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Abstract

DNA sequence analysis generates large volumes of data presenting
challenging bioinformatic and statistical problems. This tutorial intro-
duces Bioconductor packages and work flows for the analysis of sequence
data. We learn about approaches for efficiently manipulating sequences
and alignments, and introduce common work flows and the unique sta-
tistical challenges associated with ‘RNA-seq’, ‘ChIP-seq‘ and variant an-
notation experiments. The emphasis is on exploratory analysis, and the
analysis of designed experiments. The workshop assumes an intermedi-
ate level of familiarity with R, and basic understanding of biological and
technological aspects of high-throughput sequence analysis. The workshop
emphasizes orientation within the Bioconductor milieu; we will touch on
the Biostrings, ShortRead, GenomicRanges, edgeR, and DiffBind, and
VariantAnnotation packages, with short exercises to illustrate the func-
tionality of each package. Participants should come prepared with a mod-
ern laptop with current R installed.
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Table 1: Schedule.

Introduction Rstudio and the AMI; R packages and help; Bioconductor.

Sequences and ranges Representing and manipulating biological sequences;
working with genomic coordinates.

Reads and alignments High-throughput sequence reads (fastq files) and
their aligned representation (bam files).

RNA-seq A post-alignment workflow for differential representation.
ChIP-seq Working with multiple ChIP-seq experiments

Annotation Resources for annotation of gene and genomes; working the vari-
ants (VCF files).

1 Introduction

This workshop introduces use of R and Bioconductor for analysis of high-
throughput sequence data. The workshop is structured as a series of short
remarks followed by group exercises. The exercises explore the diversity of tasks
for which R / Bioconductor are appropriate, but are far from comprehensive.
The goals of the workshop are to: (1) develop familiarity with R / Biocon-
ductor software for high-throughput analysis; (2) expose key statistical issues in
the analysis of sequence data; and (3) provide inspiration and a framework for
further independent exploration. An approximate schedule is shown in Table 1.

1.1 Rstudio

Exercise 1
Log on to the Rstudio account set up for this course.

Visit the ‘Packages’ tab in the lower right panel, find the useR2012 package,
and discover the vignette (i.e., this document).

Under the ‘Files’ tab, figure out how to upload and download (small) files
to the server.

1.2 R

The following should be familiar to you. R has a number of standard data
types that represent integer, numeric (floating point), complex, character,
logical (boolean), and raw (byte) data. It is possible to convert between data
types, and to discover the class (e.g., class) of a variable. All of the vectors
mentioned so far are homogenous, consisting of a single type of element. A list
can contain a collection of different types of elements and, like all vectors, these
elements can be named to create a key-value association. A data.frame is a list



of equal-length vectors, representing a rectangular data structure not unlike a
spread sheet. Each column of the data frame is a vector, so data types must be
homogenous within a column. A data.frame can be subset by row or column,
and columns can be accessed with $ or [[. A matrix is also a rectangular data
structure, but subject to the constraint that all elements are the same type.

R has object-oriented ways of representing complicated data objects; Bio-
conductor makes extensive use of ‘S4’ objects. Objects are often created by
functions (e.g., GRanges, below) with parts of the object extracted or assigned
using accessor functions. Many operations on classes are implemented as meth-
ods that specialize a generic function for the particular class of objects used to
invoke the function. For instance, countOverlaps is a generic that counts the
number of times elements of its query argument overlaps elements of its sub-
ject; there are methods with slightly different behaviors when the arguments
are IRange instances or GRanges instances (in the latter case, the countOverlaps
method pays attention to whether ranges are on the same strand and chromo-
some, for instance).

Packages provide functionality beyond that available in base R. There are
more than 500 Bioconductor packages. Packages are contributed by diverse
members of the community; they vary in quality (many are excellent) and some-
times contain idiosyncratic aspects to their implementation. New packages (e.g.,
ShortRead, VariantAnnotation packages and their dependencies) can be added
to an R installation using

> source("http://bioconductor.org/biocLite.R")
> biocLite(c("ShortRead", "VariantAnnotation")) # new packages
> biocLite(character()) # update packages

install.packages. A package is installed only once per R installation, but
needs to be loaded (with library) in each session in which it is used.
Find help using the R help system. Start a web browser with

> help.start()

The ‘Search Engine and Keywords’ link is helpful in day-to-day use. Use man-
ual pages to find detailed descriptions of the arguments and return values of
functions, and the structure and methods of classes. Find help within an R
session using ?; the package defining the help page must have been loaded (with
library).

> library(ShortRead)
> ?readFastq

S4 classes and generics can be discovered with syntax like the following for the
complement generic in the Biostrings package:

> library(Biostrings)
> showMethods (complement)
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Function: complement (package Biostrings)
x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

Methods defined on the DNAStringSet class of Biostrings can be found with
> showMethods (class="DNAStringSet", where=getNamespace ("Biostrings"))
Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet
> method ? "complement,DNAStringSet"

Vignettes, especially in Bioconductor packages, provide an extensive narra-
tive describing overall package functionality. Use

> vignette(package="useR2012")

to see a list of vignettes available in the useR2012 package. Vignettes usually
consist of text with embedded R code, a form of literate programming. The
vignette can be read as a PDF document, while the R source code is present as
a script file ending with extension .R. The script file can be sourced or copied
into an R session to evaluate exactly the commands used in the vignette.

1.3 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension
of high-throughput genomic data. Bioconductor started more than 10 years
ago. It gained credibility for its statistically rigorous approach to microarray
pre-preprocessing and analysis of designed experiments, and integrative and re-
producible approaches to bioinformatic tasks. There are now more than 500
Bioconductor packages for expression and other microarrays, sequence analy-
sis, flow cytometry, imaging, and other domains. The Bioconductor web site
provides installation, package repository, help, and other documentation.
The Bioconductor web site is at bioconductor.org. Features include:

e Introductory work flows.

e A manifest of Bioconductor packages arranged in BiocViews.

e Annotation (data bases of relevant genomic information, e.g., Entrez gene
ids in model organisms, KEGG pathways) and experiment data (contain-
ing relatively comprehensive data sets and their analysis) packages.
Mailing lists, including searchable archives, as the primary source of help.
Course and conference information, including extensive reference material.
General information about the project.

Package developer resources, including guidelines for creating and submit-
ting new packages.
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Table 2: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages

Data representation IRanges, GenomicRanges, GenomicFeatures,
Biostrings, BSgenome, girafe.

Input / output ShortRead (fastq), Rsamtools (bam), rtrack-

layer (gff, wig, bed),
R453Plus1 Toolbox (454).

VariantAnnotation (vcf),

Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnota-
tion.

Alignment Rsubread, Biostrings.

Visualization ggbio, Gviz.

Quality assessment
RNA-seq

ChIP-seq, etc.

qrqc, seqbias, ReQON, htSeqTools, TEQC, Rolexa,
ShortRead.

BitSeq, cqn, cummeRbund, DESeq, DEXSeq,
EDASeq, edgeR, gage, goseq, iASeq, tweeDEseq.
BayesPeak, baySeq, ChIPpeakAnno, chipseq,
ChIPseqR, ChIPsim, CSAR, DiffBind, MEDIPS,
mosaics, NarrowPeaks, nucleR, PICS, PING, RED-
seq, Repitools, TSSi.

Motifs BCRANK, cosmo, cosmoGUI, MotlV, seqlLogo,
rGADEM.

3C, etc. HiTC, r3Cseq.

Copy number cn.mops, CNAnorm, exomeCopy, seqmentSeq.

Microbiome phyloseq, DirichletMultinomial, clstutils, manta,
mcaGUI.

Work flows ArrayExpressHTS, Genominator, easyRNASeq,
oneChannelGUI, rnaSeqMap.

Database SRAdb.

High-throughput sequence analysis Table 2 enumerates many of the pack-
ages available for sequence analysis. The table includes packages for repre-
senting sequence-related data (e.g., GenomicRanges, Biostrings), as well as
domain-specific analysis such as RNA-seq (e.g., edgeR, DEXSeq), ChIP-seq
(e.g,. ChIPpeakAnno, DiffBind), and SNPs and copy number variation (e.g.,
genoset, ggtools, VariantAnnotation).

Exercise 2
Scavenger hunt. Spend five minutes tracking down the following information.

a. The package containing the readFastq function.

b. The author of the alphabetFrequency function, defined in the Biostrings
package.

c. A description of the GappedAlignments class.
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d. The number of vignettes in the GenomicRanges package.

e. From the Bioconductor web site, instructions for installing or updating
Bioconductor packages.

f. A list of all packages in the current release of Bioconductor.
g. The URL of the Bioconductor mailing list subscription page.
Solution: Possible solutions are found with the following R commands

??readFastq

library(Biostrings)
7?alphabetFrequency
class?GappedAlignments

vignette (package="GenomicRanges")

vV V.V Vv Vv

and by visiting the Bioconductor web site, e.g., installation instructions' current
software packages?, and mailing lists®.

1.4 Resources

Dalgaard [4] provides an introduction to statistical analysis with R. Matloff [11]
introduces R programming concepts. Chambers [3] provides more advanced
insights into R. Gentleman [5] emphasizes use of R for bioinformatic program-
ming tasks. The R web site enumerates additional publications from the user
community.

Ihttp://bioconductor.org/install/
2http://bioconductor.org/packages/release/bioc/
3http://bioconductor.org/help/mailing-1list/
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Table 3: Selected Bioconductor packages for representing and manipulating
ranges, strings, and other data structures.

Package Description

IRanges Defines important classes (e.g., IRanges, Rle) and meth-
ods (e.g., findOverlaps, countOverlaps) for representing
and manipulating ranges of consecutive values. Also in-
troduces DataFrame, SimpleList and other classes tai-
lored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation
(e.g., GRanges, GRangesList), with information about
strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic
ranges, e.g., representing coordinates and organization
of exons and transcripts of known genes.

Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alpha-
betFrequency, pairwiseAlignment) for representing and
manipulating DNA and other biological sequences.

BSgenome Representation and manipulation of large (e.g., whole-
genome) sequences.

2 Sequences and Ranges

Many Bioconductor packages are available for analysis of high-throughput se-
quence data. This section introduces two essential ways in which sequence data
are manipulated. Sets of DNA strings represent the reads themselves and the
nucleotide sequence of reference genomes. Ranges describe both aligned reads
and features of interest on the genome. Key packages are summarized in Table
3.

2.1 Biostrings

The Biostrings package provides tools for working with DNA (and other biolog-

ical) sequence data. The essential data structures are DNAString and DNAS-

tringSet, for working with one or multiple DNA sequences. The Biostrings pack-

age contains additional classes for representing amino acid and general biological

strings. The BSgenome and related packages (e.g., BSgenome. Dmelanogaster. UCSC.dm3)
are used to represent whole-genome sequences. The following exercise explores

these packages.

Fixme: Exercise: trimLRPattern

2.2 GenomicRanges

Next-generation sequencing data consists of a large number of short reads. These
are, typically, aligned to a reference genome. Basic operations are performed
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on the alignment, asking e.g., how many reads are aligned in a genomic range
defined by nucleotide coordinates (e.g., in the exons of a gene), or how many
nucleotides from all the aligned reads cover a set of genomic coordinates. How is
this type of data, the aligned reads and the reference genome, to be represented
in R in a way that allows for effective computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor pack-
ages provide the essential infrastructure for these operations; we start with the
GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Sup-
pose we wish to represent two D. melanogaster genes. The first is located on the
positive strand of chromosome 3R, from position 19967117 to 19973212. The
second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are I-based (i.e.,
the first nucleotide on a chromosome is numbered 1, rather than 0), left-most
(i.e., reads on the minus strand are defined to ‘start’ at the left-most coordi-
nate, rather than the 5’ coordinate), and closed (the start and end coordinates
are included in the range; a range with identical start and end coordinates has
width 1, a O-width range is represented by the special construct where the end
coordinate is one less than the start coordinate).
A complete definition of these genes as GRanges is:

> genes <- GRanges (seqnames=c("3R", "X"),

+ ranges=IRanges (

+ start=c (19967117, 18962306),

+ end=c (19973212, 18962925)),

+ strand=c("+", VI_II)’

+ seqlengths=c("3R =27905053L, ~X =22422827L))
The components of a GRanges object are defined as vectors, e.g., of seqnames,
much as one would define a data.frame. The start and end coordinates are
grouped into an IRanges instance. The optional seqlengths argument specifies
the maximum size of each sequence, in this case the lengths of chromosomes 3R
and X in the ‘dm2’ build of D. melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and O elementMetadata cols:

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] 3R [19967117, 19973212] +
[2] X [18962306, 18962925] -
seqlengths:
3R X

279050563 22422827
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Figure 1: Ranges

For the curious, the gene coordinates and sequence lengths are derived from
the org.Dm.eg.db package for genes with Flybase identifiers FBgn0039155 and
FBgn0085359, using the annotation facilities described in section 6.

The GRanges class has many useful methods defined on it. Consult the help

page
> 7GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)
> vignette(package="GenomicRanges")

for a comprehensive introduction.

Operations on ranges The GRanges class has many useful methods from
the IRanges class; some of these methods are illustrated here. We use IRanges
to illustrate these operations to avoid complexities associated with strand and
seqname, but the operations are comparable on GRanges. We begin with a
simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),
+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure
1 and summarized in Table 4.

elementMetadata (values) The GRanges class (actually, most of the data struc-
tures defined or extending those in the IRanges package) has two additional very
useful data components. The elementMetadata function (or its synonym values)
allows information on each range to be stored and manipulated (e.g., subset)
along with the GRanges instance. The element metadata is represented as a
DataFrame, defined in IRanges and acting like a standard R data.frame but
with the ability to hold more complicated data structures as columns (and with
element metadata of its own, providing an enhanced alternative to the Biobase
class AnnotatedDataFrame).

10
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Table 4: Common operations on IRanges, GRanges and GRangesList.

Category Function Description
Accessors start, end, width Get or s et the starts, ends and widths
names Get or set the names
elementMetadata, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end
Ordering <, <=, > >= == I= Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates
Arithmetic T+XxTr-Xx7T%*X Shrink or expand ranges r by number x
shift Move the ranges by specified amount
resize Change width, ancoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end
Set operations reduce Merge overlapping and adjacent ranges

Overlaps

Coverage
Extraction

Split, combine

intersect, union, setdiff
pintersect, punion, psetdiff
gaps, pgap

disjoin

findOverlaps
countOverlaps

nearest

precede, follow

x %hink y

coverage

r[i]

r[[il]

subsetByOverlaps

head, tail, rev, rep
split

c

Set operations on reduced ranges

Parallel set operations, on each x[i], y[i]
Find regions not covered by reduced ranges
Ranges formed from union of endpoints
Find all overlaps for each x in y

Count overlaps of each x range in y

Find nearest neighbors (closest endpoints)
Find nearest y that x precedes or follows
Find ranges in x that overlap range in y
Count ranges covering each position

Get or set by logical or numeric index

Get integer sequence from start[i] to end[il]
Subset x for those that overlap in y
Conventional R semantics

Split ranges by a factor into a RangesList
Concatenate two or more range objects
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> elementMetadata(genes) <-
+ DataFrame (EntrezId=c("42865", "2768869"),
+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is
in the form of a list; any data can be provided.

> metadata(genes) <-
+ list(CreatedBy="A. User", Date=date())

GRangesList The GRanges class is extremely useful for representing simple
ranges. Some next-generation sequence data and genomic features are more
hierarchically structured. A gene may be represented by seven exons within it.
An aligned read may be represented by discontinuous ranges of alignment to a
reference. The GRangesList class represents this type of information. It is a
list-like data structure, which each element of the list itself a GRanges instance.
The gene FBgn0039155 contains several exons, and can be represented as a list
of length 1, where the element of the list contains a GRanges object with 7
elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 elementMetadata cols:
seqnames ranges strand | exon_id  exon_name
<Rle> <IRanges> <Rle> | <integer> <character>
[1] chr3R [19967117, 19967382] + | 64137 <NA>
[2] chr3R [19970915, 19971592] + | 64138 <NA>
[3] chr3R [19971652, 19971770] + | 64139 <NA>
[4] chr3R [19971831, 19972024] + | 64140 <NA>
(5] chr3R [19972088, 19972461] + | 64141 <NA>
(6] chr3R [19972523, 19972589] + | 64142 <NA>
[7] chr3R [19972918, 19973212] + | 64143 <NA>

seqlengths:
chr3R
27905053

The GenomicFeatures package Many public resources provide annotations
about genomic features. For instance, the UCSC genome browser maintains the
‘knownGene’ track of established exons, transcripts, and coding sequences of
many model organisms. The GenomicFeatures package provides a way to re-
trieve, save, and query these resources. The underlying representation is as
sglite data bases, but the data are available in R as GRangesList objects. The
following exercise explores the GenomicFeatures package and some of the func-
tionality for the IRanges family introduced above.
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Exercise 3
Load the TxDb.Dmelanogaster.UCSC.dm3.ensGene annotation package, and
create an alias txdb pointing to the TranscriptDb object this class defines.
Extract all exon coordinates, organized by gene, using exonsBy. What is the
class of this object? How many elements are in the object? What does each
element correspond to? And the elements of each element? Use elementLengths
and table to summarize the number of exons in each gene, for instance, how
many single-exon genes are there?
Select just those elements corresponding to flybase gene ids FBgn0002183,
FBgn0003360, FBgn0025111, and FBgn0036449. Use reduce to simplify gene
models, so that exons that overlap are considered ‘the same’.

Solution:

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene # alias
> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths (ex0)))

1 2 3 4 5 6
3182 2608 2070 1628 1133 886

> ids <- C("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgnOO36449")
> ex <- reduce(ex0[ids])

Exercise 4
The objective of this exercise is to calculate the GC content of the exons of a
single gene, whose coordinates are specified by the ex object of the previous
exercise.

Load the BSgenome.Dmelanogaster. UCSC.dm3 data package, containing the
UCSC representation of D. melanogaster genome assembly dm3.

Extract the sequence name of the first gene of ex. Use this to load the
appropriate D. melanogaster chromosome.

Use Views to create views on to the chromosome that span the start and end
coordinates of all exons.

The useR2012 package defines a helper function gcFunction to calculate GC
content. Use this to calculate the GC content in each of the exons.

Look at the helper function, and describe what it does.

Solution: Here we load the D. melanogaster genome, select a single chromo-
some, and create Views that reflect the ranges of the FBgn0002183.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> nm <- as.character (unique (seqnames (ex[[1]]1)))

> chr <- Dmelanogaster|[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))
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Using the gcFunction helper function, the subject GC content is

> gcFunction(v)

[1] 0.4767442 0.5555556 0.5389610 0.5513308 0.5351788 0.5441426 0.4933333
[8] 0.5189394 0.5110132

The gcFunction is really straight-forward: it invokes the function alphabetFre-
quency from the Biostrings package. This returns a simple matrix of exon x
nuclotiede probabilities. The row sums of the G and C columns of this matrix
are the GC contents of each exon.

> gcFunction

function (x)

{
alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums (alf[, c("G", "C")])
}

<environment: namespace:useR2012>

2.3 Resources

There are extensive vignettes for Biostrings and GenomicRanges packages. A
useful online resource is from Thomas Grike’s group.
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Table 5: Selected Bioconductor packages for sequence reads and alignments.

Package Description

ShortRead Defines the ShortRead(@ class and functions for ma-
nipulating fastq files; these classes rely heavily on
Biostrings.

GenomicRanges  GappedAlignments and GappedAlignmentPairs store
single- and paired-end aligned reads.

Rsamtools Provides access to BAM alignment and other large
sequence-related files.
rtracklayer Input and output of bed, wig and similar files

3 Reads and Alignments

The following sections introduce core tools for working with high-throughput
sequence data; key packages for representating reads and alignments are sum-
marized in Table 5. This section focus on the reads and alignments that are
the raw material for analysis. Section 6 introduces resources for annotating se-
quences, while section 4 addresses statistical approaches to assessing differential
representation in RNA-seq experiments. Section 5 outlines ChIP-seq analysis.

3.1 The pasilla Data Set

As a running example, we use the pasilla data set, derived from [2]. The authors
investigate conservation of RNA regulation between D. melanogaster and mam-
mals. Part of their study used RNAi and RNA-seq to identify exons regulated by
Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and NOVA2.
Briefly, their experiment compared gene expression as measured by RNAseq in
S2-DRSC cells cultured with, or without, a 444bp dsRNA fragment correspond-
ing to the ps mRNA sequence. Their assessment investigated differential exon
use, but our worked example will focus on gene-level differences.

In this section we look at a subset of the ps data, corresponding to reads
obtained from lanes of their RNA-seq experiment, and to the same reads aligned
to a D. melanogaster reference genome. Reads were obtained from GEO and the
Short Read Archive (SRA), and were aligned to the D. melanogaster reference
genome dmd3 as described in the pasilla experiment data package.

3.2 Reads and the ShortRead Package

Short read formats The Illumina GAIl and HiSeq technologies generate
sequences by measuring incorporation of florescent nucleotides over successive
PCR cycles. These sequencers produce output in a variety of formats, but
FASTQ is ubiquitous. Each read is represented by a record of four components:

@SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37
GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC

15


http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

+SRR031724.1 HWI-EAS299_4_30M2BAAXX:5:1:1513:1024 length=37
ITITTITITTITITIIIITIIIIITIIIIITIIITI+HIITIIKIE

The first and third lines (beginning with @ and + respectively) are unique identi-
fiers. The second and fourth lines of the FASTQ record are the nucleotides and
qualities of each cycle in the read. This information is given in 5’ to 3’ orienta-
tion as seen by the sequencer. A letter N in the sequence is used to signify bases
that the sequencer was not able to call. The fourth line of the FASTQ record
encodes the quality (confidence) of the corresponding base call. The quality
score is encoded following one of several conventions, with the general notion
being that letters later in the visible ASCII alphabet

Y& () x+,—. /0123456789 ; <=>7@ABCDEFGHI JKLMNO
PQRSTUVWXYZ[\]~_"~abcdefghijklmnopqrstuvwxyz{ |}~

are of lower quality. Both the sequence and quality scores may span multiple
lines. Technologies other than Illumina use different formats to represent se-
quences; 454 sequence input is supported in R453PIluslToolbox; ‘color space’ is
not supported.

FASTQ files can be read in to R using the readFastq function from the
ShortRead package. Use this function by providing the path to a FASTQ file.
There are sample data files available in the useR2012 package, each consisting
of 1 million reads from a lane of the Pasilla data set.

> fastqDir <- file.path(bigdata(), "fastq")
> fastqFiles <- dir(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1])

> fq

class: ShortReadQ
length: 1000000 reads; width: 37 cycles

The data are represented as an object of class ShortRead(@.
> head(sread(fq), 3)

A DNAStringSet instance of length 3
width seq
[1] 37 GTTTTGTCCAAGTTCTGGTAGCTGAATCCTGGGGCGC
[2] 37 GTTGTCGCATTCCTTACTCTCATTCGGGAATTCTGTT
(3] 37 GAATTTTTTGAGAGCGAAATGATAGCCGATGCCCTGA

> head(quality(fq), 3)

class: FastqQuality
quality:
A BStringSet instance of length 3
width seq
[1] 37 ITIITIIIIITIIIITIIIIIIIIIITIIII+HIIIILIE
(2] 37 ITIITIIIITIIIITIIIIITIIIITIIIITIIINIIIII
[3] 37 ITIITIIIITIIIIIIIIIIIII'ITIIIIGBIIII2I+
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There are many ways to manipulate these objects; the alphabetByCycle function
summarizes use of nucleotides at each cycle in a (equal width) ShortRead@ or
DNAStringSet instance.

> abc <- alphabetByCycle(sread(£fq))
> abc[1:4, 1:8]

cycle
alphabet  [,1] [,21 [,3] [,41 [,51 [,61 [,71 [,8]
A 78194 153156 200468 230120 283083 322913 162766 220205
C 439302 265338 362839 251434 203787 220855 253245 287010
G 397671 270342 258739 356003 301640 247090 227811 246684
T 84833 311164 177954 162443 211490 209142 356178 246101

FASTQ files are getting larger. A very common reason for looking at data
at this early stage in the processing pipeline is to explore sequence quality. In
these circumstances it is often not necessary to parse the entire FASTQ file.
Instead create a representative sample

> sampler <- FastqSampler(fastqFiles[1], 1000000)
> yield(sampler) # sample of 1000000 reads

class: ShortReadQ
length: 1000000 reads; width: 37 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality
tails, adapter sequences, or artifacts of sample preparation. The FastqStreamer
class can be used to ‘stream’ over the fastq files in chunks, processing each chunk
independently.

ShortRead contains facilities for quality assessment of FASTQ files. Here we
generate a report from a sample of 1 million reads from each of our files and
display it in a web browser

> gas0 <- Map(function(fl, nm) {

+ fq <- FastqSampler (f1)

+ qa(yield(fq), nm)

+ }, fastqFiles,

+ sub("_subset.fastq", "", basename(fastqFiles)))
> qas <- do.call(rbind, gasO)

> rpt <- report(qas, dest=tempfile())

> browseURL (rpt)

A report from a larger subset of the experiment is available

v

rpt <- system.file("GSM461176_81_qa_report", "index.html",
package="useR2012")

v +

browseURL (rpt)
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Exercise 5
Use the helper function bigdata (defined in the useR2012 package) and the
file.path and dir functions to locate two fastq files from [2] (the files were
obtained as described in the appendix and pasilla experiment data package.
Input one of the fastq files using readFastq from the ShortRead package.
Using the helper function gcFunction from the useR2012 package, draw a
histogram of the distribution of GC frequencies across reads.
Use alphabetByCycle to summarize the frequency of each nucleotide, at each
cycle. Plot the results using matplot, from the graphics package.
As an advanced exercise, and if on Mac or Linux, use the parallel package
and mclapply to read and summarize the GC content of reads in two files in
parallel.

Solution: Discovery:

> dir(bigdata())

[1] "bam"  "fastq"

> fls <- dir(file.path(bigdata(), "fastq"), full=TRUE)
Input:

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 40715685 217.5 6193578 330.8 6193578 330.8
Vcells 125856983 960.3 279142478 2129.7 279142148 2129.7

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)
> sum(alfO[c("G", "C")])

[1] 0.5457237

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))
> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle (sread(fq))
>matplot(t(abc[c("A", ncn, HGH’ IITII),])’ type="l")

Advanced (Mac, Linux only): processing on multiple cores.
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> library(parallel)

> gcO <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+  table(cut(gc, seq(0, 1, .05)))

+ 3}

> ## simplify list of length 2 to 2-D array
> gc <- simplify2array(gc0)

> matplot(gc, type="s")

3.3 Alignments and the Rsamtools Package

Most down-stream analysis of short read sequences is based on reads aligned to
reference genomes. There are many aligners available, including BWA [10, 9],
Bowtie [8], and GSNAP; merits of these are discussed in the literature. There
are also alignment algorithms implemented in Bioconductor (e.g., matchPDict in
the Biostrings package, and the Rsubread package); matchPDict is particularly
useful for flexible alignment of moderately sized subsets of data.

Alignment formats Most main-stream aligners produce output in SAM (text-
based) or BAM format. A SAM file is a text file, with one line per aligned read,
and fields separated by tabs. Here is an example of a single SAM line, split into
fields.

> f1 <- system.file("extdata", "exl.sam", package="Rsamtools")
> strsplit(readlLines(f1, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] ny3n
[3] nseqlu
[4] nqn
[5] nggn
[6] n3gM"
[7] Nygn
[8] non
[9] non

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"
[11] "<<<<KKLLLLLLLLLL; KLKLLLLLLLBLLLLL ;<37
[12] "MF:i:18"
[13] "Aq:i:73"

[14] "NM:i:0"
[15] "UQ:i:0"
[16] "HO:i:1"
[17] "H1:i:0"
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The SAM specification summarizes these fields. We recognize from the FASTQ
file the identifier string, read sequence and quality. The alignment is to a chro-
mosome ‘seql’ starting at position 1. The strand of alignment is encoded in the
‘flag’ field. The alignment record also includes a measure of mapping quality,
and a CIGAR string describing the nature of the alignment. In this case, the
CIGAR is 36M, indicating that the alignment consisted of 36 Matches or mis-
matches, with no indels or gaps; indels are represented by I and D; gaps (e.g.,
from alignments spanning introns) by N. BAM files encode the same information
as SAM files, but in a format that is more efficiently parsed by software; BAM
files are the primary way in which aligned reads are imported in to R.

Aligned reads in R The readGappedAlignments function from the Genom-
icRanges package reads essential information from a BAM file in to R. The
result is an instance of the GappedAlignments class. The GappedAlignments
class has been designed to allow useful manipulation of many reads (e.g., 20
million) under moderate memory requirements (e.g., 4 GB).

> alnFile <- system.file("extdata", "exl.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)
> head(aln, 3)

GappedAlignments with 3 alignments and O elementMetadata cols:

seqnames strand cigar qwidth start end width
<Rle> <Rle> <character> <integer> <integer> <integer> <integer>
[1] seql + 36M 36 1 36 36
[2] seql + 35M 35 3 37 35
[3] seql + 35M 35 5 39 35
ngap
<integer>
[1] 0
(2] 0
(3] 0
seqlengths:
seql seq2
1575 1584

The readGappedAlignments function takes an additional parameter, param, allow-
ing the user to specify regions of the BAM file (e.g., known gene coordinates)
from which to extract alignments.

A GappedAlignments instance is like a data frame, but with accessors as
suggested by the column names. It is easy to query, e.g., the distribution of
reads aligning to each strand, the width of reads, or the cigar strings

> table(strand(aln))

+ -
1647 1624
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> table(width(aln))

30 31 32 33 34 35 36 38 40
2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4TI17M
2804 283 112 37 6 4

Exercise 6
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are
a subset of the aligned reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore
the reads, e.g., using table or xtabs, to summarize which chromosome and
strand the subset of reads is from.

The object ex created earlier contains coordinates of four genes. Use coun-
tOverlaps to first determine the number of genes an individual read aligns to,
and then the number of uniquely aligning reads overlapping each gene. Since
the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function,
and calculate counts on each file. On Mac or Linux, can you easily parallelize
this operation?

Solution: We discover the location of files using standard R commands:

> fls <- dir(file.path(bigdata(), "bam"), ".bam$", full=TRUE)
> names(fls) <- sub("_.*", "" basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R
commands to explore the data.

> ## input
> aln <- readGappedAlignments(fls[1])
> xtabs(“seqnames + strand, as.data.frame(aln))

strand
segnames + -
chr3L 5402 5974
chrX 2278 2283

To count overlaps in regions defined in a previous exercise, load the regions.
> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus
or minus strand regardless of the strand on which the corresponding gene is
encoded. Adjust the strand of the aligned reads to indicate that the strand is
not known.
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> strand(aln) <- "*"  # protocol not strand-aware

For simplicity, we are interested in reads that align to only a single gene. Count
the number of genes a read aligns to. ..

> hits <- countOverlaps(aln, ex)
> table(hits)

hits
0 1 2
772 15026 139

and reverse the operation to count the number of times each region of interest
aligns to a uniquely overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads is

> counter <-

+ function(filePath, range)

+ 1

+ aln <- readGappedAlignments(filePath)
+ strand(aln) <- "*"

+ hits <- countOverlaps(aln, range)

+ countOverlaps(range, aln[hits==1])
+}

This can be applied to all files using sapply
> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file.
This encourages us to count reads in each BAM file in parallel, decreasing the
length of time required to execute our program. On Linux and Mac OS, a
straight-forward way to parallelize this operation is:

> if (require(parallel))
+ simplify2array (mclapply (fls, counter, ex))

The summarizeOverlaps function in the GenomicRanges package implements
more appropraite counting strategies.

Exercise 7
Consult the help page for ScanBamParam, and construct an object that restricts
the information returned by a scanBam query to the aligned read DNA sequence.
Your solution will use the what parameter to the ScanBamParam function.

Use the ScanBamParam object to query a BAM file, and calculate the GC
content of all aligned reads. Summarize the GC content as a histogram (Figure

2).
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Figure 2: GC content in aligned reads

Solution:

> param <- ScanBamParam(what="seq")

> seqs <- scanBam(fls[[1]], param=param)
> readGC <- gcFunction(seqs[[1]][["seq"]1])
> hist (readGC)
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Table 6: Selected Bioconductor packages for RNA-seq analysis.

Package Description

EDASeq Exploratory analysis and QA; also qrqc, ShortRead.

edgeR, DESeq Generalized Linear Models using negative binomial er-
ror.

DEXSeq Exon-level differential representation.

goseq Gene set enrichment tailored to RNAseq count data;

also limma’s roast or camera after transformation with
voom OI CQIl.

easyRNASeq Workflow; also  ArrayExpressHTS, rnaSeqMap,
oneChannelGUI.

Rsubread Alignment (Linux only); also Biostrings matchPDict for
special-purpose alignments.

4 RNA-seq

Varieties of RNA-seq RNA-seq experiments typically ask about differences
in trancription of genes or other features across experimental groups. The anal-
ysis of designed experiments is statistical, and hence an ideal task for R. The
overall structure of the analysis, with tens of thousands of features and tens
of samples, is reminiscent of microarray analysis; some insights from the mi-
croarray domain will apply, at least conceptually, to the analysis of RNA-seq
experiments.

The most straight-forward RNA-seq experiments quantify abundance for
known gene models. The known models are derived from reference databases,
reflecting the accumulated knowledge of the community responsible for the data.
A more ambitious approach to RNA-seq attempts to identify novel transcripts;
this is beyond the scope of today’s tutorial.

Bioconductor packages play a role in several stages of an RNA-seq analysis
(Table 6; a more comprehensive list is under the RNAseq and HighThroughput-
Sequencing BiocViews terms). The GenomicRanges infrastructure can be effec-
tively employed to quantify known exon or transcript abundances. Quantified
abundances are in essence a matrix of counts, with rows representing features
and columns samples. The edgeR [15] and DESeq [1] packages facilitate anal-
ysis of this data in the context of designed experiments, and are appropriate
when the questions of interest involve between-sample comparisons of relative
abundance. The DEXSeq package extends the approach in edgeR and DESeq
to ask about within-gene, between group differences in exon use, i.e., for a given
gene, do groups differ in their exon use?

4.1 Differential Expression with the edgeR Package

RNA-seq differential representation experiments, like classical microarray ex-
periments, consist of a single statistical design (e.g, comparing expression of
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samples assigned to ‘Treatment’ versus ‘Control’ groups) applied to each fea-
ture for which there are aligned reads. While one could naively perform simple
tests (e.g., t-tests) on all features, it is much more informative to identify impor-
tant aspects of RNAseq experiments, and to take a flexible route through this
part of the work flow. Key steps involve formulation of a model matrix to cap-
ture the experimental design, estimation of a test static to describe differences
between groups, and calculation of a P value or other measure as a statement
of statistical significance.

Counting and filtering An essential step is to arrive at some measure of
gene representation amongst the aligned reads. A straight-forward and com-
monly used approach is to count the number of times a read overlaps exons.
Nuance arises when a read only partly overlaps an exon, when two exons over-
lap (and hence a read appears to be ‘double counted’), when reads are aligned
with gaps and the gaps are inconsistent with known exon boundaries, etc. The
summarizeOverlaps function in the GenomicRanges package provides facilities
for implementing different count strategies, using the argument mode to deter-
mine the counting strategy. The result of summarizeOverlaps can easily be used
in subsequent steps of an RNA-seq analysis. Software other than R can also be
used to summarize count data. An important point is that the desired input for
downstream analysis is often raw count data, rather than normalized (e.g., reads
per kilobase of gene model per million mapped reads) values. This is because
counts allow information about uncertainty of estimates to propagate to later
stages in the analysis.

The following exercise illustrates key steps in counting and filtering reads
overlapping known genes.

Exercise 8

The useR2012 package contains a data set counts with pre-computed count
data. Use the data command to load it. Create a variable grp to define the
groups associated with each column, using the column names as a proxy for
more authoritative metadata.

Create a DGEList object (defined in the edgeR package) from the count matrix
and group information. Calculate relative library sizes using the calcNormFac-
tors function.

A lesson from the microarray world is to discard genes that cannot be in-
formative (e.g., because of lack of variation), regardless of statistical hypothesis
under evaluation. Filter reads to remove those that are represented at less than
1 per million mapped reads, in fewer than 2 samples.

Solution: Here we load the data (a matrix of counts) and create treatment
group names from the column names of the counts matrix.

> data(counts)
> dim(counts)

[1] 14470 7
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> grps <- factor(sub("[1-4].*", "", colnames(counts)),

+ levels=c("untreated", "treated"))

> pairs <- factor(c("single", "paired", "paired",

+ "single", "single", "paired", "paired"))
> pData <- data.frame(Group=grps, PairType=pairs,

+ row.names=colnames (counts))

We use the edgeR package, creating a DGEList object from the count and
group data. The calcNormFactors function estimates relative library sizes for
use as offsets in the generalized linear model.

> library(edgeR)
> dge <- DGEList(counts, group=pData$Group)
> dge <- calcNormFactors(dge)

To filter reads, we scale the counts by the library sizes and express the results
on a per-million read scale. This is done using the sweep function, dividing each
column by it’s library size and multiplying by 1e6. We require that the gene be
represented at a frequency of at least 1 read per million mapped (m > 1, below)
in two or more samples (rowSums(m > 1) >= 2), and use this criterion to subset
the DGEList instance.

> m <- sweep(dge$counts, 2, le6 / dge$samples$lib.size, “*7)
> ridx <- rowSums(m > 1) >= 2

> table(ridx) # number filtered / retained
ridx

FALSE TRUE

6476 7994

> dge <- dgelridx,]

Experimental design In R, an experimental design is specified with the
model.matrix function. The function takes as its first argument a formula
describing the independent variables and their relationship to the response
(counts), and as a second argument a data.frame containing the (phenotypic)
data that the formula describes. A simple formula might read © 1 + Group,
which says that the response is a linear function involving an intercept (1) plus
a term encoded in the variable Group. If (as in our case) Group is a factor, then
the first coefficient (column) of the model matrix corresponds to the first level
of Group, and subsequent terms correspond to deviations of each level from the
first. If Group were mumeric rather than factor, the formula would represent
linear regressions with an intercept. Formulas are very flexible, allowing repre-
sentation of models with one, two, or more factors as main effects, models with
or without interaction, and with nested effects.
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Exercise 9
To be more concrete, use the model.matrix function and a formula involving
Group to create the model matrix for our experiment.

Solution: Here is the experimental design; it is worth discussing with your
neighbor the interpretation of the design instance.

> (design <- model.matrix(~ Group, pData))

(Intercept) Grouptreated
treatedlfb 1
treated2fb
treated3fb
untreatedlfb
untreated2fb
untreated3fb
untreated4fb
attr(,"assign")
[1] 01
attr(,"contrasts")
attr(,"contrasts")$Group
[1] "contr.treatment"

e
O O O O K~ =

The coefficient (column) labeled ‘Intercept’ corresponds to the first level of
Group, i.e., ‘untreated’. The coefficient ‘Grouptreated’ represents the deviation
of the treated group from untreated. Eventually, we will test whether the second
coefficient is significantly different from zero, i.e., whether samples with a ‘1’ in
the second column are, on average, different from samples with a ‘0’. On the
one hand, use of model.matrix to specify experimental design implies that the
user is comfortable with something more than elementary statistical concepts,
while on the other it provides great flexibility in the experimental design that
can be analyzed.

Negative binomial error RNA-seq count data are often described by a neg-
ative binomial error model. This model includes a ‘dispersion’ parameter that
describes biological variation beyond the expectation under a Poisson model.
The simplest approach estimates a dispersion parameter from all the data. The
estimate needs to be conducted in the context of the experimental design, so
that variability between experimental factors is not mistaken for variability in
counts. The square root of the estimated dispersion represents the coefficient of
variation between biological samples. The following edgeR commands estimate
dispersion.

> dge <- estimateTagwiseDisp(dge)
> mean(sqrt(dge$tagwise.dispersion))

[1] 0.1778359
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This approach assumes that a common dispersion parameter is shared by all
genes. A different approach, appropriate when there are more samples in the
study, is to estimate a dispersion parameter that is specific to each tag (using
estimateTagwiseDisp in the edgeR package). As another alternative, Anders
and Huber [1] note that dispersion increases as the mean number of reads per
gene decreases. One can estimate the relationship between dispersion and mean
using estimateGLMTrendedDisp in edgeR, using a fitted relationship across all
genes to estimate the dispersion of individual genes. Because in our case sam-
ple sizes (biological replicates) are small, gene-wise estimates of dispersion are
likely imprecise. One approach is to moderate these estimates by calculating a
weighted average of the gene-specific and common dispersion; estimateGLMTag-
wiseDisp performs this calculation, requiring that the user provides an a priori
estimate of the weight between tag-wise and common dispersion.

Differential representation The final steps in estimating differential repre-
sentation are to fit the full model; to perform the likelihood ratio test comparing
the full model to a model in which one of the coefficients has been removed; and
to summarize, from the likelihood ratio calculation, genes that are most differ-
entially represented. The result is a ‘top table’ whose row names are the Flybase
gene ids used to label the elements of the ex GRangesList.

Exercise 10
Use glnFit to fit the general linear model. This function requires the input data
dge, the experimental design design, and the estimate of dispersion.

Use gImLRT to form the likelihood ratio test. This requires the original data
dge and the fitted model from the previous part of this question. Which coeffi-
cient of the design matrix do you wish to test?

Create a ‘top table’ of differentially represented genes using topTags.

Solution: Here we fit a generalized linear model to our data and experimental
design, using the tagwise dispersion estimate.

> fit <- glmFit(dge, design)

The fit can be used to calculate a likelihood ratio test, comparing the full
model to a reduced version with the second coefficient removed. The second
coefficient captures the difference between treated and untreated groups, and
the likelihood ratio test asks whether this term contributes meaningfully to the
overall fit.

> I1rTest <- glmLRT(dge, fit, coef=2)
Here the topTags function summarizes results across the experiment.

> tt <- topTags(lrTest, n=10)
> tt[1:3,]
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Coefficient: Grouptreated

logFC  logCPM LR PValue FDR

FBgn0039155 -4.698051 6.030423 542.3132 5.918302e-120 4.731091e-116
FBgn0039827 -4.275280 4.591903 247.2889 1.012761e-55 4.048005e-52
FBgn0029167 -2.233973 8.246355 211.4650 6.580299e-48 1.753430e-44

As a ’sanity check’, summarize the original data for the first several probes,

confirming that the average counts of the treatment and control groups are
substantially different.

> sapply(rownames (tt$table) [1:4],

+ function(x) tapply(counts[x,], pData$Group, mean))
FBgn0039155 FBgn0039827 FBgn0029167 FBgn0034736

untreated 1576 554 6447 .000 382.25

treated 64 31 1482.667 36.00

4.2 Additional Steps in RNA-seq Work Flows

The forgoing provides an elementary work flow. There are many interesting
additional opportunities, including;:

Annotation Standard Bioconductor facilities, e.g., the select method from

the AnnotationDbi package applied to packages such as org.Dm.eg.db
can provide biological context (e.g., gene name, KEGG or GO pathway
membership) for interpretting genes at the top of a top table. Packages
using GenomicFeatures, e.g., TxDb.Dmelanogaster. UCSC.dm3.ensGene,
can provide information on genome structure, e.g., genomic coordinates of
exons, and relationship between exons, coding sequences, transcripts, and
genes.

Gene Set Enrichment Care needs to be taken because statistical signficance

of genes is proportional to the number of reads aligning to the gene (e.g.,
due to gene length or GC content); see, e.g., goseq.

Exon-level Differential Representation The DEXSeq package takes an in-

teresting approach to within-gene differential expression, testing for in-
teraction between exon use and treatment. The forthcoming SpliceGraph
package takes this a step further by summarizing gene models into graphs,
with ‘bubbles’ representing alternative splicing events; this reduces the
number of statistical tests (increasing count per edge and statistical power)
while providing meaningful insight into the types of events (e.g., ‘exon
skip’, ‘alternative acceptor’) occuring.
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4.3 Resources

The edgeR, DESeq, and DEXSeq package vignettes provide excellent, exten-
sive discussion of issues and illustration of methods for RNA-seq differential
expression analysis.

30


http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html

Table 7: Selected Bioconductor packages for RNA-seq analysis.

Package Description
qrqc Quality assessment; also ShortRead, chipseq.
PICS Peak calling, also mosaics, chipseq, ChIPseqR,

BayesPeak, nucleR (nucleosome positioning).
ChIPpeakAnno Peak annotation.
DiffBind Multiple-experiment analysis.
MotIV Motif identification and validation; also rGADEM.

5 ChIP-seq

ChIP-seq and similar experiments combine chromosome immuno-precipitation
(ChIP) with sequence analysis. The idea is that the ChIP protocol enriches
genomic DNA for regions of interest, e.g., sites to which transcription factors are
bound. The regions of interest are then subject to high throughput sequencing,
the reads aligned to a reference genome, and the location of mapped reads
(‘peaks’) interpreted as indicators of the ChIP’ed regions. Reviews include those
by Park and colleagues [13, 6]; there is a large collection of peak-calling software,
some features of which are summarized in Pepke et al. [14].

The main challenge in early ChIP-seq studies was to develop efficient peak-
calling software, often tailored to the characteristics of the peaks of interest
(e.g., narrow and well-defined CTCF binding sites, vs. broad histone marks).
More comprehensive studies draw from multiple samples, e.g., in the ENCODE
project [7, 12]. Decreasing sequence costs and better experimental and data
analytic protocols mean that these larger-scale studies are increasingly accessible
to individual investigators. Peak-calling in this kind of study represents an
initial step, but interpretting analyses derived from multiple samples present
significant analytic challenges. Bioconductor packages play a role in several
stages of a ChIP-seq analysis. (Table 7; a more comprehensive list is under the
ChIPseq and HighThroughputSequencing BiocViews terms).

Our attention is on analyzing multiple samples from a single experiment, and
identifying and annotating peaks. We start with a typical work flow re-iterating
key components in an exploration of data from the ENCODE project, and con-
tinue with down-stream analysis including motif discovery and annotation.

5.1 Initial Work Flow

We use data from GEO accession GSE30263, representing ENCODE CTCF
binding sites. CTCF is a zinc finger transcription factor. It is a sequence
specific DNA binding protein that functions as an insulator, blocking enhancer
activity, and possibly the spread of chromatin structure. The original analysis
involved Illumina ChIP-seq and matching ‘input’ lanes of 1 or 2 replicates from
many cell lines. The GEO accession includes BAM files of aligned reads, in
addition to tertiary files summarizing identified peaks. We focus on 15 cell lines
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aligned to hgl9.
As a precursor to analysis, it is prudent to perform an overall quality as-
sesssement of the data; an example is available:

> rpt <- system.file("GSE30263_qga_report", "index.html",

+ package="useR2012", mustWork=TRUE)
> if (interactive())
+ browseURL (rpt)

The main computational stages in the original work flow involved alignment
using Bowtie, followed by peak identification using an algorithm (‘HotSpots’,
[16]) originally developed for lower-throughput methodologies. We collated the
output files from the original analysis with a goal of enumerating all peaks from
all files, but collapsing the coordinates of sufficiently similar peaks to a common
location. The DiffBind package provides a formalism with which to do these
operations. Here we load the data as an R object stam (an abbreviation for the
lab generating the data).

> stamFile <- system.file("data", "stam.Rda", package="useR2012")
> load(stamFile)
> stam

class: SummarizedExperiment

dim: 369674 96

exptData(0):

assays(2): Tags PVals

rownames: NULL

rowData values names(0):

colnames(96): AB549_1 A549_2 ... Wi38_1 Wi38_2

colData names(10): CellLine Replicate ... PeaksDate PeaksFile

Exercise 11
Explore stam. Tabulate the number of peaks represented 1, 2, ..., 96 times. We
expect replicates to have similar patterns of peak representation; do they?

Solution: Load the data and display the Summarized Experiment instance. The
colData summarizes information about each sample, the rowData about each
peak. Use xtabs to summarize Replicate and CellLine representation within
colData(stam).

> head(colData(stam), 3)

DataFrame with 3 rows and 10 columns

CellLine Replicate TotTags TotPeaks Tags Peaks

<character> <factor> <integer> <integer> <numeric> <numeric>

A549_1 A549 1 1857934 50144 1569215 43119
A549_2 A549 2 2994916 77355 2881475 73062
Ag04449_1 Ag04449 1 5041026 81855 4730232 75677
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FastqDate FastqSize PeaksDate

<Date> <numeric> <Date>
A549_1 2011-06-25 463 2011-06-25
A549_2 2011-06-25 703 2011-06-25
Ag04449_1 2010-10-22 368 2010-10-22
PeaksFile
<character>
A549_1 wgEncodeUwTfbsA549CtcfStdPkRepl.narrowPeak.gz
A549_2 wgEncodeUwTfbsA549CtcfStdPkRep2.narrowPeak.gz

Ag04449_1 wgEncodeUwTfbsAg04449CtcfStdPkRepl.narrowPeak.gz
> head(rowData(stam), 3)

GRanges with 3 ranges and O elementMetadata cols:

seqnames ranges strand
<Rle> <IRanges> <Rle>
[1] chrl [10100, 10370] *
[2] chrl [15640, 15790] *
[3] chrl [16100, 16490] *
seqlengths:
chri chr2 chr3 chrd ... chr22 chrX
249250621 243199373 198022430 191154276 ... 51304566 155270560

> xtabs("Replicate + CellLine, colData(stam))[,1:5]

CellLine

Replicate A549 Ag04449 Ag04450 Ag09309 Ag09319
1 1 1 1 1 1
2 1 1 1 1 1

Extract the Tags matrix from the assays. This is a standard R matriz. Test
which matrix elements are non-zero, tally these by row, and summarize the
tallies. This is the number of times a peak is detected, across each of the
samples

> m <- assays(stam)[["Tags"]] > O # peaks detected...
> peaksPerSample <- table(rowSums(m))
> head (peaksPerSample)

1 2 3 4 5 6
174574 35965 18939 12669 9143 7178

> tail (peaksPerSample)

91 92 93 94 95 96
1226 1285 1542 2082 2749 14695
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Figure 3: Hierarchical clustering of ENCODE samples.

To explore similarity between replicates, extract the matrix of counts. Trans-
form the counts using the asinh function (a log-like transform, except near 0;
are there other methods for transformation?), and use the ‘correlation’ distance
(cor.dist, from bioDist) to measure similarity. Cluster these using a hierarchi-
cal algorithm, via the hclust function.

> library(bioDist) # for cor.dist

> m <- asinh(assays(stam)[["Tags"]]) # transformed tag counts
> d <- cor.dist(t(m)) # correlation distance

> h <- hclust(d) # hierarchical clustering

Plot the result, as in Figure 3.

> plot(h, cex=.8, ann=FALSE)

5.2 Motifs

Transcription factors and other common regulatory elements often target spe-
cific DNA sequences (‘motifs’). These are often well-characterized, and can be
used to help identify, a priori, regions in which binding is expected. Known
binding motifs may also be used to identify promising peaks identified using de
novo peak discovery methods like MACS. This section explores use of known
binding motifs to characterize peaks; packages such as MotIV can assist in motif
discovery.

Known binding motifs The JASPAR data base curates known binding mo-
tifs obtained from the literature. A binding motif is summarized as a position
weight matriz PWM. Rows of a PWM correspond to nucleotides, columns to
positions, and entries to the probability of the nucleotide at that position. Each
start position in a reference sequence can be compared and scored for similarity
to the PWM, and high-scoring positions retained.
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Exercise 12
The objective of this exercise is to identify occurrences of the C'T'CF motif on
chromosome 1 of H. sapiens.

Load needed packages. Biostrings can represent a PWM and score a reference
sequence. The BSgenome.Hsapiens.UCSC.hg19 package contains the hg19 build
of H. sapiens, retrieved from the UCSC genome browser. seqLogo and lattice
are used for visualization.

Retrieve the PWM for CTCF, with JASPAR id MA0139.1.pfm, using the
helper function getJASPAR defined in the useR2012 package.

Use matchPWM to score the plus strand of chrl for the CTCF PWM. Visualize
the distribution of scores using, e.g., densityplot, and summarize the high-
scoring matches (using consensusMatrix) as a seqLogo.

As an additional exercise, work up a short code segment to apply the PWM
to both strands (see ?PWM for some hints) and to all chromosomes.

Solution: Here we load the required packages and retrieve the position weight
matrix for CTCF.

> library(Biostrings)

> library(BSgenome.Hsapiens.UCSC.hg19)

> library(seqLogo)

> library(lattice)

> pwm <- getJASPAR("MA0139.1.pfm") # useR2012::getJASPAR

Chromosome 1 can be loaded with Hsapiens[["chr1"]]; matchPWM returns a
‘view’ of the high-scoring locations matching the PWM. Scores are retrieved
from the PWM and hits using PWMscoreStartingAt.

> chrid <- "chril"
> hits <-matchPWM(pwm, Hsapiens[[chrid]]) # '+' strand
> scores <- PWMscoreStartingAt(pwm, subject(hits), start(hits))

The distribution of scores can be visualized with, e.g., densityplot from the
lattice package.

> densityplot(scores, xlim=range(scores), pch="[")

consensusMatrix applied to the views in hits returns a position frequency amtrix;
this can be plotted as a logo, with the result in Figure 4. Reassuringly, the found
sequences have a logo very similar to the expected.

> cm <- consensusMatrix(hits)[1:4,]
> seqLogo (makePWM(scale(cm, FALSE, colSums(cm))))
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Figure 4: CTCF position weight matrix of found sites on the plus strand of chrl
(hits within 80% of maximum score).
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6 Annotation

Bioconductor provides extensive annotation resources, summarized in Figure 5.
These can be gene-, or genome-centric. Annotations can be provided in packages
curated by Bioconductor, or obtained from web-based resources. Gene-centric
AnnotationDbi packages include:

e Organism level: e.g. org.Mm.eg.db.
e Platform level: e.g. hgul33plus2.db, hgul33plus2.probes, hgul33plus2.cdf.
e Homology level: e.g. hom.Dm.inp.db.
e System biology level: GO.db, KEGG.db, Reactome.db.
Examples of genome-centric packages include:

e GenomicFeatures, to represent genomic features, including constructing
reproducible feature or transcript data bases from file or web resources.

e Pre-built transcriptome packages, e.g. TxDb.Hsapiens. UCSC.hg19.knownGene
based on the H. sapiens UCSC hgl9 knownGenes track.

e BSgenome for whole genome sequence representation and manipulation.

e Pre-built genomes, e.g., BSgenome. Hsapiens. UCSC.hg19 based on the H.
sapiens UCSC hgl9 build.

Web-based resources include
e biomaRt to query biomart resource for genes, sequence, SNPs, and etc.

e rtracklayer for interfacing with browser tracks, especially the UCSC genome
browser.

6.1 Gene-Centric Annotations with AnnotationDbi

Organism-level (‘org’) packages uses a central gene identifier (e.g. Entrez Gene
id) and contain mappings between this identifier and other kinds of identifiers
(e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of
an org package is always of the form org.<Ab>.<efg>.db (e.g. org.Sc.sgd.db)
where <Ab> is a 2-letter abbreviation of the organism (e.g. Sc for Saccha-
romyces cerevisiae) and <efg> is an abbreviation (in lower-case) describing the
type of central identifier (e.g. sgd for gene identifiers assigned by the Saccha-
romyces Genome Database, or eg for Entrez gene ids). The How to use the “.db’
annotation packages vignette in the AnnotationDbi package (org packages are
only one type of “.db” annotation packages) is a key reference. The ‘.db’ and
most other Bioconductor annotation packages are updated every 6 months.
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Figure 5: Annotation Packages: the big picture

Exercise 13
What is the name of the org package for Drosophila? Load it.

Use 1s("package: <pkgname>") to display the list of all symbols defined in this
package. Explore a few of the symbols by looking at their man page, at their
class, and by viewing their head with toTable.

Most maps can be reversed with revmap. Reverse the org.Dm.egUNIPROT map
and extract a few identifiers from the reversed map.

Solution:

> library(org.Dm.eg.db)
> head(1s('package:org.Dm.eg.db'), 3)

[1] "org.Dm.eg" "org.Dm.eg.db" "org.Dm.egACCNUM"
> org.Dm.egUNIPROT

UNIPROT map for Fly (object of class "AnnDbBimap")

> class(org.Dm.egUNIPROT)

[1] "AnnDbBimap"
attr(, "package")
[1] "AnnotationDbi"

> toTable(head(org.Dm.egUNIPROT, 3))

gene_id uniprot_id

1 30970 Q8IRZ0O
2 30970 Q95RP8
3 30971 Q95RU8
4 30972 QOwW5H1
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Each map consists of left keys and right keys. The left keys are the Entrez gene
ids and the right keys the Uniprot accession numbers. For all maps in an org
package the left key is always the central gene id.

> toTable(head (revmap (org.Dm.egUNIGENE), 3))

gene_id unigene_id

1 30970 Dm.6474
2 30971 Dm.9
3 30972 Dm.12271

> identical (Lkeys (org.Dm.egUNIGENE), Lkeys(revmap (org.Dm.egUNIGENE)))

[1] TRUE

Recent versions of many annotation packages allow a simpler way of extract-
ing annotations. Annotation packages supporting these new methods contain an
object named after the package itself. These objects are collectively called An-
notationDb objects, with more specific classes named OrgDb, ChipDb or Tran-
scriptDb objects. Methods that can be applied to these objects include cols,
keys, keytypes and select.

Exercise 14
Display the OrgDb object for the org.Dm.eg.db package.

Use the cols method to discover which sorts of annotations can be extracted
from it.

Use the keys method to extract UNIPRO'T identifiers and then pass those
keys in to the select method in such a way that you extract the SYMBOL (gene
symbol) and KEGG pathway information for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in
the KEGG pathway 00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> cols(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALTAS" "CHR" "ENZYME"

[6] "GENENAME" "MAP" "PATH" "PMID" "REFSEQ"

[11] "SYMBOL" "UNIGENE" "CHRLOC" "CHRLOCEND" "FLYBASE"
[16] "FLYBASECG" "FLYBASEPROT" "UNIPROT" "ENSEMBL" "ENSEMBLPROT"
[21] "ENSEMBLTRANS" "GO"
> keytypes (org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALTAS" "CHR" "ENZYME"

[6] "MmAP" "PATH" "PMID" "REFSEQ" "SYMBOL"

[11] "UNIGENE" "FLYBASE" "FLYBASECG" "FLYBASEPROT" "UNIPROT"
[16] "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS" "GO"
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> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))
> cols <- c("SYMBOL", "PATH")
> select(org.Dm.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 Q8IRZO CG3038 <NA>
2 (Q95RP8 CG3038 <NA>
3 Q95RUS G9a 00310
4 QOWSH1 CG13377 <NA>
5 P39205 cin <NA>
6 Q24312 ewg <NA>

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")
> nrow(kegg)

[1] 32
> head(kegg, 3)

PATH UNIPROT SYMBOL
1 00310 (Q95RU8 G9a
2 00310 Q9W5E0 Suv4-20
3 00310 Q9W3N9 CG10932

6.2 Genome-Centric Annotations with GenomicFeatures

Genome-centric packages are very useful for annotations involving genomic co-
ordinates. It is straight-forward, for instance, to discover the coordinates of
coding sequences in regions of interest, and from these retrieve corresponding
DNA or protein coding sequences. Other examples of the types of operations
that are easy to perform with genome-centric annotations include defining re-
gions of interest for counting aligned reads in RNA-seq experiments (Section 4)
and retrieving DNA sequences underlying regions of interest in ChIP-seq anal-
ysis (Section 5), e.g., for motif characterization.

Exercise 15
The objective of this exercise is to characterize the distance between identified
peaks and nearest transcription start site.

Load the ENCODE summary data, select the peaks found in all samples,
and use the center of these peaks as a proxy for the true ChIP binding site.

Use the transcript data base for the UCSC Known Genes track of hgl9 as a
source for transcripts and transcription start sites (TSS).

Use nearest to identify the TSS that is nearest each peak, and calculate the
distance between the peak and TSS; measure distance taking account of the
strand of the transcript, so that peaks 5 of the TSS have negative distance.

Summarize the locations of the peaks relative to the TSS.
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Solution: Read in the ENCODE ChIP peaks for all cell lines.

> stamFile <- system.file("data", "stam.Rda", package="useR2012")
> load(stamFile)

Identify the rows of stam that have non-zero counts for all cell lines, and extract
the corresponding ranges:

> ridx <- rowSums (assays(stam) [["Tags"]] > 0) == ncol(stam)
> peak <- rowData(stam) [ridx]

Select the center of the ranges of these peaks, as a proxy for the ChIP binding
site:

> peak <- resize(peak, width=1, fix="center")

Obtain the TSS from the TxDb.Hsapiens.UCSC.hgl9.knownGene using the
transcripts function to extract coordinates of each transcript, and resize to a
width of 1 for the TSS; does this do the right thing for transcripts on the plus
and on the minus strand?

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)
> tx <- transcripts(TxDb.Hsapiens.UCSC.hg19.knownGene)
> tss <- resize(tx, width=1)

The nearest function returns the index of the nearest subject to each query
element; the distance between peak and nearest TSS is thus

> idx <- nearest(peak, tss)
> sgn <- as.integer(ifelse(strand(tss)[idx] == "+", 1, -1))
> dist <- (start(peak) - start(tss)[idx]) * sgn

Here we summarize the distances as a simple table and density plot, focusing
on binding sites within 1000 bases of a transcription start site; the density plot
is in Figure 6.

bound <- 1000

ok <- abs(dist) < bound
dist <- dist[ok]
table(sign(dist))

vV VvV VvV

-1 0 1
1262 4 707

> griddensityplot <-

+ function(...)

+ ## 'panel' function to plot a grid underneath density
+ {

+ panel.grid()

+ panel.densityplot(...)
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Figure 6: Distance to nearest TSS amongst conserved peaks

+ }

> print(densityplot(dist[ok], plot.points=FALSE,
+ panel=griddensityplot,

+ xlab="Distance to Nearest TSS"))

The distance to transcript start site is a useful set of operations, so let’s make
it a re-usable function

> distToTss <-

+ function(peak, tx)

+{

+ peak <- resize(peak, width=1, fix="center")

+ tss <- resize(tx, width=1)

+ idx <- nearest(peak, tss)

+ sgn <- as.numeric(ifelse(strand(tss)[idx] == "+", 1, -1))
+ (start (peak) - start(tss)[idx]) * sgn

+ }

Exercise 16

As an additional exercise, extract the sequences of all conserved peaks on ‘chr6’.
Do this using the BSgenome.Hsapiens. UCSC.hg19 package and getSeq function.
Use matchPWM to find sequences with a strong match to the JASPAR CTCF
PWM motif, and plot the density of distances to nearest transcription start site
for those with and without a match. What strategies are available for motif
discovery?

Solution: Here we select peaks on chromosome 6, and extract the DNA se-
quences corresponding to these peaks.
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library (BSgenome.Hsapiens.UCSC.hg19)
ridx <- rowSums (assays(stam)[["Tags"]] > 0) == ncol(stam)
ridx <- ridx & (seqnames(rowData(stam)) == "chr6")

pk6 <- rowData(stam) [ridx]
seqs <- getSeq(Hsapiens, pk6, as.character=FALSE)
head(seqs, 3)

vV V.V VVvyVv

A DNAStringSet instance of length 3
width seq
[1] 311 CAGGGAGACTTGGGAAGGCTTCACGAAGGAGGGT. ..ACCCAACTCCTAAGCGTCACACATATAATCCTG
(2] 331 GCTAATAATTTACCATGAAGTAACAACTTTTCAC. . .TTTCCTAGGCAGCGAATTTAAGGGTAATGATCA
[3] 751 GTAAAGAATGGACTGACTTAAAGGCAGATGGAAT...AATCAAACAAGACAAAGAATCTTCGTGGCCACA

matchPWM operates on one DNA sequence at a time, so we arrange to search for
the PWM on each sequence using lapply. We identify sequences with a match
by testing the length of the returned object, and use this to create a density
plot.

pwm <- getJASPAR("MA0139.1.pfm") # useR2012::getJASPAR
hits <- lapply(seqs, matchPWM, pwm=pwm)
hasPwmMatch <- sapply(hits, length) > 0
dist <- distToTss(pk6, tx)
ok <- abs(dist) < bound
df <- data.frame(Distance = dist[ok], HasPwmMatch = hasPwmMatch[ok])
print (densityplot(~Distance, group=HasPwmMatch, df,
plot.points=FALSE, panel=griddensityplot,
auto.key=list(
columns=2,
title="Has Position Weight Matrix?",
cex.title=1),
xlab="Distance to Nearest Tss"))

+ + + + + + VVVVVVYV

6.3 Exploring Annotated Variants: VariantAnnotation

A major product of DNASeq experiments are catalogs of called variants (e.g.,
SNPs, indels). We will use the VariantAnnotation package to explore this type
of data. Sample data included in the package are a subset of chromosome 22
from the 1000 Genomes project. Variant Call Format (VCF; full description)
text files contain meta-information lines, a header line with column names, data
lines with information about a position in the genome, and optional genotype
information on samples for each position.

Data are read from a VCF file and variants identified according to region
such as coding, intron, intergenic, spliceSite etc. Amino acid coding changes
are computed for the non-synonymous variants. SIFT and PolyPhen databases
provide predictions of how severely the coding changes affect protein function.
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Exercise 17
The objective of this exercise is to compare the quality of called SNPs that are
located in dbSNP, versus those that are novel.

Locate the sample data in the file system. Explore the metadata (information
about the content of the file) using scanVcfHeader. Discover the ‘info’ fields VT
(variant type), and RSQ (genotype imputation quality).

Input sample data in using readVcf. You’ll need to specify the genome build
(genome="hg19") on which the variants are annotated. Take a peak at the rowData
to see the genomic locations of each variant.

dbSNP uses abbreviations such as ch22 to represent chromosome 22, whereas
the VCF file uses 22. Use rowData and renameSeqlevels to extract the row data
of the variants, and rename the chromosomes.

The SNPIlocs.Hsapiens.dbSNP.20101109 contains information about SNPs in
a particular build of dbSNP. Load the package, use the dbSNPFilter function to
create a filter, and query the row data of the VCF file for membership.

Create a data frame containing the dbSNP membership status and imputa-
tion quality of each SNP. Create a density plot to illustrate the results.

Solution: Explore the header:

> library(VariantAnnotation)

> f1 <- system.file("extdata", "chr22.vcf.gz",
+ package="VariantAnnotation")
> (hdr <- scanVcfHeader(f1l))

class: VCFHeader

samples(5): HGO0096 HGO0097 HGO0O099 HGO0100 HGO0101
meta(1l): fileformat

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

> info(hdr) [c("VT", "RSQ"),]

DataFrame with 2 rows and 3 columns

Number Type Description
<character> <character> <character>

VT 1 String indicates what type of variant the line represents
RSQ 1 Float Genotype imputation quality from MaCH/Thunder

Input the data and peak at their locations:
> (vcf <- readVcf (f1l, "hgl9"))

class: VCF

dim: 10376 5
genome: hgl9
exptData(l): header
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fixed(4): REF ALT QUAL FILTER

info(22): LDAF AVGPOST ... VT SNPSOURCE
geno(3): GT DS GL
rownames (10376) : rs7410291 rs147922003 ... rs144055359 rs114526001

rowData values names(1): paramRangeID
colnames(5): HGO0O096 HGO0097 HGO0099 HGO0100 HGO0101
colData names(1): Samples

> head(rowData(vcf), 3)

GRanges with 3 ranges and 1 elementMetadata col:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs7410291 22 [50300078, 50300078] * | <NA>

rs147922003 22 [50300086, 503000861 * | <NA>

rs114143073 22 [50300101, 503001011 * | <NA>

seqlengths:

22
NA

Rename chromosome levels:
> rowData(vcf) <- renameSeqlevels(rowData(vcf), c("22"="ch22"))
Discover whether SNPs are located in dbSNP:

> library(SNPlocs.Hsapiens.dbSNP.20101109)

> snpFilt <- dbSNPFilter ("SNPlocs.Hsapiens.dbSNP.20101109")
> inDbSNP <- snpFilt (rowData(vcf), subset=FALSE)

> table(inDbSNP)

inDbSNP
FALSE TRUE
6126 4250

Create a data frame summarizing SNP quality and dbSNP membership:

> metrics <-
+ data.frame (inDbSNP=inDbSNP, RSQ=values (info(vcf))$RSQ)

Finally, visualize the data, e.g., using ggplot2 (Figure 7).

> library(ggplot2)

> ggplot (metrics, aes(RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

scale_x_continuous (name="MaCH / Thunder Imputation Quality") +
scale_y_continuous (name="Density") +
opts(legend.position="top")

+ + +
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Figure 7: Quality scores of variants in dbSNP, compared to those not in dbSNP.

46



References

[1]

[2]

S. Anders and W. Huber. Differential expression analysis for sequence count
data. Genome Biology, 11:R106, 2010.

A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit,
S. E. Brenner, and B. R. Graveley. Conservation of an RNA regulatory
map between Drosophila and mammals. Genome Research, pages 193-202,
2011.

J. M. Chambers. Software for Data Analysis: Programming with R.
Springer, New York, 2008.

P. Dalgaard. Introductory Statistics with R. Springer, 2nd edition, 2008.

R. Gentleman. R Programming for Bioinformatics. Computer Science &
Data Analysis. Chapman & Hall/CRC, Boca Raton, FL, 2008.

J. W. Ho, E. Bishop, P. V. Karchenko, N. Negre, K. P. White, and P. J.
Park. ChIP-chip versus ChIP-seq: lessons for experimental design and data
analysis. BMC Genomics, 12:134, 2011. [PubMed Central:PMC3053263|
[DOIL:10.1186/1471-2164-12-134] [PubMed:21356108].

P. V. Kharchenko, A. A. Alekseyenko, Y. B. Schwartz, A. Minoda, N. C.
Riddle, J. Ernst, P. J. Sabo, E. Larschan, A. A. Gorchakov, T. Gu,
D. Linder-Basso, A. Plachetka, G. Shanower, M. Y. Tolstorukov, L. J.
Luquette, R. Xi, Y. L. Jung, R. W. Park, E. P. Bishop, T. K. Canfield,
R. Sandstrom, R. E. Thurman, D. M. MacAlpine, J. A. Stamatoyannopou-
los, M. Kellis, S. C. Elgin, M. I. Kuroda, V. Pirrotta, G. H. Karpen,
and P. J. Park. Comprehensive analysis of the chromatin landscape in
Drosophila melanogaster. Nature, 471:480-485, Mar 2011. [PubMed Cen-
tral: PMC3109908] [DOI1:10.1038 /nature09725] [PubMed:21179089].

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol., 10:R25, 2009.

H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics, 25:1754-1760, Jul 2009.

H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26:589-595, Mar 2010.

N. Matloff. The Art of R Programming. No Starch Pess, 2011.

R. M. Myers, J. Stamatoyannopoulos, M. Snyder, ...., and P. J.
Good. A user’s guide to the encyclopedia of DNA elements (ENCODE).
PLoS Biol., 9:¢1001046, Apr 2011. [PubMed Central:PMC3079585]
[DOI:10.1371 /journal.pbio.1001046] [PubMed:21526222].

47


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053263
http://dx.doi.org/10.1186/1471-2164-12-134
http://www.ncbi.nlm.nih.gov/pubmed/21356108
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3109908
http://dx.doi.org/10.1038/nature09725
http://www.ncbi.nlm.nih.gov/pubmed/21179089
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3079585
http://dx.doi.org/10.1371/journal.pbio.1001046
http://www.ncbi.nlm.nih.gov/pubmed/21526222

[13]

P. J. Park. ChIP-seq: advantages and challenges of a maturing technology.
Nat. Rev. Genet., 10:669-680, Oct 2009. [PubMed Central:PMC3191340]
[DOI:10.1038 /nrg2641] [PubMed:19736561].

S. Pepke, B. Wold, and A. Mortazavi. Computation for ChIP-seq and RNA-
seq studies. Nat. Methods, 6:22-32, Nov 2009. [DOI:10.1038/nmeth.1371]
[PubMed:19844228].

M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics, 26:139-140, Jan 2010.

P. J. Sabo, M. Hawrylycz, J. C. Wallace, R. Humbert, M. Yu, A. Shafer,
J. Kawamoto, R. Hall, J. Mack, M. O. Dorschner, M. McArthur, and J. A.
Stamatoyannopoulos. Discovery of functional noncoding elements by digital
analysis of chromatin structure. Proc. Natl. Acad. Sci. U.S.A., 101:16837—
16842, Nov 2004.

48


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3191340
http://dx.doi.org/10.1038/nrg2641
http://www.ncbi.nlm.nih.gov/pubmed/19736561
http://dx.doi.org/10.1038/nmeth.1371
http://www.ncbi.nlm.nih.gov/pubmed/19844228

	Introduction
	Rstudio
	R
	Bioconductor
	Resources

	Sequences and Ranges
	Biostrings
	GenomicRanges
	Resources

	Reads and Alignments
	The pasilla Data Set
	Reads and the ShortRead Package
	Alignments and the Rsamtools Package

	RNA-seq
	Differential Expression with the edgeR Package
	Additional Steps in RNA-seq Work Flows
	Resources

	ChIP-seq
	Initial Work Flow
	Motifs

	Annotation
	Gene-Centric Annotations with AnnotationDbi
	Genome-Centric Annotations with GenomicFeatures
	Exploring Annotated Variants: VariantAnnotation


