Reproducible workflow concepts
and tools in genome-scale statistics

VJ Carey, Ph.D.
Harvard Medical School
CSAMA 2012, Bressanone



Road map

Six slides on scope
Two concepts of reproducibility

Basic concerns:

— Experimental design

— Archive design and management

— Reproducible interpretation and reporting
— Audit support

Examples
Exercises



A three-phase rubric for large genomic
data activities

* QAN: Quality assessment and normalization
— Data will be discarded
— Data will be changed to facilitate comparison

* A4dl: Assembly for interrogation

— Data will be labeled with ad hoc tokens

— Samples must be coordinated with various forms of
metadata

 DRF: Discovery and reporting of findings
— You will try many things and need to exhibit them all
— Whatever works will be worthy of packaging for reuse



Some processes and attributes, tools
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Genotyping arrays QAN | vV v v GWAStools, snpStats
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DRF |v Vv Vv Vv GWA Stools, GGtools
NGS for rare and QAN | vV V v ShortRead, Rsamtools
structural variants A4l v v v SummarizedExperiment
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RNA-seq QAN | v V v as above
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DRF (v V DEseq, edgeR
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arrays A4l v oV v Biobase, ExpressionSet
DRF | v V v’ | limma, MLInterfaces, Spikeln
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Summary

 Contemporary experiments involve complex
protocols, large data volumes, extensive
transformation and interactive analysis

* Management requirements are substantial but
distributed — wet lab, IT (data and software
support), intellectual collaborations

 Genome scale studies attract particular
concern owing to risk, cost, impact



LETTERS

edited by Jennifer Sills

Retraction

AFTER ONLINE PUBLICATION OF OUR REPORT “GENETIC SIGNATURES OF EXCEPTIONAL LONGEV-
ity in humans” (7), we discovered that technical errors in the Illumina 610 array and an inad-
equate quality control protocol introduced false-positive single-nucleotide polymorphisms
(SNPs) in our findings. An independent laboratory subsequently performed stringent quality
control measures, ambiguous SNPs were then removed, and resultant genotype data were vali-
dated using an independent platform. We then reanalyzed the reduced data set using the same
methodology as in the published paper. We feel the main scientific findings remain supported
by the available data: (i) A model consisting of multiple specific SNPs accurately differentiates
between centenarians and controls; (i1) genetic profiles cluster into specific signatures; and (iii)
signatures are associated with ages of onset of specific age-related diseases and subjects with
the oldest ages. However, the specific details of the new analysis change substantially from
those originally published online to the point of becoming a new report. Therefore, we retract
the original manuscript and will pursue alternative publication of the new findings.
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!Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA. ?IRCCS Multimedica,
Milano, Italy; Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate, 20122, Italy. *Department of
Medicine, Boston University School of Medicine, Boston, MA 02118, USA. “Section of Geniatrics, Department of Medicine,
Boston University School of Medicine and Boston Medical Center, Boston, MA 02118, USA. Department of Neurology, Bos-
ton University School of Medicine, Boston, MA 02118, USA. *Departments of Medicine and Pediatrics, Boston University
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Learning from our GWAS mistakes: from experimental
design to scientific method

CHRISTOPHE G. LAMBERT*
Golden Helix Inc., PO Box 10633, Bozeman, MT 59719, USA
lambert@ goldenhelix.com

LAURA J. BLACK
College of Business, Montana State University, PO Box 173040, Bozeman, MT 59717-3040, USA and
Greer Black Company, PO Box 3607, Bozeman, MT 59772-3607, USA

SUMMARY
Many public and private genome-wide association studies that we have analyzed include flaws in de-
sign, with avoidable confounding appearing as a norm rather than the exception. Rather than recognizing
flawed research design and addressing that. a category of quality-control statistical methods has arisen to
treat only the symptoms. Reflecting more deeply. we examine elements of current genomic research in
light of the traditional scientific method and find that hypotheses are often detached from data collection,
experimental design, and causal theories. Association studies independent of causal theories, along with



Two concepts

of reproducibility

* Concrete reproducibility: Given the data, party B
can compute the tables and figures of the paper

by party A

* Substantive reproducibility: Given the

experimental design/

orotocol of the paper by

party A, party B can reach compatible conclusions

on independently col
* N.B.

ected data

— Neither are guaranteed even when A and B are in the

same lab

— A and B may be the same person at different times



Issues with these notions of
reproducibility

* Concrete reproducibility seems empty — says
nothing about correctness/reliability

— If the work IS correct, achieving concrete
reproducibility adds value, ensuring reusability and
extensibility of original components

* Substantive reproducibility is a sine qua non for
scientific progress, but not formalized

* After a discussion of design and substantive
reproducibility, we’ll focus on reducing barriers to
concrete reproducibility



Key quantities for scientific
measurement protocols

* Bias: difference between average of measured
guantities and the biologic constant to be
estimated (e.g., actual fold change or rate)

* Variance: average squared departure of individual
measurements from the biologic constant to be
estimated

— Technical variance: errors of measurement, only of
metrological interest

— Biologic variance: true” fluctuations in properties

between individuals, over time, in response to
treatment ... this kind of variance is our key concern



Experimental design

 Good experimental design is fundamental to
substantive reproducibility

 Genome-scale experiments have widely distributed
design components (sample collection, wet lab(s),
assay execution, digitization, normalization, filtering)

* Experimental design is the prospective systematic
analysis of sources of bias and variance affecting
experiment interpretation leading to a measurement
protocol whose outcomes have good properties — low
technical bias and variance, good recovery of
biological variation of interest



Reducing technical bias

* Blocking and randomization

 Example: 16 samples, 8 treated, 8 controls,
two 8 array chips

 What do we need to assume if we want an
unbiased estimate of difference if all treated
samples are assigned to chip 1 and all controls
to chip 2? Suggest a formalism and show how
different allocations allow weaker
assumptions.



Simple formalism

Y, is measurement on samplei,i=1, ..., 16

Y.=u+06t +6c +¢& wheret is1if sampleiis
treated, O otherwise, c, is 1 is sample i is allocated
to chip 1 and 0 otherwise, and €, is a random
disturbance with mean zero and variance o2

Bind columns 1, t and c together and you get the
“design matrix”

Give precise definitions of 6 and 0 and consider
how properties of estimates of these parameters
depend on the structure of the design matrix



Before treatment

* Suppose the samples are apparently
homogeneous

e How should we choose the ones to be
treated?

e How should we administer the treatment?



Within each chip

* Suppose we decide to place 4 controls and 4
cases on each chip.

e What do we need to assume about location
effects to obtain unbiased estimates of
treatment effects?

* How can we compare placement schemes
with respect to bias reduction?



Design and reproducibility

* A confounded design leads to estimates of effects
of interest that are sensitive to extraneous
aspects of execution of the experiment

* Failure to record details of design may not
interfere with concrete reproducibility, but
guestions of interpretability will persist

* Upshot: Take care with design and record and
propagate as much information about it as
possible (MAGE/MIAME/etc. are models)



Archive desigh and management

* How do you store your data? How do you
document it? If you leave, how easy is it for
co-workers to continue your progress? If you
stop for a while, how easy is it to restart?

* Tradeoff: complex structures for archiving
(e.g., MAGE-OM) are self-documenting but
costly to learn/deploy; simple structures may
not be recoverable when loosely coupled
documentation on formatting is misplaced



Early Bioconductor strategy

* Persistent and performant data archives for
microarray experiments can be values of R
variables, so that any desired transformation
of the experimental data can be programmed
as a straight’ R function

* ExpressionSet class, instances respond to
exprs(), pData(), fData(), annotation(), ImFit(),
MLearn() and so on



Gaining mileage with container and
workflow designs

ExpressionSets for classic experiments
(Spellman (yeast time course), Gasch (yeast
stress), harbChlIP (yeast ChlIP), Golub
(expression in cancer), Neve (expression +
aCGH), MAQC, hmyriB36 (expression +
hapmap), ...)

Using R packages for distribution allows

coordination with documentation, particularly
detailed vignettes



Bioconductor experimental data set
archive

Bioconductor version 2.10 (Release) Packages
Software (553) Package Maintainer
AnnotationData (626) affycompData Harris Jaffee affycomp
ExperimentData (124) Affymetri
affydata Harris Jaffee
Cancer (20) i Purpose
ChIPchipData (1) AffymetrixDataTestFiles Henrik Bengtsson Affyrr;etn
ChIPsegData (3) PSI) for t
EColiData (1) ALL Robert Gentleman A data ps
HapMap (7) ALLMLL B. M. Bolstad f;“bhs:tgl
HighThroughputSequencingData (3) ymp
HIV (1) AmpAffyExample Rafael A. Irizarry Example
MassSpectrometryData (1) beadarrayExampleData Mark Dunning Example
NormalTissue (1) BeadArrayUseCases Mike Smith L
. data usin
RNAExpressionData (2) Rodr
RNAsegData (8) odrigue
Expressic
StemcCells (1) beta? Jean Yang Cells Bea
Yeast (9) Integrin i
Bladder ¢
bladderbatch Jeffrey T. Leek batch eff
Markus Schroeder, Gene ext

breastCancerMAINZ BenJam’ln B Schmidt




Drilling to RNAseqData

Bioconductor version 2.10 (Release)

Software (553)
AnnotationData (626)
ExperimentData (124)
Cancer (20)
ChIPchipData (1)
ChIPseqData (3)
EColiData (1)
HapMap (7)
HighThroughputSequencingData (3)
HIV (1)
MassSpectrometryData (1)
NormalTissue (1)
RNAExpressionData (2)
RNAsegData (8)
StemcCells (1)
Yeast (9)

Packages

Package

cheung2010
GSVAdata

leeBamViews

pasilla

pasillaBamSubset

RnaSeqTutorial

tweeDEseqCountData

yeastRNASeq

Maintainer Title

resources for genetics of gene expression bas
2010

Robert Castelo Data employed in the vignette of the GSVA p:
leeBamViews -- multiple yeast RNAseq sampli

Vince Carey

V] Carey 2009
RO Data package with per-exon and per-gene re:

J samples of Pasilla knock-down by Brooks et a
Reyes

2011.

H. Pages Subset of BAM files from "Pasilla" experiment
slels RNA-Seq Tutorial (EBI Cambridge UK, Octobe
Delhomme
Juan R RNA-seq count data employed in the vignette
Gonzalez package
J. Bullard Yeast RNA-Seq Experimental Data from Lee e



Drilling to a tutorial data package

vvi

Cor

incl

, . * 0

RNA-Seq Tutorial (EBI Cambridge UK, October 2011) " H
= A
=V

Bioconductor version: Release (2.10) = F

A selection of RNA-Seq data to get familiar with the related Bioconductor core packages and the

easyRNASeq package.

Author: Nicolas Delhomme, Ismael Padioleau

Maintainer: Nicolas Delhomme <delhomme at embl.de>

To install this package, start R and enter:

Ma
source("http://bioconductor.org/biocLite.R") Pos
biocLite("RnaSeqTutorial™) pac

pos

To cite this package in a publication, start R and enter: " b
" b

citation("Rnaseqrutorial™)

Documentation
PDF R Script RNA-Seq Tutorial
PDF Reference Manual



Drilling to the vignette

RNA-Seq Tutorial (EBI, October 2011)

Nicolas Delhomme

March 31, 2012

Contents

1 Introduction 2

2 Walk through a single sample use case 4
2.1 Readingthedata . . . ... .. ... ... ... ........ 5
2.2 Filtering thedata . . . . .. .. ... ... .. ......... 10
2.3 Loading the annotation . . . ... ... ... ......... 11
2.4 Summarizing read counts per feature . . . . . . .. ... ... 16
25 Conclusion . . ... .. ... .. ... . 18

3 Using easyRNASeq 19
3.1 easyRNASeq . .. .. ... . . . ... . ... ... ... 19

4 Advanced usage 22
4.1 Normalizingcounts . . . . . . . ... ... .. ... ...... 22
4.2 De-multiplexing samples . . . . . .. ... .. ... ...... 22

5 Visualizing the data 23

5.1 exporting the coverage . . . . . .. ... ... ... ...... 23



A workflow schema in the vignette

reads file
(e.g. export, BAM)

annotation
(e.g. gff, mart DB)

l l

genon‘lelntervals, ShortRead, BSgenome
biomaRt Rsamtools
aligned read chromosome
information sizes
Y l /

read coverage
IRanges, GRanges

annotation
(e.g. exon, gene)

read count count table (default)
summarization | ——»
IRanges DESeq or edgeR or RNAseq

Figure 1: RNA-Seq Procedure Overview. The R packages used for the
different steps are emphasized in bold face.




lllustration of a container

ShortRead ShortRead was the first NGS package developed to read in
NGS data and is able to read almost every sequencer’s manufacturer pro-
prietary formats (with the notable exception of ABI color-space). First, an
Mumina “export” file produced by a GenomeAnalyzer GAIlx will be read
in; and then the same data set, in BAM format.

INlumina export The export file is read in using the readAligned
function, and the resulting object displayed.

> library(ShortRead)
> aln<-readAligned(

+ system.file("extdata",package="RnaSeqTutorial”),
+ pattern="subset_export"”,type="SolexaExport")
> show(aln)

class: AlignedRead
length: 100000 reads; width: 36 cycles

chromosome: NM 1:0:0 ... chr2R chr2L
position: NA NA ... 20555556 13903608
strand: NA NA ... + -

alignQuality: NumericQuality
alignData varLabels: run lane ... filtering contig



Upshots

Mature analyses involve substantial data
reduction and interesting analyses and
visualizations

These can be organized into R packages with self-
contained documentation according to
established protocols

Inclusion with Bioconductor supports portability
and distribution

Even if you won’t distribute your data package,
using the discipline or one functionally equivalent
has substantial benefits



Technical steps for a data package
(public or private)

* Choosing cooked data representation and its
incorporation into a package

— If a class instance in a .rda serialization, could go
stale

— Could store raw and use .onLoad to populate
container obeying current definition

* Building package and documentation
* Building a good vignette



What is a vignette?

e Two basic criteria for a document

— Narrates a multistep, multicomponent analysis,
providing details of computation and interpretation

— |s computable, can raise error conditions, has
verifiable output

e Typically a vignette is composed in Sweave (LaTeX
+ R) and placed in a specific package folder

e Alternatives to LaTeX are available if necessary



Constructing a package and a vignette

e package.skeleton() will create folders and
templates for documentation

 Composition with LaTeX involves a markup

that can be complex, can have a tutorial
session if desired

* Bridging to Sweave involves " literate

programming”’, where LaTeX narration is
interlarded with escapes to R code



\documentclass [adpaper] {article}
\begin{document}

<<echo=false,results=hide>>=
library(lattice)
library(xtable)

data(cats, package="MASS")

@

\section*{The Cats Data}

Consider the \texttt{cats} regression example from Venables \& Ripley
(1997). The data frame contains measurements of heart and body weight
of \Sexpr{nrow(cats)} cats (\Sexpr{sum(cats$Sex=="F")} female,
\Sexpr{sum(cats$Sex=="M")} male).

A linear regression model of heart weight by sex and gender can be
fitted in R using the command

<L>>=

Iml = Im(Hwt "Bwt*Sex, data=cats)

Im1

@



The Cats Data

Consider the cats regression example from Venables & Ripley (1997). The data
frame contains measurements of heart and body weight of 144 cats (47 female, 97
male).

A linear regression model of heart weight by sex and gender can be fitted in R using
the command

> Iml = Im(Hwt ~ Bwt * Sex, data = cats)
> 1ml

Call:
Im(formula = Hwt ~ Bwt * Sex, data = cats)

Coefficients:
(Intercept) Bwt SexM Bwt : SexM
2.981 2.636 -4.165 1.676

Tests for significance of the coefficients are shown in Table 1, a scatter plot including
the regression lines 1s shown in Figure 1.



Fostering reproducibility and
extensibility of analysis work

Use well-annotated containers to manage
complexity of inputs

Use versioned metadata to manage effects of
external evolution of biological knowledge

Drive the analysis with one or more Sweave-
based vignettes, so that the main computations

are scripted and runnable via Sweave()

Use caching to reduce recomputation of complex
objects when the steps leading to their creation
are sound



Recap

» Data/analysis flows from genome scale
experiments are complex and require detailed
manhagement

* Good experimental design minimizes bias and
extraneous variation: substantive
reproducibility

* Container/package/vignette disciplines reduce
organizational and recovery complexity, foster
concrete reproducibility and extensibility



A high profile paper and some
reproduction/extensibility exercises

LETTER

d0i:10.1038/nature10808

DNase I sensitivity QTLs are a major determinant of
human expression variation

Jacob F. Degner'**, Athma A. Pai'*, Roger Pique-Regi'*, Jean-Baptiste Veyrieras"*, Daniel J. Gaffney', Joseph K. Pickrell’,
Sherryl De Leon®, Katelyn Michelini®, Noah Lewellen®, Gregory E. Crawford™®, Matthew Stephens™’, Yoav Gilad'

& Jonathan K. Pritchard™*

The mapping of expression quantitative trait loci (eQTLs) has
emerged as an important tool for linking genetic variation to
changes in gene regulation'®. However, it remains difficult to
identify the causal variants underlying eQTLs, and little is known
about the regulatory mechanisms by which they act. Here we show
that genetic variants that modify chromatin accessibility and tran-
scription factor binding are a major mechanism through which

and enhancer-associated histone marks. Furthermore, bound tran-
scription factors protect the DNA sequence within a binding site from
DNasel cleavage, often producing recognizable ‘footprints’ of
decreased DNase I sensitivity' """,

We collected DNase-seq data for 70 HapMap Yoruba lymphoblastoid
cell lines for which gene expression data and genome-wide genotypes

were already available® *. We obtained an average of 39 million uniquely



a Q-Q plot for dsQTL assoclations € s
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Figure 1 Genome-wide identification of dsQTLs and a typical example. dsQTL (rs4953223). The black line indicates the position of the associated SNP.
a, Q-Q plots for all tests of association between DNase [ cut rates in 100-bp d, Box plot showing that rs4953223 is strongly associated with local chromatin
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a Joint dsQTL-eQTL example

DHS regulating SLFN5 RNA-seq gene expression for SLFNS
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Figure 3 | Relationship between dsQTLs and eQTLs. a, Example of adsQTL  (right) measurer
SNP that is also an eQTL for the gene SLEN5. The SNP disrupts an interferon-  genotypeatther



What can we do to make this finding
concretely reproducible? Extensible?

d Example association =
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New directions in feature/test
volume?

 DNase-seq read-counts were assembled in a
100bp tiling of the genome, so 30 million scores
per individual

e dsQTL analysis involves associating ~30 million
imputed SNP with each of these scores; cis
filtering reduces volume considerably

 How should we manage the basic quantities?
— Stage 1: SummarizedExperiment demo

— Stage 2: integrative DHS+genotype container
permitting very high-volume testing with small
footprint




The dsQTL experimental data package

class: SummarizedExperiment
dim: 96024 70
exptData(2): MIAME annotation
assays(1) : normDHS
rownames (96024) : dhs_2_1202 dhs_2_1602 ... dhs_2_242737902
dhs_2_242739902
rowData values names(0):
colnames(70) : NA18486 NA18498 ... NA19239 NA19257
colData names(9): naid one ... male isFounder
> exptData(DSQ_2)LL"MIAME" 1]
Experiment data
Experimenter name: Degner JF
Laboratory: Department of Human Genetics., University of Chicago. Chicago
nois 60637, USA.
Contact information:
Title: DNasel sensitivity QTLs are a major determinant of human expressic
iation.
URL :
PMIDs: 22307276

Abstract: A 252 word abstract is available. Use 'abstract' method.




- niy ]

> assags(DéQ_2)[["normDHS"]][l:S,l:5]

NA18486
dhs_2_1202 -0.2684343
dhs_2_1602 -1.4445813
dhs_2_2002 0.7624075
dhs_2_7502 0.1242963
dhs_2_8802 -0.9554503
> rowData(DSQ_2)[1:5.]
GRanges with 5 ranges

seghames

{Rle>
dhs_2_1202 chr?2
dhs_2_1602 chr?2
dhs_2_2002 chr?2
dhs_2_7502 chr?2
dhs_2_8802 chr?2

seqlengths:
chr?2
NA

NA18498
-0.78076674
0.92170439
-0.12340/745
0.60788505
-0.06016578

NA18499
—-0.4840237
0.5812017
-1.1821308
0.6754706
-0.1990696

NA18501
2.3894003
0.8627376
1.4253179

-0.0452303
1.9383937

and 0 elementMetadata cols:
ranges strand

{IRanges> <Rle>

[1202, 13011
[1602. 17011
[2002, 21011
L7502, 76011
[8802. 89011

*

NA18502
-1.0813642
0.5186581
0.3125592
0.4876332
-1.3758668




> subsetByOverlaps( rowData(DSQ_2), GRanges("chr2”., IRanges(1000,2000)))
GRanges with 2 ranges and 0 elementMetadata cols:
seqhames ranges strand
<{Rle> {IRanges> <Rle>
dhs_2_1202 chr2 [1202, 13011 *
dhs_2_1602 chr2 [1602, 17011 *

seqlengths:
chr2
NA

> DSQ_2L which(rowData(DSQ_2) ZinZ GRanges("chr2”, IRanges(1000,2000))),
+  which(colData(DSQ_2)%male == TRUE) 1
class: SummarizedExperiment
dim: 2 28
exptData(2): MIAME annotation
assays (1) : normDHS
rownames(2): dhs_2_1202 dhs_2_1602
[rowData values names{(0):

olnames(28) : NA18501 NA18504 ... NA19223 NA19239

olData names(9): naid one ... male isFounder
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Recap

Tight binding of metadata to assay data for many
millions of features per sample

Fast, idiomatic query resolution using genomic
coordinates

X[G, S] has values for selected features and
samples, responds to any method on X

Relax restrictions on the “back end” when the
resources are really massive

Often the cooked resources are manageable and
can reside in such containers, facilitating easy
distribution and uptake: extensibility



Remaining issues

| have focused on adding value by providing
readily distributed and manipulated images of
complete analyses — bioc experimental data
packages

These are relatively costly to generate but
simplify checking, understanding, perturbing
what was done

How early in analysis should we be asking that
such images be present? Cost vs. benefit

Scripts+files+text documents can provide
equivalent information but momentum can be
hard to develop



