Splice Graphs

Martin Morgan

2012-07-06 Fri

Contents

1	Background: Gene models to splice graphs		1
2	Ben	efits	1
3	Example (partial)		
	3.1	Implementation	2
	3.2	Bubbles	2
	3.3	Edges vs. exons	2
		Differential representation (to come)	

Work of Daniel Bindreither, Marc Carlson, Martin Morgan

1 Background: Gene models to splice graphs

Sammeth, 2010, Computation Biology 16: 1117-1140

Starting point (for us): known gene model of exons-within-transcripts-within-genes Verticies represent gene start, exon donor / acceptor, gene ends, counting bin boundaries

Edges represent paths between verticies

- zero or more exons
- sometimes shared by two or more transcripts

Splice codes

- Summarize order of verticies
- Familiar ('exon skip'; 'alternative promoter'; etc) and exotic

Bubbles

- Represent alternative splicing events
- simple
- compound three or more transcripts, three-way and higher splicing

2 Benefits

Edges contain >= 1 counting bins, so... Classification of splice events Genome-wide assessment of splicing events Testing bubbles (alternative splicing), in addition to edges

3 Example (partial)

3.1 Implementation

SpliceGraph package, in development; also spliceGraph function in GenomicFeatures

 $Transform\ exons-within-transcripts-within-genes\ GRanges List\ to\ edges-within-transcripts-within-genes.$

• includes DESeq 'counting bins' operation (disjoin)

```
library("SpliceGraph")
library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)
txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene
spliced <- spliceGraphs(txdb)
save(spliced, file="2012-07-06-pasilla-spliceGraph.rda")</pre>
```

Count via countSpliceGraphReads Normalization, etc: like DEXSeq

Statistical assessment

- edges: analogous to / using DEXSeq
- ??? bubbles ???

~ sample + edge + condition * $\sum_{bp} I(edge == bp_i)$

3.2 Bubbles

event	Nr
retain 1 intron	1302
alternative promotor usage	892
alternative transcript end	824
2 alternative donors	734
skip 1 exon	695
2 alternative acceptors	658
Total	11913

• FBgn0011224 annotated with 42 exons and 22 transcripts, has 63 bubbles

3.3 Edges vs. exons

90249 non-zero count exons, median 25 reads / exon 22981 edges, 32 reads / edge Differential expression: stay tuned. . .

```
load("cD.exons-fb.Rda")
load("cD.sG-fb.Rda")
tbl <- read.table("phenoData.txt", header=TRUE)

exonCounts <- cD.ex[rowMeans(cD.ex) != 0,]
edgeCounts <- cD.sG[rowMeans(cD.sG) != 0,]

nrow(exonCounts)
mean(exonCounts)
mean(edgeCounts)</pre>
```

3.4 Differential representation (to come...)