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Overview of this lecture

— Goal: highlight where informatics approaches are being used, insights into
bioinformatics research related to epigenomics

— Methods by platforms
— DNA methylation

*  (BS-based microarray) lllumina 450k array

*  (Affinity capture) BATMAN + new Bayesian method

— Peak/region detection
. MACS

— Copy number and MBD/ChlIP-seq

— Methods for integrating multiple data types
e ChromHMM
* Segway

*  Clustering - Repitools
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Analysis of 450k arrays

For each CpG site of interest, the
array measures signal for methylated
(M) and unmethylated (U)

Consensus methylation level
(beta value — B) estimated as:

B =M/ (M+U+e)

Differential statistics often done, as
with 2-colour gene expression
microarrays on log(M/U)

06.07.12 Epigenomics, Mark D. Robinson

A
G—@
Unmethylated T—@
bead t cC—e@
eal ?/pe r S
CpG IQ 5
Bisulfite converted DNA G—@
—@
Methylated
bead type rCA__“

‘ TR X,

— CpG tus N\ 5

Bisulfite converted DNA

Unmethylated locus

G—@
—®
c—e

Infinium 11

beadtype A—@
C
&y,
CpG locus 5

Bisulfite converted DNA

Unmethylated locus

G—e@
T—@
Unmethylated )
bead type r CA_‘
(U = GAX
i/ = N
CpG locus 5
Bisulfite converted DNA
G—@
Methylated T—e
bead t C
cad bpe e
‘ TS
\=\57)
f CpG Iocus\ 5
Bisulfite converted DNA
Methylated locus
e
A—@

Infinium 11

bead type G—@
' mm—g‘C
— CpG |$ 5
Bisulfite converted DNA

Methylated locus

Page 3



University of

M UZH
Zurich 0000
Institute of Molecular Life Sciences
§ 2000004 |
. o -
Analysis of 450k arrays 5 ; A
§ 150000+ J : :
s | :‘ )
@ 100000 o ;o
Overall, very good g T Py
I
correspondence between 450k S ool [\ ro
platform and others (e.g. BS-seq) = [\ ;
. N '1 |
Normalization issues for different U 0l 102 02 0 Ok 9 OF O 0% 4
Beta value (bin)
probe types (much current
research) Inf | Unmethylated = |nf | Methylated
Inf | Hemi-methylated - = = Inf Il Unmethylated

= === |nf || Hemi-methylated
====|nf Il Methylated

Fig. 3. Distribution of Methylation values for Infinium I and Infinium II loci.
Unmethylated (U), Hemi-methylated (H), and Methylated (M) reference standards
were created from Coriell genomic DNA sample as discussed in Methods. Note slightly

different performance of Infinium I and Infinium II assays in regard to beta value
distribution.
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Intensity distribution of probes with 2 CpGs

Intensity distribution by probe type (2 CpG in body)

Not only are type | and type | S A
probes distributed very IR
-==Infinium Il - Unmeth

differently, the presence of CpG
sites (which can be unmethylated
or methylated) can affect the
observed signal.

S

0.3

Also, present of SNPs in probe
may differentially affect human
samples

Density

0.2

SWAN: subset within array e
normalization
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Methods for differential methylation

Methods for differential methylation
of sites use: i) log-ratios of
methylated to unmethylated signal
(450k array); ii) difference in
binomials (BS-seq)

Methods are in active development
for going from differentially
methylated sites to differentially
methylated regions

(e.g. bump hunting)

charm::dmrFind()
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Figure 1 Example of a differentially methylation region (DMR). (A) The points show methylation measurements from the
colon cancer dataset plotted against genomic location from illustrative region on chromosome 2. Eight normal and eight
cancer samples are shown in this plot and represented by eight blue points and eight red points at each genomic location
for which measurements were available. The curves represent the smooth estimate of the population-level methylation
profiles for cancer (red) and normal (blue) samples. The green bar represents a region known to be a cancer DMR.?° (B)
The black curve is an estimate of the population-level difference between normal and cancer. We expect the curve to vary
due to measurement error and biological variation but to rarely exceed a certain threshold, for example those represented by
the red horizontal lines. Candidate DMRs are defined as the regions for which this black curve is outside these boundaries.
Note that the DMR manifests as a bump in the black curve

Jaffe et al. (2012) Int. Journal of Epidemiology

Page 6



University of
Zurich™

Institute of Molecular Life Sciences

Methods for differential methylation

Batch effects are ever-
present

charm::dmrFind()
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Probe-level methylation = region methylation

p q
Yy = w(ty) + BUDX; + Y et Zix + Y _an Wi + &
| — individual k=1 =1
j — loci
Includes surrogate Q;Jtcor?e of Me?csuredd Unr?eas(;Jred
variable analysis gmaﬁ(r:eesr V(sr.gl.JS confounders confounders

normal)

Jaffe et al. (2012) Int. Journal of Epidemiology
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Methods for affinity enrichment (MeDIP-seq, MBD-seq)
DNA methylation data
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BATMAN - Bayesian tool for methylation analysis

MeDIP-chip
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Figure 1 Calibration of the Batman model against MeDIP-chip data. (a) Estimated CpG coupling
factors for a MeDIP-chip experiment as a function of the distance between a CpG dinucleotide and a
microarray probe. (b) Plot of array signal against total CpG coupling factor, showing a linear regression
fit to the low-CpG portion, as used in the Batman calibration step. This plot shows all data from one
array on chromosome 6.
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BATMAN - Bayesian tool for methylation analysis

probe. If we let m, indicate the methylation state at position ¢, and
assume that the errors on the microarray are normally distributed with
precision, then we can write a probability distribution for a complete
set of array observations, A, given a set of methylation states, m, as:

f(Alm) = H G(Ap|Apase + 1 Z Coptc, v")
p c

where G (x|, 62) is a Gaussian probability density function. We can
now use any standard Bayesian inference approach to find f{m|A), the
posterior distribution of the methylation state parameters given the
array (MeDIP-chip) data, and thus generate quantitative methylation
profile information.

06.07.12 Epigenomics, Mark D. Robinson

Same assumptions for MeDIP-
chip (continous) can be applied
to MeDIP-seq (count) and work
quite well.

Some potential disadvantages:

1. No reads = no DNA
methylation or assay doesn’t
capture the region

2. MCMC is very
computationally intensive
(10-15h per chromosome)
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Using Sssl control to improve estimation

IMR-30 MBDCap

S

A new method is desired that: IMRI0_MEDZ .
0_ —
20

* is computationally light pes! MBRCap

Sssl_MBD2
e uses a control to i) improve estimation;

i) know where the assay is efficient IMR-30 WGBS

RefSeq Genes

) ) ) IMRIO_Lister
* can give variance estimates

pG Islands (Islands < 300 Bases are Light Gree
CpG: 82

e account for copy number
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Using Sssl control to improve estimation

Model

20 _ IMR-30 MBDC&}J
IMRS0_MBDZ
20 _ Sssl MEIDCap
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Il

pG Islands (Islands < 300 Bases are Light Gree
cpG: 52 [

HefSeq Genes

Yi,MRoo |4/, Ai ~ Poisson(const x 1; X A;j); Yisssi|Ai ~ Poisson(}))

const: offset for the (effective) relative sequencing depth, CNV, etc.

Aj: region-specific read density, and

100 -

1 the regional methylation level (Parameter of interest)

80
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Using Sssl control to improve estimation
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Using Sssl control to improve estimation
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Using Sssl control to improve estimation

Can improve
even further by
integrating CNV
information
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’ to sequence tags, which are then aligned to the genome. On some platforms, they are
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Repitools

— Exploratory analysis and visualizations for {ChIP/MBD/MeDIP}-
{chip/seq}

— Statistical analyses — promoter-centric gene set tests, differential
region finding

Vol. 26 no. 13 2010, 1662-1663
APPLICATIONS NOTE ™ uoito tossibioinformaticsivtazaz

Genome analysis Advance Access publication May 10, 2010

Repitools: an R package for the analysis of enrichment-based
epigenomic data

Aaron L. Statham', Dario Strbenac!, Marcel W. Coolen', Clare Stirzaker’,

Susan J. Clark'2 and Mark D. Robinson'-3*

1Epigenetic:s Laboratory, Cancer Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst,
NSW 2010, 2St Vincent’s Clinical School, The University of New South Wales, NSW 2052 and 3Bioinformatics
Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia

Associate Editor: John Quackenbush
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ChIP-seq for TFs versus ChIP-seq for histone modifications
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Figure 3 | Data visualization. The University of California-Santa Cruz (UCSC) Genome Browser is a tool for viewing
genomic data sets. A vast amount of data is available for viewing through this browser. This example from the browser
shows numerous data types in K562 cells from the ENCODE Consortium. A random gene was selected — katanin p60
subunit A-like 1 (KATNAL1) — that shows several points that can be identified by using this tool. The promoter has a
typical chromatin structure (a peak of histone 3 lysine 4 trimethylation (H3K4me3) between the bimodal peaks of
H3K4me1), is bound by RNA polymerase Il (RNAPII) and is DNase hypersensitive. The gene is transcribed, as indicated
by RNA sequencing (RNA-seq) data, as well as H3K36me3 localization. The gene lies between two CCCTC-binding
factor (CTCF)-bound sites that could be tested for insulator activity. An intronic H3K4me1 peak (highlighted) predicts
an enhancer element, corroborated by the DNase | hypersensitivity site peak. There is a broad repressive domain of
H3K27me3 downstream, which could have an open chromatin structure in another cell type.
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ChIP-seq programs

Wilbanks and Facciotti
(2010) PLoS ONE
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Figure 2. ChIP-seq peak calling programs selected for evaluation. Open-source programs capable of using control data were selected for
testing based on the diversity of their algorithmic approaches and general usability. The common features present in different algorithms are
summarized, and grouped by their role in the peak calling procedure (colored blocks). Programs are categorized by the features they use (Xs) to call
peaks from ChlIP-seq data. The version of the program evaluated in this analysis is shown for each program, as the feature lists can change with
program updates.

doi:10.1371/journal.pone.0011471.g002
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Peak/region detection for ChlP-
seq data

MACS: model-based analysis of ChIP-
seq data

Analysis notes:
Adjustment for strandedness of reads

Window-based, simple Poisson model
with a region-specific rate estimated
from control

FDR control

06.07.12 Epigenomics, Mark D. Robinson

With the current genome coverage of most ChIP-Seq experi-
ments, tag distribution along the genome could be modeled
by a Poisson distribution [7]. The advantage of this model is
that one parameter, Ay, can capture both the mean and the
variance of the distribution. After MACS shifts every tag by d/
2, it slides 2d windows across the genome to find candidate
peaks with a significant tag enrichment (Poisson distribution
p-value based on Ay, default 10-5). Overlapping enriched
peaks are merged, and each tag position is extended d bases
from its center. The location with the highest fragment
pileup, hereafter referred to as the summit, is predicted as the
precise binding location.

In the control samples, we often observe tag distributions
with local fluctuations and biases. For example, at the FoxA1
candidate peak locations, tag counts are well correlated
between ChIP and control samples (Figure 1c,d). Many possi-
ble sources for these biases include local chromatin structure,
DNA amplification and sequencing bias, and genome copy
number variation. Therefore, instead of using a uniform Az
estimated from the whole genome, MACS uses a dynamic
parameter, A, defined for each candidate peak as:

7"local = maX(}"BG7 D"lk,] 7"5k’ 7"101()
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Peak/region detection for ChiP-seq data
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Downstream analysis BREAT, predicts functions of cis-regulatory regions.

1. Input: A set of Genomic Regions Example: YSRF ChiP-Seq called peaks
(such as transcription factor binding events A Y y y v
identified by ChiIP-Seq). genome

2. GREAT associates both proximal and distal [* Gene transcription start site \_s Association
input Genomic Regions with their putative vyl Oy I oy Cy vy
target genes. s U v

3. GREAT uses gene Annotations from A Ontology agnmalfo" feg. ”a)cqtin binding’} A
numerous ontolog|e§ toassociategenomic  * vy Ty [ Cyy
regions with annotations. W\ ) ~ -

== Regulatory domains of all genes annotated with A

4. GREAT calculates statistical Enrichments for vy Y Y Y Y

associations between Genomic Regions — I —
. n =6 genomic regions k = 4 genormnic regions regulate genes
and Annotations. p =05 of genome annotated with A annotated with A

pvaluey {e.g. ‘actinbinding= Probability,, . { k=4 | n=6, p=05)

5. Output: Annotation terms that are g"‘f°'°2y 'k"l": ]p(;_""“'

o . . " . SRE peaks regulate ctin cytos: eg on g
5|gn|ﬁc.?ntly a‘ssoaated with the set of input L orsar it FOS gene family 10‘3
Genomic Regions. TRAIL signaling 10

6. Users can create UCSC custom tracks from create tracks
term-enriched subsets of Genomic Regions. .E.EEAI —> UCSC Genome
Any track can be directly submitted to i e
y y results  submit tracks Browser

GREAT from the UCSC Table Browser.

McLean et al. (2010) Nature Biotech
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° I’ Gene transcription start site [ Gene transcription start site
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:]g)) 4 'Ur |--| r"-!’ X r XXX r r associated with the annotation
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2 genes selected by proximal genomic regions 5 genomic regions hit annotation =
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—log(binomial P value) N = 8 genes in genome n = 6 total genomic regions
K, = 3 genes in genome carry annotation = p,. = 0.6 fraction of genome annotated with =
n =2 genes selected by proximal genomic regions k. =5 genomic regions hit annotation =

k. =1 gene selected carries annotation =

Binomial_based test P=Prhyper (k211N=8,K=3,n=2) P=Ptpinom (k=51 n=6, p=0.6)

Figure 1 Enrichment analysis of a set of cis-regulatory regions. (a) The current prevailing
methodology associates only proximal binding events with genes and performs a gene-list test of
functional enrichments using tools originally designed for microarray analysis. (b) GREAT's binomial
approach over genomic regions uses the total fraction of the genome associated with a given ontology

McLean et al. (201 0) Nature Biotech term (green bar) as the expected fraction of input regions associated with the term by chance.
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ChlP-seq signal = biology (copy number,
enrichment) + technical effects

Copy number
(normalized
read depth)
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Differential analysis of ChIP-seq is sensitive to CNV
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Various tools
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Differential ChIP-seq using count-based inferential machinery used
in RNA-seq

With an additional step to normalize for CNV
MA-plots by CNV state (L=cancer, P=normal)

L=2P=2 L=3P=2 L=4 P=2 L=5P=2
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What does ABCD-DNA (Affinity-Based Copy-number-
aware differential analysis of quantitative DNA-seq) do?
A general framework for CNV-aware differential QDNA-seq analyses

1. Generate read counts at regions of interest (e.g. at detected
peaks, tiled regions genome-wide, or proximal to
transcription starts);

2. Estimate copy number offsets from an external data source
3. Estimate normalization offsets based on CNV-neutral loci

4. Perform differential analysis of count data (e.g. using edgeR)
using offsets.
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More details

We model the logarithm of expected value of Y as follows:
log(E[Y;]) = O; + BX
O is an r x n matrix of offsets that match the count matrix

X is an r x k matrix that captures the experimental design (conditions,
covariates)

B. is a r x k matrix of region-specific coefficients.

O, can be decomposed into log(CN;) + log(1 D;) where CN;; is a matrix
of offsets for copy number and D, represents sample-specific offset
vector that effectively represents depth of sequencing
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Beyond 1D

((@ APPLICATIONS OF NEXT-GENERATION SEQUENCING

(Next-generation genomics:
an integrative approach

R. David Hawkins*, Gary C. Hon* and Bing Ren

Abstract | Integrating results from diverse experiments is an essential process in our
effort to understand the logic of complex systems, such as development, homeostasis
and responses to the environment. With the advent of high-throughput methods —
including genome-wide association (GWA) studies, chromatin immunoprecipitation
followed by sequencing (ChIP—seq) and RNA sequencing (RNA-seq) — acquisition of
genome-scale data has never been easier. Epigenomics, transcriptomics, proteomics and
genomics each provide an insightful, and yet one-dimensional, view of genome function;
integrative analysis promises a unified, global view. However, the large amount of
information and diverse technology platforms pose multiple challenges for data access
and processing. This Review discusses emerging issues and strategies related to data
integration in the era of next-generation genomics.

Hawkins et al. (2010) Nature Reviews Genetics
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Expression outcome
is related to (or
affected by) several
factors
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Figure 3 | Data visualization. The University of California-Santa Cruz (UCSC) Genome Browser is a tool for viewing
genomic data sets. A vast amount of data is available for viewing through this browser. This example from the browser
shows numerous data types in K562 cells from the ENCODE Consortium. A random gene was selected — katanin p60
subunit A-like 1 (KATNAL1) — that shows several points that can be identified by using this tool. The promoter has a
typical chromatin structure (a peak of histone 3 lysine 4 trimethylation (H3K4me3) between the bimodal peaks of
H3K4me1), is bound by RNA polymerase Il (RNAPII) and is DNase hypersensitive. The gene is transcribed, as indicated
by RNA sequencing (RNA-seq) data, as well as H3K36me3 localization. The gene lies between two CCCTC-binding
factor (CTCF)-bound sites that could be tested for insulator activity. An intronic H3K4me1 peak (highlighted) predicts
an enhancer element, corroborated by the DNase | hypersensitivity site peak. There is a broad repressive domain of
H3K27me3 downstream, which could have an open chromatin structure in another cell type.
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Exploratory analyses
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Exploratory analyses ,

Genome coverage Number of domains All genes Silent genes

286

117 Mb 8428 domains 15145 genes 4229 silent genes
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of various features
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ChromHMM

ChromHMM is based on a multivariate hidden Markov model
that models the observed combination of chromatin marks using
a product of independent Bernoulli random variables?, which
enables robust learning of complex patterns of many chromatin
modifications. As input, it receives a list of aligned reads for each
chromatin mark, which are automatically converted into pres-
ence or absence calls for each mark across the genome, based on
a Poisson background distribution. One can use an optional addi-
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Segway Dynamic Bayesian Network

Figure 1 | Heat map of discovered Gaussian

parameters in an unsupervised 25-label segmentation

trained on 31 tracks of histone modification,

transcription-factor binding and open chromatin

signal data in 1% of the human genome. Row labels
include last names of the principal investigator in

1.0

whose laboratory data were generated, when assays XRCC! S TE T e =
were conducted in multiple laboratories (Stam, Hakeome! 1S - - B-5=-C
Stamatoyannopoulos). Each row contains parameters 08 H3K4mes?§é;r§§tr2ﬁms B ‘mm- [
for one signal track, and each column contains Haka7ac - F
oLl H3K9ac o o
parameters for one segment label. Within each row, H3K4me1 -
. . . H3K36me3 —{[IN=SSE - 0S8 - - 05 - - S - - - == - - - - - -
we did an affine transformation, such that the largest .| | _ NSRE c CHg BOn B Do
3 ’ [ GABP o o - B - - - - -
mean was 1 and the smallest 0. The color in each g Pol 2 (CTA ) T
cell indicates the transformed mean parameter E NPEZ S = = S - - - - = - - - B--Tr
according to the color bar on the left. The width 0al |3 SOTAL “mimet - ARl — |
of the black inner boxes is proportional to the oMt e o o
. DNase | (Stam H - - B
square root of the variance parameter o2, after & 2 BE P BE EEE -
. . . . Cc-Fos - -
multiplying by the linear factor used in the 0.2 Sdun
. a D
transformation of . Dendrogram show a CTCF (Bemstein
1 i i Pol 2 (BWG16; Snyd
hlerath1cal cluster‘mg by both rows and columns. o2 s W
Functional categories manually assigned to segment 0 DNase | (Crawford
labels: D, dead; F, FAIRE; R, repression; H3K9me1l, ORI g SEEQEgig%'@EEGE'@S%é%%

histone 3 lysine 9 onomethylation; L, low; GE, gene end; TF, transcription factors;
C, CTCF; GS, gene start; E, enhancer; GM, gene middle; segment label numbers were
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Segway 31-track chromatin segmentation (K562)

labels: D, dead; F, FAIRE; R, repression; H3K9me1,

histone 3 lysine 9 onomethylation; L, low; GE, gene end; TF, transcription factors;
C, CTCF; GS, gene start; E, enhancer; GM, gene middle; segment label numbers were
assigned arbitrarily.

06.07.12

Page 39

E/GM i -
GMO i
GM1 -1
GEO
GE1 L i
GE2
ENCODE Gencode Manual Gene Annotation%\eve\ 1+2) (Oct 2
HLA-DMA |ttt - BRD2 Ml == - -l
HLA-DMA <= BRD2 —¥
BRD2
BRDZE-35500-53--30-5--030-55-3-0-3>-> -— BRD2 ===
BRD2}
AL645941.1 4
BRD2
BRD2 mm | - - (i -
BRD2 mmms—mm—-mm
— TSS C 100 — TSS d — TSS
100 - GS GS 124 GS
— E/GM — E/GM — E/GM
— GMo | — GMO — GMO
80 104 - - GM1
- - GM1 = - GM1
80 4 _ — GEO
GEO 5 GEO 5
GET < GE1 g GE1
GE2 @ 60 A GE2 -E GE2
60 - - ° R4
(53 [
N N
K T 6
E 40+ E
(=} o
z z i
H ,.p-.v"\“*,
20 A SRS ot R .
asmo emaae
5
__________ —
—4,000 -2,000 0 2,000 4,000 100 150 200 —4,000 -2,000 0 2,000 4,000
Relative distance to TSS Gene body Relative distance to TTS
Epigenomics, Mark D. Robinson



University of
Zurich™

Institute of Molecular Life Sciences

Exploratory analysis: clustering ... -

)
1
chris: | 61116008 61126006) 61156006) 61146008) 6115a006| 61166608
FrEC H3K4mes3

combined epigenomic profiles...... l I

at feature (promoter/gene)

level
Calculate coverage around features
of interest (here, TSSs)

T ¥rr

U RN e ; 5 -
Other RefSeq NO.|;1-Human Refse? Ge?ﬁ?ll N J L
CI uster COI IeCthe eplgenomelc Enceni Genes Ensemb\G‘e?:e Pr‘ed|=ct|ons - arcrn{ve E{ns=e= 1 54 - may2069
CRG ISNands (Islands < 389 Bases are Light Green)
Simp 1 leotide Fol h i (bS] build 123)
signal USing k-means, d|5p[ay as sues cxzo) NN | 00N o om0 R 0T o m oo m n wng
,
. repeacnasver | I IMI 10 0 W ST T TR e i mn m
i i - i - i
heatmap/line, order clusters by |
’
.
expression .

Overlay expression, order clusters
by median

Available in Bioconductor
(Repitools)

featureScores() to collect
information, clusterPlots() to plot

<€ -~20,000TSSs =—>




University of

Zurich*™ Clustering changes (just DE genes)

Institute of Molecular Life Sciences

H3K27me3 H3K36me3 H3K4me3 DNAme  Expr. logFC

T

0 S V4
3 [ = Up-regulated
w
w 5 —
% AR
: )
Ov‘ 6
N | /
: / ™ Down-regulated
v /




University of

Zurich™

Institute of Molecular Life Sciences

H3K27me3 profiles along a gene

Scaled clustering of H3K27me3 in G1ME Cells
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Figure 5. K-means clustering of genic H3K27me3 profiles in GIME cells. The signal intensity is shown as a spectrogram, with red reflecting a high
enrichment signal and blue reflecting no signal. All genes were scaled to have the same length, and position relative to the TSS is shown in percentage
terms. Genes were sorted first by cluster, then by classification (black: broad; green: promoter; blue: TSS; grey: marked but unclassified). The
expression level of all genes is shown on the far right. Additional cluster profiles are provided for the other cell types (Supplementary Figure S8).

Young et al. 2011
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