
HowTo: get pretty HTML output for my gene list

James W. MacDonald

February 16, 2007

1 Overview

The intent of this vignette is to show how to make reasonably nice looking
HTML tables for presenting the results of a microarray analysis. These
tables are a very nice format because you can insert clickable links to various
public annotation databases, which facilitates the downstream analysis. In
addition, the format is quite compact, can be posted on the web, and can
be viewed using any number of free web browsers. One caveat; an HTML
table is probably not the best format for presenting the results for all of the
genes on a chip. For even a small (5000 gene) chip, the file could be 10 Mb
or more, which would take an inordinate amount of time to open and view.
Also note that the Bioconductor project supplies annotation packages for
many of the more popular Affymetrix chips, as well as for many commercial
spotted cDNA chips. For chips that have annotation packages, the annaffy
package is the preferred method for making HTML tables.

To make an annotated HTML table, the only requirement is that we have
some sort of annotation data for the microarray that we are using. Most
manufacturers supply data in various formats that can be read into R. For
instance, Affymetrix supplies CSV files that can be read into R using the
read.csv() function http://www.affymetrix.com/support/technical/
byproduct.affx?cat=arrays.

Another alternative is to annotate using functionality in the biomaRt
package. This allows one to get the most current annotations interactively.
In addition, the output can be used directly with functions in annotate to
make HTML tables. We will use these functions in this vignette.

1

http://www.affymetrix.com/support/technical/byproduct.affx?cat=arrays
http://www.affymetrix.com/support/technical/byproduct.affx?cat=arrays


2 Data Analysis

I will assume that the reader is familiar with the analysis of microarray data,
and has a set of genes that she would like to use. In addition, I will assume
that the reader is familiar enough with R that she can subset the data
based on a list of genes, and reorder based on a particular statistic. For any
questions about subsetting or ordering data, please see “An Introduction to
R”. For questions regarding microarray analysis, please consult the vignettes
for, say limma, multtest , or marray .

3 Getting Started

We first load the annotate package, as well as some data. These data will
be from the Affymetrix HG-U95Av2 chip (for which we would normally use
annaffy). To keep the HTML table small, we will take a subset of fifteen
genes as an example.

> library("annotate")

> data(sample.exprSet)

> igenes <- geneNames(sample.exprSet)[246:260]

We also have to load the biomaRt package and connect to a Biomart
database, using the useMart function. Note that there are two interfaces
that biomaRt can use to connect to a Biomart database, using either the
RCurl package to connect via http protocols, or the RMySQL package to
connect via database protocols. The default is to use RCurl because it can
be difficult to get RMySQL set up on Windows computers. However, I
find the database connectivity to be much faster, so for those who want to
annotate a large number of genes, I would recommend using the RMySQL
interface. See the help file for useMart for more information.

> library("biomaRt")

> mart <- useMart("ensembl", "hsapiens_gene_ensembl")

Checking attributes and filters ... ok

4 Annotation Data

The htmlpage function is designed to take two sets of input; data that will
be converted to clickable links to various online databases, and data that will

2



simply be put into the HTML table as is. For the clickable links we need an
list of character vectors for each database. For the data, we need a list
of either vectors, data.frames or a mixture of the two. We will explore
this topic more later. First, we will see how to get data using biomaRt
functionality.

We first need to see exactly what sort of data we can get from Ensembl’s
Biomart. Note that some of the information can be a bit cryptic, so we can
parse out a more reasonable description. We also need to see what things
we can use as identifiers in our query of the Biomart server.

First, a bit of terminology. An ’attribute’ is a data type that can be
returned from a query of a Biomart server. A ’filter’ is the identifier that
we use to query the server. For instance, we can get GO terms and Entrez
Gene IDs (the attributes) by querying on the Affy Probe ID (the filter).

There are too many attributes to list here, so we can parse out things
that may be interesting to us. Let’s say we want to get Entrez Gene and
SwissProt IDs for our set of genes.

> attrbuts <- listAttributes(mart)

> attrbuts[grep("swiss", attrbuts[, 1]), ]

name description
7 adf_swissprot swissprot
118 uniprot_swissprot UniProt/Swiss-Prot ID
119 uniprot_swissprot_accession UniProt/Swiss-Prot Accession

> attrbuts[grep("entrez", attrbuts[, 1]), ]

name description
52 entrezgene EntrezGene ID

So the attributes we want are uniprot swissprot accession and entrez-
gene.

The same basic idea can be used to figure out which filter to use. Since
we are using the HG-U95av2 chip, we need to figure out what that filter is
called.

> fltr <- listFilters(mart)

> fltr[grep("affy", fltr[, 1]), ]

name description
1 affy_hc_g110 Affy hc g 110 ID(s)

3



2 affy_hg_focus Affy hg focus ID(s)
3 affy_hg_u133a Affy hg u133a ID(s)
4 affy_hg_u133a_2 Affy hg u133a 2 ID(s)
5 affy_hg_u133b Affy hg u133b ID(s)
6 affy_hg_u133_plus_2 Affy hg u133 plus 2 ID(s)
7 affy_hg_u95a Affy hg u95a ID(s)
8 affy_hg_u95av2 Affy hg u95av2 ID(s)
9 affy_hg_u95b Affy hg u95b ID(s)
10 affy_hg_u95c Affy hg u95c ID(s)
11 affy_hg_u95d Affy hg u95d ID(s)
12 affy_hg_u95e Affy hg u95e ID(s)
13 affy_hugenefl Affy hugenefl ID(s)
14 affy_u133_x3p Affy u133 x3p ID(s)
67 with_affy_hc_g110 with affy HC G110 ID(s)
68 with_affy_hg_focus with affy hg focus ID(s)
69 with_affy_hg_u133a with affy hg u133a ID(s)
70 with_affy_hg_u133a_2 with affy hg u133a 2 ID(s)
71 with_affy_hg_u133b with affy hg u133b ID(s)
72 with_affy_hg_u133_plus_2 with affy hg u133 plus 2 ID(s)
73 with_affy_hg_u95a with affy hg u95a ID(s)
74 with_affy_hg_u95av2 with affy hg u95av2 ID(s)
75 with_affy_hg_u95b with affy hg u95b ID(s)
76 with_affy_hg_u95c with affy hg u95c ID(s)
77 with_affy_hg_u95d with affy hg u95d ID(s)
78 with_affy_hg_u95e with affy hg u95e ID(s)
79 with_affy_hugenefl with affy hugenefl ID(s)
80 with_affy_u133_x3p with affy u133 x3p ID(s)

This one is pretty obvious - we want the affy hg u95av2 filter.
Now to get back to the task at hand; we have 15 Affy Probeset IDs that

we want to use to create our HTML table. Let’s say we want to create
an HTML table in which we map the Affy IDs to Entrez Gene, SwissProt,
UniGene, and RefSeq IDs (all clickable links) and in addition we want to
include the gene description and symbol, the Gene Ontology terms, and
chromosome location, as well as the t-statistic, p-value, fold change and
expression values. That would be a nice compact format for presenting the
data to someone.

We need to collect all this information in two lists; one that will be
used to make the hyperlinks, and one that will just be static information.
First, we do the hyperlinks. By using the ideas presented above, I figured

4



out which attributes correspond to Entrez Gene, SwissProt, UniGene, and
RefSeq IDs, so I will use them here. Instead of writing them all out, I will
simply select the correct terms using the listAttributes function.

> genelist <- getBM(attributes = c("affy_hg_u95av2", "entrezgene",

+ "uniprot_swissprot_accession", "refseq_dna"), filter = "affy_hg_u95av2",

+ values = igenes, mart = mart, output = "list", na.value = "&nbsp;")

> genelist[[1]] <- igenes

> lapply(genelist, function(x) x[5:10])

$affy_hg_u95av2
[1] "31489_at" "31490_at" "31491_s_at" "31492_at" "31493_s_at"
[6] "31494_at"

$entrezgene
$entrezgene$`31489_at`
[1] "&nbsp;"

$entrezgene$`31490_at`
[1] 6331 731231

$entrezgene$`31491_s_at`
[1] 841

$entrezgene$`31492_at`
[1] 27335

$entrezgene$`31493_s_at`
[1] 1443 1442

$entrezgene$`31494_at`
[1] "&nbsp;"

$uniprot_swissprot_accession
$uniprot_swissprot_accession$`31489_at`
[1] "&nbsp;"

$uniprot_swissprot_accession$`31490_at`
[1] "Q14524"

5



$uniprot_swissprot_accession$`31491_s_at`
[1] "Q14790"

$uniprot_swissprot_accession$`31492_at`
[1] "Q9UBQ5"

$uniprot_swissprot_accession$`31493_s_at`
[1] "P01243"

$uniprot_swissprot_accession$`31494_at`
[1] "&nbsp;"

$refseq_dna
$refseq_dna$`31489_at`
[1] "&nbsp;"

$refseq_dna$`31490_at`
[1] "NM_000335" "NM_198056"

$refseq_dna$`31491_s_at`
[1] "NM_001228" "NM_033356" "NM_033358" "NM_033355"

$refseq_dna$`31492_at`
[1] "NM_013234"

$refseq_dna$`31493_s_at`
[1] "NM_022644" "NM_020991" "NM_001317" "NM_022645" "NM_022641"
[6] "NM_022640"

$refseq_dna$`31494_at`
[1] "&nbsp;"

Here we can see that genelist is a list of lists, with each sub-list being
made up of a character vector. I substituted the ’igenes’ vector back into
the first position of the list because the Biomart server we are using doesn’t
have data for all Affy IDs (including the Affy ID itself). Since we want
links for all of the Affy IDs, I simply substituted the original vector into the
genelist.

6



Two important things to note about the call to getBM. First, we have
to use the argument output = “list”. Second, we have to use na.value =
“&nbsp;”, which will create an empty table entry for any missing data. This
is much nicer than leaving the NAs, which will tend to clutter up the table
without adding any information.

Making the second list is a bit more complicated. We need to get some
annotation from the Biomart database, and append that to some data we
have from our experiment. The first step is to get the annotation data. As
noted above, we want the gene name and symbol, as well as the GO terms
and chromosome location for these probesets. We can figure out which
attribute terms to use, following the ideas presented above.

> attrbuts[grep("description", attrbuts[, 1]), ]

name description
39 description Description
58 family_description Family Description
65 go_description GO description
71 interpro_description Interpro Description
72 interpro_short_description Interpro Short Description

> attrbuts[grep("symbol", attrbuts[, 1]), ]

name description
68 hgnc_symbol HGNC Symbol

> attrbuts[grep("go", attrbuts[, 1]), ]

name description
2 adf_go go
64 go GO ID
65 go_description GO description

> attrbuts[grep("^chrom", attrbuts[, 1]), ]

name description
32 chromosome_location Chromosome Location (bp)
33 chromosome_name Chromosome Name

We want ”description”, ”hgnc symbol”, ”go description” and ”band”

7



> annotlist <- getBM(attributes = c("description", "hgnc_symbol",

+ "go_description", "band"), filter = "affy_hg_u95av2",

+ values = igenes, mart = mart, output = "list", na.value = "&nbsp;")

> lapply(annotlist, function(x) x[5:10])

$description
$description$`31489_at`
[1] "&nbsp;"

$description$`31490_at`
[1] "Sodium channel protein type 5 subunit alpha (Sodium channel"
[2] "protein type V subunit alpha) (Voltage-gated sodium channel"
[3] "subunit alpha Nav1.5) (Sodium channel protein, cardiac muscle"
[4] "alpha-subunit) (HH1). [Source:Uniprot/SWISSPROT;Acc:Q14524]"

$description$`31491_s_at`
[1] "Caspase-8 precursor (EC 3.4.22.-) (CASP-8) (ICE-like apoptotic"
[2] "protease 5) (MORT1-associated CED-3 homolog) (MACH)"
[3] "(FADD-homologous ICE/CED-3-like protease) (FADD-like ICE)"
[4] "(FLICE) (Apoptotic cysteine protease) (Apoptotic protease"
[5] "Mch-5) (CAP4) [Contains: [Source:Uniprot/SWISSPROT;Acc:Q14790]"

$description$`31492_at`
[1] "Eukaryotic translation initiation factor 3 subunit 12 (eIF-3"
[2] "p25) (eIF-3 p28) (eIF3k) (Muscle-specific gene M9 protein)"
[3] "(ARG134) (PLAC- 24). [Source:Uniprot/SWISSPROT;Acc:Q9UBQ5]"

$description$`31493_s_at`
[1] "Chorionic somatomammotropin hormone precursor"
[2] "(Choriomammotropin) (Lactogen)."
[3] "[Source:Uniprot/SWISSPROT;Acc:P01243]"

$description$`31494_at`
[1] "&nbsp;"

$hgnc_symbol
$hgnc_symbol$`31489_at`
[1] "&nbsp;"

8



$hgnc_symbol$`31490_at`
[1] "SCN5A"

$hgnc_symbol$`31491_s_at`
[1] "CASP8"

$hgnc_symbol$`31492_at`
[1] "EIF3S12"

$hgnc_symbol$`31493_s_at`
[1] "CSH1" "CSH2"

$hgnc_symbol$`31494_at`
[1] "&nbsp;"

$go_description
$go_description$`31489_at`
[1] "&nbsp;"

$go_description$`31490_at`
[1] "ion channel activity"
[2] "ion transport"
[3] "membrane"
[4] "integral to membrane"
[5] "voltage-gated sodium channel activity"
[6] "sodium ion transport"
[7] "voltage-gated sodium channel complex"
[8] "sodium ion binding"
[9] "muscle contraction"
[10] "regulation of heart contraction"
[11] "membrane fraction"

$go_description$`31491_s_at`
[1] "protein binding"
[2] "caspase activity"
[3] "proteolysis"
[4] "regulation of apoptosis"
[5] "signal transducer activity"

9



[6] "cysteine-type peptidase activity"
[7] "identical protein binding"
[8] "apoptotic program"
[9] "positive regulation of I-kappaB kinase/NF-kappaB cascade"
[10] "mitochondrion"
[11] "cytoskeleton"
[12] "heart development"
[13] "cytoplasm"
[14] "nucleus"
[15] "peptidase activity"
[16] "apoptosis"
[17] "angiogenesis"
[18] "macrophage differentiation"
[19] "neural tube formation"
[20] "Noc1p-Noc2p complex"

$go_description$`31492_at`
[1] "translation initiation factor activity"
[2] "protein biosynthesis"
[3] "translational initiation"
[4] "nucleus"

$go_description$`31493_s_at`
[1] "hormone activity"
[2] "extracellular region"
[3] "growth hormone receptor binding"
[4] "signal transduction"
[5] "cell-cell signaling"
[6] "pregnancy"
[7] "extracellular space"

$go_description$`31494_at`
[1] "&nbsp;"

[[4]]
[[4]]$`31489_at`
[1] "&nbsp;"

[[4]]$`31490_at`

10



[1] "p22.2"

[[4]]$`31491_s_at`
[1] "q33.1"

[[4]]$`31492_at`
[1] "q13.2"

[[4]]$`31493_s_at`
[1] "q23.3"

[[4]]$`31494_at`
[1] "&nbsp;"

Now we have the annotation data, it is time to add in the experimental
data. As an example, we will only use the first ten samples. We also use
the round function to truncate the data to a reasonable number of decimal
points.

> dat <- round(exprs(sample.exprSet)[igenes, 1:10], 3)

> FC <- round(rowMeans(dat[igenes, 1:5]) - rowMeans(dat[igenes,

+ 6:10]), 2)

> pval <- round(esApply(sample.exprSet[igenes, 1:10], 1,

+ function(x) t.test(x[1:5], x[6:10])$p.value), 3)

> tstat <- round(esApply(sample.exprSet[igenes, 1:10],

+ 1, function(x) t.test(x[1:5], x[6:10])$statistic),

+ 2)

We now need to put all this into one list.

> othernames <- vector("list", length = 8)

> othernames[1:4] <- annotlist

> othernames[5:8] <- list(tstat, pval, FC, dat)

5 Build the Table

Once we have all our data in lists, it is simple to build the HTML table.

> table.head <- c("Affy ID", "Entrez Gene", "SwissProt",

+ "RefSeq", "Name", "Symbol", "GO Term", "Band", "t-statistic",

11



+ "p-value", "Fold change", sampleNames(sample.exprSet)[1:10])

> repository <- list("affy", "en", "sp", "gb")

> htmlpage(genelist, "Annotated genes.html", "Annotated genes",

+ othernames, table.head, repository = repository)

The resulting HTML table should be in R HOME/library/annotate/doc.
If not, you can reproduce it using the vExplorer function in the tkWidgets
package, which will allow you to step through the code in this vignette and
examine all the objects that are made. Alternatively, one could use getwd
to change the working directory to R HOME/library/annotate/doc, then
use Stangle on the vignette and then source the resulting R code (e.g.,
Stangle(”prettyOutput.Rnw”) followed by source(”prettyOutput.R”).

6 Session Information

The version number of R and packages loaded for generating the vignette
were:

R version 2.4.1 (2006-12-18)
x86_64-unknown-linux-gnu

locale:
LC_CTYPE=en_US;LC_NUMERIC=C;LC_TIME=en_US;LC_COLLATE=en_US;LC_MONETARY=en_US;LC_MESSAGES=en_US;LC_PAPER=en_US;LC_NAME=C;LC_ADDRESS=C;LC_TELEPHONE=C;LC_MEASUREMENT=en_US;LC_IDENTIFICATION=C

attached base packages:
[1] "tools" "stats" "graphics" "grDevices" "utils"
[6] "datasets" "methods" "base"

other attached packages:
biomaRt RCurl XML annotate Biobase
"1.8.2" "0.8-0" "1.4-1" "1.12.1" "1.12.2"

12


	Overview
	Data Analysis
	Getting Started
	Annotation Data
	Build the Table
	Session Information

