Genome Variant Calling:
A statistical perspective
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Central Dogma

DNA -> RNA -> Protein
DNA and RNA are relatively

easy to sequence | u
DNA: essentially two copies e “‘““I"”
per cell

RNA

— not all genes expressed

— some are at very high copy
number

— different lengths (capture
probability is proportional to
length and abundance)

— transcription has higher error
rates than DNA copying



Gene Structure

genes are encoded in the DNA

— variants are called alleles

in higher organisms genes are organized with
introns (spliced out) and exons (retained)
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Sources of Variation

Germline variation (SNPs or indels)
— SNP: single nucleotide polymorphism

— many known and reported in dbSNP (but there are lots of
errors in dbSNP)

— indel: insertion or deletion

— COpy# variation

Germline or novel mutations

— variation in normal tissue

Somatic mutations (SNVs or indels)
— variation in cancer

— SNV: single nucleotide variation
post-transcriptional modifications
— RNA editing



Problem Specification

1. Variant calling:

— what are the differences between the genome being
sequenced and the/a reference

2. Genotyping:
— what is the genotype of the genome being sequenced

3. Differences:
— between two sequenced genomes

— given data for two genomes (aligned to a reference)
how do they differ



Data Sources

* DNA: normal cells
— this is the “easiest” case
— cells have known ploidy (diploid for humans)
— the variations occur at rates that are known (or knowable)
— cells are presumed clonal at the DNA level

* DNA tumor cells
— harder because the ploidy is unkown
— the cause and rates of mutation are unknown
— the tumor is likely to be heterogenous
— tumor has normal cells mixed in with it in almost all cases



Data Sources

* RNA: germline cells

— harder than DNA because of variation in the rate of
expression of different genes

— post transcriptional modifications can occur
— transcriptional fidelity is not that high

— allele specific expression (it seems unlikely that alleles
are expressed at equal rates)

 RNA: tumor cells (hardest)

— all the problems with DNA + the problems listed
above re RNA



DNA Variants

* identifying variants at particular genomic
locations is straightforward

* translating that information into whether the
variant is in a coding region, if so is it
synonymous, non-synonymous (nonsense) etc

depends on the gene models being used

* the VariantAnnotation package helps with
these questions




RNA Variants

e alignment to the genome

— likely more bias in this due to both differences
between the RNA and the DNA plus splicing issues

* FIXME: more detail pls



Software

* Reference genomes are distributed using the
BSGenome class
— eg. BSgenome.Hsapiens.UCSC.hg19
— gives sequence level data

* Transcripts are distributed using the TranscriptDB
class
— eg. TxDb.Hsapiens.UCSC.hg19.knownGene
— you can have multiple versions

— provides a way to specify a set of transcripts for
downstream processing



Rates of Variation (DNA)

* SNPs should be found at either 50%
frequency or fixed

e Germline variants that are novel should be
found at 50% frequency in the offspring

 Somatic mutations will be found at a
frequency that is dependant on the age of
the mutation and/or the fitness of the
mutation (generally <50% frequency,

however, allelic imbalance can also lead to
higher frequency)
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Tumors/Cancer

tumors arise from normal tissue
— genome is very similar to the normal

variants
— point mutations: was C becomes A

— insertions or deletions: a (small) amount of DNA is gained
or lost

— loss of heterozygosity (LOH): either lose a (part of)
chromosome or select two copies of the same
chromosome (now homozygous over that region)

tumor samples tend to have some normal
contamination
— immune cells, blood, other tissue

— attenuates our estimates of tumor specific variants
towards zero



Sequencing

* whole genome sequencing (WGS)
— all DNA is used

* exome sequencing

— sequence only the exons
* misses much of the regulatory genome

— tends to be cheaper and gives higher coverage
— only a small part of the genome is sequenced (3%)

* coverage.

— number of reads that align over a locus
— varies substantially (0 — 100’s or 1000’s)
— determines your power and ability to detect variation



Sequencing: Error Rates

DNA copying fidelity is about one error in 108
— each cell will have private mutations

RNA transcription fidelity is one error in 10
— post-transcriptional modifications add complexity

sequencing error rates vary but tend to be
around one error in 103 (some reports of 1/300)
— but there are location, sequence, biochemical reasons

suggests the bulk of the observed differences are
seguencing errors



Alignment

we align reads to the reference genome

we will do worse (not align or align fewer) where the
genome is different from reference

— this gives rise to reference bias

— some groups perform a local de novo alignment to
alleviate some of this

— tumor genomes differ more — so we align worse and hence
likely under-report

it is difficult to align to regions that are duplicated or
nearly duplicated in the genome
— increases errors and can result in increased variant calling

— UCSC provides self-chain data (you could also look at
mappability)



How do we discover variation?

In a perfect world, after aligning these reads to the
genome, variant calling would become a simple
counting exercise...
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Statistical Challenges

multiple testing

— many millions of tests (discrete probability
distribution)

varying power
— coverage determines power, coverage varies
varying size

— also determined by coverage and since we have
discrete distributions it varies

bias
— potential to under-call
— we align to the reference genome (reference bias)



Preprocessing

each variant must be supported by a minimum of two
reads

one must have a quality value greater than Q22
variant must occur at different positions within the

read
— variants supported by only one cycle are removed

one or more of the supporting cycles must occur
outside the first and last 10% of the read

remove variants with a more significant strand bias
than the reference allele
— default p-value cutoff is set to 0.001

— for some capture methods there is significant strand bias
at the extremes of the capture region



Variant Calling

where are there differences between the
genome sequence data and the reference?

our reference genome is haploid
— we assume homozygous at every locus

H,: the genome (G) and ref (R) are the same
(G is homozygous identical to the reference)

under H, all reads should be the reference
allele

— errors are due to sequencing errors

every heterozygous locus is a variant (in this
case), some homozygous loci are too



Variant Calling

e often used algorithm: if #Variants > L, and
coverage > K, call a variant

— K is artificial, the requirement should be based on
evidence against H,, not on coverage

— size and power changes with coverage

* Pr(2 or more non-reference alleles| H,) is a
Binomial calculation, p=10-3, n=coverage
—n=10, 10>
— n=50, 103



Variant Calling

 SNVmix (Goya et al, Bioinformatics, 2010) had
two additional criteria

— quality of the nt sequenced
— quality of the alignment of the read
e suggest we should discount evidence from
— low quality nts
— low quality alignments

e propose a complicated estimation procedure



Variant Calling: p-value adj]

the distributions of the test statistic is discrete
the distributions of the p-values are too

as coverage increases, for a fixed cut-off, the
size of the test decreases

our p-values, if aggregated and sorted, would
come in runs according to coverage and
observed count

a stratified approach would be useful
— divide the genome into coverage regions
— compute FDR or other within coverage regions



Genotyping

e call the actual genotype
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The GATK pipeline

GATK uses a Bayesian

model to reduce false

positives

Use assumptions
about heterozygosity,
and platform-specific
error probabilities

Assumes data are
generated according
to a Binomial
distribution

GATK single sample genotype likelihoods

Likelihood of the
Likelihood for Prior for the data given the

the genotype genotype  genotype Independent base model

Bayesian
model |

L(GID)=P(G)P(D|G) = 1‘[ P(b1G)
bE{good o bases}
* Priors applied during multi-sample calculation; P(G) = 1

* Likelihood of data computed using pileup of bases and
associated quality scores at given locus

* Only “good bases” are included: those satisfying minimum
base quality, mapping read quality, pair mapping quality, NQS

* P(b | G) uses a platform-specific confusion matrix
* L(G|D) computed for all 10 genotypes



for tumors copy number varies and the variation in the genome
tends to be a function of the type of cancer (or lifestyle:
smoking induces G->T transversions) so reasonable priors are
harder to obtain

the genome is not diploid!
tumor may not be clonal (so this is not a well posed problem)

different DNA repair mechanisms fail in cancer increasing the
rate of specific variations
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Repair mechanisms
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Calling Differences

we focus on differences at the single nucleotide level
— structural variation and indels are not considered just yet

we now ignore the reference (sort of) and just want to
compare two genomes

— common comparison tumor (T) and normal (N)
comparison is asymmetric

— we want to discover gains in tumor (mutations)

— losses are less interesting (capture with LOH, in/del)

— losses tend to be due to structural changes not single
nucleotide events

we cannot call tumor specific variants at loci where we
have insufficient coverage in N to make a call



Differences: Algorithm

Case |: identify all loci where we call a variant
in Tumor and not in Normal

our concern is that the variant is present in N
we just did not detect it

assume N is heterzygous for the T allele and
one other, with prob determined by the
proportions observed in T

test: Pr(as extreme or more extreme in the N |
T frequencies)



Example

* Thas 10 A’'s and 2 G’s at locus L:
— called variants: A and G
— p(A) =10/12, p(G) = 2/12

* Nhas22A'sand 1G at locus L:
— called variants: A

e test: what is the probability that we seeOor 1 G
in N, when p(A) = 10/12 and p(G)=2/12, and we
had 23 “tries”

— P(X<=1 | p=2/12, n=23) = 0.084
— so we would not call this a mutation

— if the coverage was 33, with one G, then p=0.01 and
we would call this a mutation



Example

* Criticisms
— we have treated the Tumor data as special and used the
observed proportions as if they were known values

— for low coverage this is somewhat more problematic than
for high coverage

— copy humber might change between T and N
e you could try other approaches, including a variety of
two sample tests

— but you would need to be careful that you are testing the
hypothesis you intend

— Fisher’s exact test (FET) is not appropriate for example as
we are not interested in whether the frequencies differ
(which is what it tests)



Algorithm

e Case ll: NovariantinT (same as ref) but N is
not ref.

— essentially the same approach as before



Next Steps

what is the effect of my variant?

this depends very much on the set of gene
models you want to use

VariantAnnotation package provides tools to
start to investigate this question

ocateVariants function

oredictCoding function
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