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Example: Cancer Subtype Prediction
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B-cell T-cell

acute lymphoblastic leukemia (ALL)

Differential Expression 
Analysis:

Which genes are 
differentially expressed 
between cancer 
subtypes?

Output:
p-values or q-values per 
gene or gene set.
 

Classification:

Which cancer subtype 
does a patient have, 
given his/her expression 
profile? 

Output:
The cancer subtype of a 
new patient.
 



Evidence based medicine
 Disease (e.g. HIV, diabetes, …)
 Multiple therapies available:

• different drugs
• targeting different processes
• different side effects

• surgical intervention 
 Course of disease known for a number of patients and 

therapies
 Which combination of therapies/drugs has the highest 

success rate for a new patient?
 Decide based on

• clinical factors, other low-dim. biochemical measures 
• expression profiles
• genotypes
• ...
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Morphological Phenotyping I
 Image screen with a large number of images

 Can we automatically annotate the cell cycle state of each cell?
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e.g. D. melanogaster 
full genome
knock-down screen:

~15 000 knock-downs
x 3 replicates
= 45 000 images

x 1000 cells per image
= 45 000 000 cells
 



Morphological Phenotyping II
 Provide Human Annotation to a small set of cells:
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inter             pro         prometa       meta        earlyana      lateana         telo

Which mitotic phase?
(Annotate automatically!)



Automatic Classification Workflow
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Preprocessing
e.g. normalization, background subtraction, …

Feature Extraction
e.g. lightness, nucleus area, excentricity, …

Classification

Prophase Metaphase



Prophase/ Metaphase Classification
Predict mitotic state based
on lightness

Predict mitotic state based 
on nucleus area
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Decision boundary with
lowest prediction error

None of the two features individually 
has a good predictive power

Prophase Metaphase
Prophase Metaphase

hello
arealightness



A Simple Least Squares Classifier: d=1
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hel
lo



A Simple Least Squares Classifier: d=1

8

Prophase

Metaphase

hel
lo



A Simple Least Squares Classifier: d=1
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Prophase

Metaphase

hel
lo

y[i]=-1 for pro phase
y[i]=+1 for meta
X[i,]=c(area[i],intensity[i])
model <- lm(y ~ X)
ynew <- predict(model,newdata=Xnew)
ifelse(ynew < 0,-1,1)

decision boundary



A Simple Least Squares Classifier: d=2
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Fit a least squares linear 
regression model to the data.
Black line shows decision 
boundary

y[i]=+1 for prophase
y[i]=-1 for metaphase
X[i,]=(area[i],lightness[i])
model <- lm.fit(X,y)
ynew <- predict(model,Xnew)
           $fitted.values
ifelse(ynew < 0,-1,1)

Prophase Metaphase
lightness

area



k-Nearest-Neighbor Classifier
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Assign each new cell to the class 
of its nearest neighbor.
Black line shows decision 
boundary

y[i]=+1 for pro phase
y[i]=-1 for meta phase
X[i,]=(area[i],lightness[i])
library(class)
d = knn(X,Xnew,y,k=1)

Prophase Metaphase

area

lightness



Which Decision Boundary?
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Which decision boundary 
has the lowest

prediction error?

High bias
Low variance

Low bias
High variance

high model complexity
(needs hundreds of parameter to 
describe the decision boundary)

low model complexity
(needs 2 parameters to
describe the decision boundary)



Bias-Variance-Dilemma
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Cross-Validation 
 cross validation is an easy & useful method to estimate the 

prediction error.
 The data consist of n samples with d features and a known 

class label
 Method (m-fold cross-validation):

• Split the data into m approximately equally sized 
subsets

• Train the classifier on (m-1) subsets
• Test the classifier on the remaining subset. Estimate the 

prediction error by comparing the predicted class label 
with the true class labels.

• Repeat the last two steps m times (use each subset 
once as test set)
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Example: Two classes, two variables, 200 objects

x1

x2



> S <- rep(1:10,length.out=200)
 [1]  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  9 10  1  2  3  4  5  6  7  8  … 

> S <- sample(S)  # Random permutation
> Err <- matrix(NA_real_, nrow=20, ncol=10)
> for (k in 1:20) { # Test all k from 1 to 20
+   for (s in 1:10) { # Perform 10-fold cross-validation
+     Xtrain = X[S != s,] 
+     ytrain = y[S != s]
+     Xtest = X[S == s,]
+     ytest = y[S == s]
+     ypred = knn(Xtrain,Xtest,ytrain,k)
+     Err[k,s] = sum(ypred != ytest) / length(ytest)
+   }
+ } 
> plot(apply(Err,1,mean),xlab="k",ylab="estimate of 

prediction error")
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20-fold cross-validation for k-nearest neighbours
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select k=5 or 6

cross-Validation for k-nearest neighbours
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Classification
result (k=5)

The k-nearest neighbour classifier works well with low-
dimensional data - but what if the data are high dimensional?

Demo: Cross-Validation for k-nearest neighbours



Least Squares Classifier
 X: n x d matrix with d-dimensional features for n samples
 y: vector of length n.

• y[i] = 0 for first class, and 1 for second class
 Fit a linear model by minimizing the squared error:

! > model <- lm.fit(X,y)

! > ynew <- predict(model,Xnew)$fitted.values

! > ifelse(ynew < 0,-1,1)

 Extension to k classes (k > 2):
 Y is a n x k indicator matrix.

• Each row contains exactly one “1” at column j if the sample belongs to 
class j. All other entries are zero.

In practice: lda (R-package MASS)
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€ 

ˆ β = argmin
β

Xβ − y 2
2



Support Vector Machine
 Find a separating hyperplane with maximal margin to the 

samples
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Non-Linear Classifiers
These classes can not be separated by a linear hyperplane
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Feature Transformation
Transform the data with non-linear function, e.g. 

!
 

Train linear classifier
! in the transformed
! feature space
!
    ➙
 
!
   non-linear
! classifier in the original feature space
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€ 

f (x) = 1,x,x 2,x 3,…( )



Quadratic Extension

 Parabolic decision boundaries can be achieved by extending 
by the product x1x2. 
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Rewrite the model such that the features only appear within 
scalar products.

Example: least squares

It can be shown that there exists an α such that β=Xtα 
(Note β is d-dim.; α is n-dim.)

The least squares problem can be reformulated as a scalar 
product.

The n x n matrix S = XXt contains all scalar products ( Sij = xi ⋄xj ). 
Replace Sij by Kij = K(xi, xj) that implicitly performs a feature 
transformation and the computation of the scalar product. The 
kernel matrix has to be positive semi-definite.

The Kernel Trick
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€ 

ˆ β = argmin Xβ − y 2
2

€ 

ˆ α = argmin
α

XX 'α − y 2
2



Popular functions :

Linear kernel:       
      

Radial basis functions:

Polynomial kernel

The Kernel Trick
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€ 

K(xi,x j ) = xix j

€ 

K(xi,x j ) = exp − 1
2σ 2 xi − x j

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

K(xi,x j ) = (xix j +1)d



SVM with
Radial Basis Functions
(RBF-kernel)

Thick line:
class separating
hyperplane

Thin line:
margin

Circles:
support vectors

Examples for SVM-Classification
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The Influence of the Kernel Parameter 
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€ 

γ = 0.001

€ 

γ = 0.03

€ 

γ = 0.005

€ 

γ = 0.1

€ 

γ =1

€ 

γ = 2

€ 

γ = 20

€ 

γ = 200

γ = σ-2, RBF



Curse of Dimensionality
 Consider:

• 10 samples per class
• Each sample is characterised by several hundred features.

 Even a linear classifier will be (always) too complex: overfitting
 There is a need to lower the complexity even below that of the 

linear classifier

04/21/1226

# file: demo-random.R
> X = matrix(rnorm(20*25000),
            nr=20,nc=25000)
> y = c(rep(-1,10),rep(1,10))
> 
> # Fit a linear model
             by least squares
> model = lm.fit(X,y)

> # The two groups are perfectly separated!
> ynew = model$fit
> ynew = ifelse(ynew < 0, -1, 1)
> print("The predicted label of the training set")
[1] "The predicted label of the training set"
> print(ynew)
 [1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  1  1  1  1  1  1
> print("The true label of the training set")
[1] "The true label of the training set"
> print(y)
 [1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  1  1  1  1  1  1  1  1  1  1



 Reduce the complexity by reducing the space of permissible 
solutions for β

Regularization
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unconstrained
least squares
solution

constrain the solution
of β to the blue area

Lasso: Ridge Regression

€ 

ˆ β = argmin
β

Xβ − y 2
2

+ λ β 2
2

€ 

ˆ β = argmin
β

Xβ − y 2
2

+ λ β 1
1

Lagrangian formulation of constrained optimization.
The blue area becomes larger, the smaller λ.
Lasso: sparse solution. Many coefficients βi become 0. Only a few
coefficients are used for prediction. Implicitly selects features. 



Regularization Path
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Lasso Ridge Regression

The coefficients for varying regularization parameter λ



Cross-Validation for Regularized Regression
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 ALL cancer dataset: gene expression of 12000 genes
 Two classes B-cell ALL and T-cell ALL. 
 Cross validation over a range of λ-values
  # filename: demo-lars.R!
  >CV <- cv.lars(X,y,use.Gram=FALSE,trace=TRUE)

 Choose the fraction f of |β| that minimizes the prediction error
! >f <- CV$fraction[which.min(CV$cv)]

Demo Lasso I
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f=0.67 minimizes
the prediction error



> model <- lars(X,y,use.Gram=FALSE,trace=TRUE)
> plot(model)

> print(model)
Sequence of LASSO moves:
     37988_at 38319_at 2031_s_at 38242_at 34908_at 35434_at …
Var      8064     8399      1144     8321     4955     5486 …
Step        1        2         3        4        5        6 …

Demo Lasso II
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Summary: It’s all about adapting the 
complexity of the model to that of the data
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High bias
Low variance

Low bias
High variance

high model complexity
(hundreds of parameter to 
describe the decision boundary)

low model complexity
(2 parameters describe the 
decision boundary)

Reduce complexity by regularization (Lasso, ridge, …)
Increase complexity by feature transformation or kernel 
functions 
Always assess classifiers by cross-validation
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