelComprExpanded)

filename a name for the file

Details

This function is not to be used on its own, it should be used internally to writeNetwork or writeScaf-
fold. For the colouring of the nodes, nodes that are both stimulated and inhibited or any other com-
bination, only one colour per category is used, and the following order of priority for the colours
is used: signals prime over inhibited nodes which primes over stimulated nodes which primes over
non-controllable/non-observable nodes, which primes over compressed. Nodes that are neither
of those have a black contour, stimulated nodes are green, inhibited are red, measure are blue,
compressed and non-controllable/non-observable nodes are black and dashed. Edges are coloured
according to time stamp in the optimal model (green=t1, blue=t1 and/or t2, grey=neither); on the
scaffold, the strokes of the edges reflects the weights in the models within reltol (i.e. for each edge,
the weight is the frequency with which it appeared among the models within the relative tolerance
boundaries around the best solution).

Value

This function does not have any output, it just writes a dot file in your working directory.

Author(s)

C. Terfve

References

Emden R. Gansner , Stephen C. North. An Open Graph Visualization System and Its Applications
to Software Engineering. Software - Practice and Experience (1999)

See Also

writeNetwork, writeScaffold

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model

writeNetwork 49

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,
verbose=TRUE)

#write network

writeNetwork(
ModelOriginal=ToyModel,
ModelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

writeNetwork Write a previous knowledge network model to a sif file (with attribute
files), as well as a dot file

Description

This function writes the original previous knowledge network (the model that you loaded in the
beginning of your analysis) in a sif file, with a nodes attribute file that specifies if each node was
stimulated/inhibited/signal/compressed/non-controllable-non-observable and an edge attribute file
that specifies if the edge was absent in the optimal model (0) present in the optimal model at t1 (1)
or present in the optimal model at t2 (2).

This function also writes a Graphviz dot file that contains the same information (see writeDot for
more information about the dot file conventions).

Usage

writeNetwork(ModelOriginal, ModelComprExpanded, optimResT1, optimResT2, CNOlist,
tag = NULL,verbose=FALSE)

50 writeNetwork

Arguments

ModelOriginal The PKN model
ModelComprExpanded

The scaffold model (i.e. compressed and expanded)

optimResT1 The results of the optimisation process at t1

optimResT2 The results of the optimisation process at t2 (set this to NA if you have performed
a one time point optimisation).

CNOlist The CNOlist on which the optimisation is based

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

verbose If verbose=TRUE, the function prints a message every time an edge in the scaf-
fold network couldn’t be mapped back to the PKN

Details

The weights of the edges are computed as the mean across models within the relative tolerance
limits, as output in the results from the optimisation $StringsTol. Strings that are in $StringsTol
are the ones that are within the relative tolerance limits around the best solution in the population
across all generations of the optimisation.

!If there is no time 2, then the argument optimResT2 should be = NA

This function maps back the edges weights from the optimised (expanded and compressed) model
to the original model. The mapping back only works if the path has length 2 at most (i.e. you have
node1-comp1-comp2-node2, where comp refer to nodes that have been compressed).

Value

This function does not have any output, it just writes a sif file, an edge attribute file, and a node
attribute file

Note

The mapback of this function is still an open question, even in the Matlab version. Future devel-
opments will include more robust versions of the mapping back algorithm, probably as a separate
mapback function.

Author(s)

C. Terfve

See Also

writeScaffold, writeDot

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load data

data(CNOlistToy,package="CellNOptR")

writeReport 51

data(ToyModel,package="CellNOptR")

#pre-process model

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOindices<-findNONC(ToyModel,indicesToy,verbose=TRUE)
ToyNCNOcut<-cutNONC(ToyModel,ToyNCNOindices)
indicesToyNCNOcut<-indexFinder(CNOlistToy,ToyNCNOcut)
ToyNCNOcutComp<-compressModel(ToyNCNOcut,indicesToyNCNOcut)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
verbose=TRUE,
maxGens=2,
PopSize=5)

#write network

writeNetwork(
ModelOriginal=ToyModel,
ModelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

writeReport Write a report of a CellNOptR analysis

Description

This function writes a short report of a CellNOptR analysis in an html page, that is linked to the
various graphs produced

Usage

writeReport(ModelOriginal, ModelOpt, optimResT1, optimResT2, CNOlist, directory, namesFiles = list(dataPlot = NA, evolFit1 = NA, evolFit2 = NA, SimResults2 = NA, SimResults1 = NA, Scaffold = NA, tscaffold = NA, wscaffold = NA, PKN = NA, wPKN = NA, nPKN = NA), namesData = list(CNOlist=NA, Model=NA),resE)

Arguments

ModelOriginal the original previous knowledge network (i.e. model that you loaded) in a model
list format

ModelOpt the model that was actually used for optimisation (i.e. the scaffold network, after
compression and expansion) in a model list format

52 writeReport

optimResT1 the results of the optimisation at t1, as output by gabinaryT1

optimResT2 the results of the optimisation at t2, as output by gabinaryT2. Set this to NA if
you have performed a one time point optimisation.

CNOlist a CNOlist

directory the name of a new directory that will be created, where your results will be
moved

namesFiles a list of the names of the files that should have been created. Depending on
whether a t2 optimisation was performed or not, all or some of the following
fields are expected: dataPlot,evolFit1,evolFit2,SimResults2,SimResults1,Scaffold,tscaffold,wscaffold,PKN,wPKN,nPKN

namesData a list with fields $CNOlist and $Model that contain strings that are meaningful
identifiers of your data and previous knowledge network (for your own record)

resE a vector with named entries t1, t2 t1andt2, as produced by the function ResidualError,
that contains the residual error associated with the discretisation of the data

Details

Future versions of this function might directly write and compile a tex file.

Value

This function produces a directory and moves all the files of namesFiles to it, then it creates an html
report that contains infos about the optimisation process.

Author(s)

C.Terfve

See Also

writeNetwork, writeScaffold

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process model (partial)

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOcutComp<-compressModel(ToyModel,indicesToy)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(

writeScaffold 53

CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=2,
PopSize=5,
verbose=TRUE)

#write report

namesFilesToy<-list(
dataPlot=NA,
evolFit1=NA,
evolFit2=NA,
SimResults1=NA,
SimResults2=NA,
Scaffold=NA,
ScaffoldDot=NA,
tscaffold=NA,
wscaffold=NA,
PKN=NA,
PKNdot=NA,
wPKN=NA,
nPKN=NA)
writeReport(
ModelOriginal=ToyModel,
ModelOpt=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy,
directory="testToy",
namesFiles=namesFilesToy,
namesData=list(CNOlist="Toy",Model="ToyModel"),
resE=NA)

writeScaffold Writes the scaffold network to a sif file (with attributes) and to a dot
file

Description

This function writes a cytoscape SIF file for the scaffold network, with an associated edge attribute
file that holds whether the edge is present at t1,t2 or not present at all and another associated edge
attribute file that holds the weights of the edges. This function also writes a dot file that contains
the same information (see writeDot for more information about the dot file conventions).

Usage

writeScaffold(ModelComprExpanded, optimResT1, optimResT2, ModelOriginal,
CNOlist, tag=NULL)

54 writeScaffold

Arguments

ModelComprExpanded

The scaffold model (i.e. compressed and expanded)

optimResT1 The results of the optimisation process at t1

optimResT2 The results of the optimisation process at t2 (set this to NA if you have performed
a one time point optimisation).

ModelOriginal The PKN model

CNOlist The CNOlist on which the optimisation is based

tag NULL or string; tells whether you want to prefix filenames with a tag (replaces
the default behaviour).

Details

By scaffold network we mean the network that is used as a basis for optimisation (i.e. a compressed
and expanded network), therefore no map back of the weights is necessary here.

The weights of the edges are computed as the mean across models within the relative tolerance
limits, as output in the results from the optimisation $StringsTol. Strings that are in $StringsTol
are the ones that are within the relative tolerance limits around the best solution in the population
across all generations of the optimisation.

!If there is no time 2, then the argument optimResT2 should be = NA.

Value

This function does not return anything, it writes a sif file and 2 edge attributes files, and a dot file,
in your working directory.

Author(s)

C.Terfve

See Also

writeNetwork, writeDot

Examples

tmpdir<-tempdir()
setwd(tmpdir)

#load the data

data(CNOlistToy,package="CellNOptR")
data(ToyModel,package="CellNOptR")

#pre-process the model (partial)

indicesToy<-indexFinder(CNOlistToy,ToyModel,verbose=TRUE)
ToyNCNOcutComp<-compressModel(ToyModel,indicesToy)
indicesToyNCNOcutComp<-indexFinder(CNOlistToy,ToyNCNOcutComp)
ToyNCNOcutCompExp<-expandGates(ToyNCNOcutComp)

#optimise

writeScaffold 55

ToyFields4Sim<-prep4Sim(ToyNCNOcutCompExp)
initBstring<-rep(1,length(ToyNCNOcutCompExp$reacID))
ToyT1opt<-gaBinaryT1(
CNOlist=CNOlistToy,
Model=ToyNCNOcutCompExp,
SimList=ToyFields4Sim,
indexList=indicesToyNCNOcutComp,
initBstring=initBstring,
maxGens=3,
PopSize=5,
verbose=TRUE)

#write the network

writeScaffold(
ModelOriginal=ToyModel,
ModelComprExpanded=ToyNCNOcutCompExp,
optimResT1=ToyT1opt,
optimResT2=NA,
CNOlist=CNOlistToy)

Index

∗Topic datasets
CNOlistDREAM, 5
CNOlistToy, 5
CNOlistToy2, 6
LiverDREAM, 24
ToyModel, 46
ToyModel2, 47

∗Topic package
CellNOptR-package, 2

CellNOptR (CellNOptR-package), 2
CellNOptR-package, 2
checkSignals, 4
CNOlistDREAM, 5
CNOlistToy, 5
CNOlistToy2, 6
CNORwrap, 7
compressModel, 8, 38, 39
cutAndPlotResultsT1, 9
cutAndPlotResultsT2, 11
cutNONC, 13, 38, 39
cutSimList, 14

defaultParameters, 14
DreamModel (LiverDREAM), 24

expandGates, 15, 38, 39

findNONC, 16, 38, 39

gaBinaryT1, 17, 33
gaBinaryT2, 19
getFit, 21

indexFinder, 23

LiverDREAM, 24

makeCNOlist, 24, 33

normaliseCNOlist, 26

plotCNOlist, 27
plotCNOlistLarge, 28
plotCNOlistLargePDF, 29

plotCNOlistPDF, 30
plotFit, 31
plotModel, 32
plotOptimResults, 34
plotOptimResultsPDF, 35
prep4Sim, 37
preprocessing, 38

readMIDAS, 33, 39, 39
readSif, 33, 38, 39, 40
residualError, 41

simulateT1, 42
simulatorT1, 43
simulatorT2, 45

ToyModel, 46
ToyModel2, 47

writeDot, 33, 47
writeNetwork, 33, 49
writeReport, 51
writeScaffold, 53

56

	CellNOptR-package
	checkSignals
	CNOlistDREAM
	CNOlistToy
	CNOlistToy2
	CNORwrap
	compressModel
	cutAndPlotResultsT1
	cutAndPlotResultsT2
	cutNONC
	cutSimList
	defaultParameters
	expandGates
	findNONC
	gaBinaryT1
	gaBinaryT2
	getFit
	indexFinder
	LiverDREAM
	makeCNOlist
	normaliseCNOlist
	plotCNOlist
	plotCNOlistLarge
	plotCNOlistLargePDF
	plotCNOlistPDF
	plotFit
	plotModel
	plotOptimResults
	plotOptimResultsPDF
	prep4Sim
	preprocessing
	readMIDAS
	readSif
	residualError
	simulateT1
	simulatorT1
	simulatorT2
	ToyModel
	ToyModel2
	writeDot
	writeNetwork
	writeReport
	writeScaffold
	Index

