
BioC 2008 practical: Machine learning with
genome-scale data

©2008 VJ Carey stvjc at channing.harvard.edu

July 24, 2008

Contents

1 Introduction 1

2 Data structures 2

3 Logistic regression and linear discriminant analysis 4
3.1 Manual fit of a logistic regression . 4
3.2 Using MLInterfaces . 5

3.2.1 A simple application: single gene logistic regression 5
3.2.2 Prediction with many genes . 6

3.3 Summary . 8

4 Some technical details of MLInterfaces 8
4.1 The signature of MLearn . 8
4.2 Available learnerSchema instances . 9
4.3 Tuning . 9

5 Supervised learning: Additional illustrations 9
5.1 CART . 9
5.2 Random forests and variable importance assessment 14
5.3 Regularized discriminant analysis . 15
5.4 Support vector machine . 17
5.5 Boosting . 17

6 Unsupervised learning in brief 18
6.1 PCA and biplots . 18

6.1.1 PCA defined and illustrated . 19
6.1.2 Biplots: superimposing samples and variables after dimension re-

duction . 21

1

1 Introduction

The term machine learning refers to a family of computational methods for analyzing
multivariate datasets. Each data point has a vector of features in a shared feature space,
and may have a class label from some fixed finite set.

Supervised learning refers to processes that help articulate rules that map feature
vectors to class labels. The class labels are known and function as supervisory informa-
tion to guide rule construction. Unsupervised learning refers to processes that discover
structure in collections of feature vectors. Typically the structure consists of a grouping
of objects into clusters.

Some basic points to consider at the start:

� Distinguish predictive modeling from inference on model parameters. Typical work
in epidemiology focuses on estimation of relative risks, and random samples are
not required. Typical work with machine learning tools targets estimation (and
minimization) of the misclassification rate. Representative samples are required
for this task.

� All prediction or clustering algorithms, like all modeling procedures, rely on a
choice of distance metric that permits quantitative evaluation of similarity and
dissimilarity among objects. The choice can affect results and there is typically no
a priori basis for selecting the distance function. A one-minus-correlation distance
can be very different from euclidean distance for a given pair of genes.

� “Two cultures”: model fitters vs. algorithmic predictors. If statistical models
are correct, parameter estimation based on the mass of data can yield optimal
discriminators (e.g., LDA). Algorithmic discriminators tend to prefer to identify
boundary cases and downweight the mass of data (e.g., boosting, svm).

� Different learning tools have different capabilities. There is little a priori guidance
on matching learning algorithms to aspects of problems. While it is convenient to
sift through a variety of approaches, one must pay a price for the model search.

� Data and model/learner visualization are important, but visualization in higher
dimensional data structures is hard. Dynamic graphics can help; look at ggobi
and Rggobi for this.

� These notes provide very little mathematical background on the methods; see
for example Ripley (Pattern recognition and neural networks, 1995), Duda, Hart,
Stork (Pattern classification), Hastie, Tibshirani and Friedman (2003, Elements of
statistical learning) for extensive background.

2

2 Data structures

The representation of genome-scale data has impacts on many aspects of data analysis.
For microarray measures of mRNA abundance (expression arrays) we use the Expres-

sionSet to unify data and metadata on a set of arrays. Let G denote the number of
genes probed on the array, and N denote the number of samples which will be assumed
independent (familial data structures not directly considered). The key points for an
ExpressionSet instance X are

� exprs(X) is a G×N matrix of expression values (typically on the log scale)

� pData(X) is a N ×R data.frame of sample-level variables

� X$v is an N -vector of values on the sample-level variable named v

� X[G, S] is a new ExpressionSet instance with genes restricted according to pred-
icate G and samples restricted according to predicate S

Our first example is the Chiaretti et al. dataset on acute lymphocytic leukemia.

> library(ALL)

> data(ALL)

> ALL

We will focus on the molecular classification of leukemia-type within B-cell leukemias,
and create a subset of B-cell ALL samples that are either positive or negative for
BCR/ABL gene fusion

> table(ALLBT, ALLmol.biol)

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

B 0 2 1 2 0 0

B1 10 1 0 8 0 0

B2 0 19 0 16 0 1

B3 0 8 1 14 0 0

B4 0 7 3 2 0 0

T 0 0 0 5 0 0

T1 0 0 0 1 0 0

T2 0 0 0 15 0 0

T3 0 0 0 9 1 0

T4 0 0 0 2 0 0

> bALL = ALL[, substr(ALL$BT, 1, 1) == "B"]

> fbALL = bALL[, bALL$mol.biol %in% c("BCR/ABL", "NEG")]

> fbALL$mol.biol = factor(fbALL$mol.biol, levels = c("NEG", "BCR/ABL"))

> fbALL$binFus = 1 * (fbALL$mol.biol == "BCR/ABL")

In the last assignment, we make a 0-1 representation of the mol.biol factor.

3

3 Logistic regression and linear discriminant analy-

sis

A standard analysis of a problem with a two-class outcome focuses on modeling the
probability of class membership. With our representation, we consider the probability
that a sample is positive for BCR/ABL fusion (this event is denoted F = 1, F a binary
random variable) conditional on the level of expression of a selected gene. A linear
logistic model takes the form

logit Pr(F = 1|x) = α + xβ

3.1 Manual fit of a logistic regression

This can be fit manually using R as follows. We use the third gene on the array as x.

> lr1 = glm(formula = fbALL$binFus ~ exprs(fbALL)[3,], family = binomial)

> summary(lr1)

Call:

glm(formula = fbALL$binFus ~ exprs(fbALL)[3,], family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5067 -1.0964 -0.8908 1.1876 1.5081

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.345 4.850 1.514 0.130

exprs(fbALL)[3,] -1.931 1.253 -1.541 0.123

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 109.20 on 78 degrees of freedom

Residual deviance: 106.73 on 77 degrees of freedom

AIC: 110.73

Number of Fisher Scoring iterations: 4

Exercises

� Visualize the class-specific distributions of the modeled gene.

� What is the name of the gene used in this analysis?

4

3.2 Using MLInterfaces

3.2.1 A simple application: single gene logistic regression

Here we use a generic method that operates on ExpressionSet instances and formulae
to carry out the same logistic regression analysis, but with cross-validation. In this
species of cross-validation, the dataset is partitioned into five subsets, each of which is
formed to have approximately equal representation of the outcome classes.

> library(MLInterfaces)

> lr2 = MLearn(mol.biol~., fbALL[3,], glmI.logistic(thresh=.5),

+ xvalSpec("LOG", 5, balKfold.xvspec(5)),

+ family=binomial)

> lr2

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fbALL[3,], method = glmI.logistic(thresh = 0.5),

trainInd = xvalSpec("LOG", 5, balKfold.xvspec(5)), family = binomial)

Predicted outcome distribution for test set:

0 1

53 26

history of feature selection in cross-validation available; use fsHistory()

Notice that the result of this call is not a table of coefficients, but an object. That
object has the same formal structure for any successful call to MLearn.

We can get the table of coefficients through the following:

> summary(RObject(RObject(lr2)[[1]]$mlans))

Call:

lfun(formula = formula, family = ..1, data = trdata)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.434 -1.046 -0.877 1.230 1.568

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.055 5.238 1.347 0.178

X1002_f_at -1.894 1.356 -1.397 0.163

(Dispersion parameter for binomial family taken to be 1)

5

Null deviance: 84.915 on 61 degrees of freedom

Residual deviance: 82.886 on 60 degrees of freedom

AIC: 86.886

Number of Fisher Scoring iterations: 4

The access path to the coefficients is somewhat convoluted – two levels of storage
must be traversed. At the top level (interior call to RObject, applied to lr2), we are
looking into the result of five cross-validation iterations. We pick the first using [[1]].
This returns a list. The element named mlans holds the table of coefficients (actually
the glm model fit), retrieved using the outer call to RObject, rendered using summary.

The MLearn method is tailored to predictive applications. In the use of logistic
modeling, a threshold is specified in the third argument to MLearn. The predicted
probability of fusion for each sample is computed according to the fitted model and if
it exceeds the threshold parameter, the sample is predicted to be in the fusion class;
otherwise it is predicted to be negative for fusion.

The confusion matrix for the cross-validated prediction exercise cross-tabulates known
class vs predicted class for all samples. The proportion of off-diagonal entries is an esti-
mate of the misclassification rate.

Exercises

� If we relax the threshold for classifying to fusion to 40%, what happens to the
misclassification rate for cross-validated, single-gene, logistic regression-based pre-
diction?

3.2.2 Prediction with many genes

We will now illustrate linear discriminant analysis (LDA). We use a collection of genes,
denoted xi to characterize sample i, and compute the multivariate mean for each class
(denoted µF and µN for fusion and negative respectively) and the common covariance
matrix Σ for all the observations. If πF and πN are the proportions of fusion and negative
samples in the dataset, The classification procedure is to allocate the sample with gene
‘signature’ xi to class F when

LD(xi) = (µF − µN)tΣ−1(xi − .5(µF + µN)) > log(πF/πN).

For this to be feasible on modest hardware, we need to filter the genes in use. We use
genefilter’s nsFilter procedure to eliminate genes with relatively low variability across
samples.

> library(genefilter)

> ffbALL = nsFilter(fbALL, var.func=var, var.cutoff=.9)

> ffbALL[[2]] # check exclusion events

6

$numLowVar

[1] 8104

$numDupsRemoved

[1] 3100

$feature.exclude

[1] 19

$numRemoved.ENTREZID

[1] 501

> ffbALL = ffbALL[[1]] # keep only ExpressionSet

Now we construct a cross-validated linear discriminant analysis using all filtered
genes.

> lda1 = MLearn(mol.biol ~ ., ffbALL, ldaI, xvalSpec("LOG", 5,

+ balKfold.xvspec(5)))

> mm = confuMat(lda1)

> mcr = (sum(mm) - sum(diag(mm)))/sum(mm)

> mcr

[1] 0.1898734

Is this a legitimate application? Is 0.19 a good estimate of the misclassification rate
of the procedure? Perhaps not, because feature selection was conducted outside the
cross-validation procedure. The set of genes filtered away will differ from iteration to
iteration of the cross-validation. This process can be factored into our cross-validation
using the fsFun parameter of xvalSpec. Ideally we would apply this feature selection
process to the full fbALL ExpressionSet but on a small computer this seems to cause
problems. We illustrate with only 2500 genes:

> lda2 = MLearn(mol.biol ~ ., fbALL[1:2500,], ldaI, xvalSpec("LOG",

+ 5, balKfold.xvspec(5), fsFun = fs.topVariance(0.9)))

> lda2

MLInterfaces classification output container

The call was:

MLearn(formula = mol.biol ~ ., data = fbALL[1:2500,], method = ldaI,

trainInd = xvalSpec("LOG", 5, balKfold.xvspec(5), fsFun = fs.topVariance(0.9)))

Predicted outcome distribution for test set:

7

NEG BCR/ABL

40 39

history of feature selection in cross-validation available; use fsHistory()

> confuMat(lda2)

predicted

given NEG BCR/ABL

NEG 36 6

BCR/ABL 4 33

> length(fsHistory(lda2)[[1]])

[1] 250

3.3 Summary

� ExpressionSets store assay and sample-level data from microarray experiments;

� Manual application of standard statistical modeling tools to test specific gene ef-
fects is feasible, but variation in calling sequence and return values reduces effi-
ciency of application and interpretation;

� MLInterfaces MLearn supports direct application of supervised learning methods
to ExpressionSet instances

– standard formula interface may refer to any phenoData variable for response

– learnerSchema instances select the algorithm to be used; we looked at glmI.logistic
and ldaI

– cross-validation is supported through the xvalSpec object

– algorithmic feature selection can be embedded in cross-validation

� MLearn returns a structured object responding to confuMat, RObject, and, when
relevant, fsHistory

4 Some technical details of MLInterfaces

4.1 The signature of MLearn

> showMethods("MLearn")

8

Function: MLearn (package MLInterfaces)

formula="formula", data="ExpressionSet", method="character", trainInd="numeric", mlSpecials="ANY"

formula="formula", data="ExpressionSet", method="character", trainInd="numeric", mlSpecials="missing"

formula="formula", data="ExpressionSet", method="learnerSchema", trainInd="integer", mlSpecials="missing"

(inherited from: formula="formula", data="ExpressionSet", method="learnerSchema", trainInd="numeric", mlSpecials="missing")

formula="formula", data="ExpressionSet", method="learnerSchema", trainInd="numeric", mlSpecials="missing"

formula="formula", data="ExpressionSet", method="learnerSchema", trainInd="xvalSpec", mlSpecials="missing"

formula="formula", data="data.frame", method="character", trainInd="numeric", mlSpecials="ANY"

formula="formula", data="data.frame", method="learnerSchema", trainInd="integer", mlSpecials="missing"

(inherited from: formula="formula", data="data.frame", method="learnerSchema", trainInd="numeric", mlSpecials="missing")

formula="formula", data="data.frame", method="learnerSchema", trainInd="numeric", mlSpecials="missing"

formula="formula", data="data.frame", method="learnerSchema", trainInd="xvalSpec", mlSpecials="missing"

4.2 Available learnerSchema instances

> grep(".*I($|\\.)", ls("package:MLInterfaces"), value = TRUE)

[1] "RABI" "adaI" "baggingI" "dldaI"

[5] "glmI.logistic" "knn.cvI" "knnI" "ksvmI"

[9] "ldaI" "ldaI.predParms" "lvqI" "naiveBayesI"

[13] "nnetI" "qdaI" "randomForestI" "rdaI"

[17] "rdacvI" "rpartI" "sldaI" "svmI"

You can add your own schemata for new learning functions. See the vignette MLint devel.

4.3 Tuning

You can set additional parameters in the ... argument place to MLearn. Eventually a
tuningSpec object will be defined to control this.

5 Supervised learning: Additional illustrations

5.1 CART

Decision trees are attractive models for certain investigations. If the process under study
has a hierarchical structure, so that some features decompose the population at a high
level, and others operate within lower level components, a tree-structured model may be
useful. Classification And Regression Trees (CART) denotes a family of algorithms that
aggressively sift through features in a recursive series of splits of the data. At the first
stage, all the data live in a root tree node. All features are dichotomized in all possible
ways and the node is split using the feature that leads to two nodes that are most pure
in distribution of the class label according to some user-selected metric such as the Gini

9

index or the deviance. The process recurses in the new nodes. The tree construction
proceeds until nodes reach some minimal size, and then it may be pruned back. Details
can be found in Ripley, Pattern Recognition and Neural Networks, 1995.

> rp1 = MLearn(mol.biol ~ ., ffbALL, rpartI, xvalSpec("LOG", 5,

+ balKfold.xvspec(5)))

> confuMat(rp1)

predicted

given NEG BCR/ABL

NEG 30 12

BCR/ABL 5 32

Each fit yields an extensive summary.

> summary(RObject(RObject(rp1)[[1]]$mlans))

Call:

lfun(formula = formula, data = trdata)

n= 62

CP nsplit rel error xerror xstd

1 0.70370370 0 1.0000000 1.0000000 0.1445960

2 0.03703704 1 0.2962963 0.5925926 0.1276084

3 0.01000000 2 0.2592593 0.6666667 0.1323741

Node number 1: 62 observations, complexity param=0.7037037

predicted class=NEG expected loss=0.4354839

class counts: 35 27

probabilities: 0.565 0.435

left son=2 (37 obs) right son=3 (25 obs)

Primary splits:

X1635_at < 8.150509 to the left, improve=16.55522, (0 missing)

X40202_at < 8.95228 to the left, improve=15.44637, (0 missing)

X1467_at < 3.920108 to the left, improve=13.98677, (0 missing)

X37015_at < 4.427861 to the left, improve=13.14044, (0 missing)

X36591_at < 8.994071 to the left, improve=12.14615, (0 missing)

Surrogate splits:

X41138_at < 11.11763 to the left, agree=0.806, adj=0.52, (0 split)

X37351_at < 6.812907 to the left, agree=0.806, adj=0.52, (0 split)

X1674_at < 5.811727 to the left, agree=0.806, adj=0.52, (0 split)

X37015_at < 4.427861 to the left, agree=0.790, adj=0.48, (0 split)

10

X32542_at < 8.25133 to the left, agree=0.790, adj=0.48, (0 split)

Node number 2: 37 observations, complexity param=0.03703704

predicted class=NEG expected loss=0.1351351

class counts: 32 5

probabilities: 0.865 0.135

left son=4 (28 obs) right son=5 (9 obs)

Primary splits:

X40514_at < 6.410764 to the right, improve=4.204204, (0 missing)

X1581_s_at < 5.273067 to the right, improve=4.204204, (0 missing)

X1161_at < 9.433677 to the right, improve=3.648649, (0 missing)

X37283_at < 5.556465 to the right, improve=3.648649, (0 missing)

X1403_s_at < 8.043665 to the left, improve=3.648649, (0 missing)

Surrogate splits:

X1467_at < 3.998326 to the left, agree=0.919, adj=0.667, (0 split)

X37747_at < 5.928225 to the left, agree=0.892, adj=0.556, (0 split)

X1161_at < 9.215001 to the right, agree=0.892, adj=0.556, (0 split)

X1984_s_at < 7.415567 to the right, agree=0.892, adj=0.556, (0 split)

X37506_at < 5.215513 to the right, agree=0.892, adj=0.556, (0 split)

Node number 3: 25 observations

predicted class=BCR/ABL expected loss=0.12

class counts: 3 22

probabilities: 0.120 0.880

Node number 4: 28 observations

predicted class=NEG expected loss=0

class counts: 28 0

probabilities: 1.000 0.000

Node number 5: 9 observations

predicted class=BCR/ABL expected loss=0.4444444

class counts: 4 5

probabilities: 0.444 0.556

We have cross-validated and can inspect the tree for each iteration:

> tr1 = RObject(RObject(rp1)[[1]]$mlans)

> plot(tr1, uniform = TRUE, branch = 0.2, compress = TRUE, margin = 0.1,

+ main = paste("xval tree", 1))

> text(tr1, all = TRUE, use.n = TRUE, fancy = TRUE, pretty = TRUE)

11

xval tree 1

|

X1635_at< 8.151

X40514_at>=6.411

X1635_at>=8.151

X40514_at< 6.411

NEG
35/27

NEG
32/5

NEG
28/0

BCR/ABL
4/5

BCR/ABL
3/22

> tr2 = RObject(RObject(rp1)[[2]]$mlans)

> plot(tr2, uniform = TRUE, branch = 0.2, compress = TRUE, margin = 0.1,

+ main = paste("xval tree", 2))

> text(tr2, all = TRUE, use.n = TRUE, fancy = TRUE, pretty = TRUE)

12

xval tree 2

|

X1467_at< 3.899

X1635_at< 8.474

X1467_at>=3.899

X1635_at>=8.474

NEG
33/29

NEG
32/8

NEG
30/1

BCR/ABL
2/7

BCR/ABL
1/21

Exercises

� The trees visualized here are not as informative as they would be if gene symbols
were used for probe sets. Alter ffbALL so that the featureNames are symbols and
generate a better plot.

You could use code like

> X = featureNames(ffbALL)

> library(hgu95av2.db)

> SX = mget(X, hgu95av2SYMBOL)

> any(duplicated(unlist(SX)))

> featureNames(ffbALL) = SSX

> rrp1 = MLearn(mol.biol ~ ., ffbALL, rpartI, xvalSpec("LOG", 5,

+ balKfold.xvspec(5)))

� Create a deeper set of trees by specifying an option defined in rpart.control. For
example, set minsplit=3. Use plotcp on the resulting tree objects and interpret.

13

5.2 Random forests and variable importance assessment

Leo Breiman extended the tree structured modeling approach by integrating random
feature and case selection over a long sequence of tree fits. Voting over the tree sequence
is used to create the classifier.

According to wikipedia, “Each tree is constructed using the following algorithm:

� Let the number of training cases be N, and the number of variables in the classifier
be M.

� We are told the number m of input variables to be used to determine the decision
at a node of the tree; m should be much less than M.

� Choose a training set for this tree by choosing N times with replacement from all
N available training cases (i.e. take a bootstrap sample). Use the rest of the cases
to estimate the error of the tree, by predicting their classes.

� For each node of the tree, randomly choose m variables on which to base the
decision at that node. Calculate the best split based on these m variables in the
training set.

� Each tree is fully grown and not pruned (as may be done in constructing a normal
tree classifier).

This is easy to use with MLearn. Because of the internal resampling, we do not need
to cross-validate (unless we really want to).

> set.seed(12345)

> rf1 = MLearn(mol.biol ~ ., ffbALL, randomForestI, xvalSpec("NOTEST"),

+ importance = TRUE)

> confuMat(rf1, "train")

predicted

given NEG BCR/ABL

NEG 42 0

BCR/ABL 0 37

The variable importance measure can be rendered as follows:

> par(las = 2, mar = c(5, 9, 5, 5))

> plot(getVarImp(rf1, TRUE), plat = "hgu95av2", toktype = "SYMBOL")

14

CAV1
ID1

DENND4A
SPINK2

GAB1
CA6

FSCN1
MX1

MTSS1
CPVL
UPP1

MARCKS
ACVR2A
AHNAK

YES1
ALDH1A1

ABL1
KLF9

PON2
EPS8

Mean decrease in accuracy

0.
00

0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

Exercises

� Generate a textual report on the relative importance measures, using getVarImp.

� Compare the top genes identified via randomForest to those identified via limma.
Comment on the added learning provided by the machine learning algorithm.

5.3 Regularized discriminant analysis

This is an interesting algorithm in which LDA is generalized in two directions. First, the
covariance matrix of the data is modeled as a linear combination of an identity matrix
and the sample covariance matrix. Second, features are dropped according to their
distance from sample centroids. See the 2007 Biostatistics paper of Guo and Tibshirani
for details.

The code distributed by Guo et al has internal cross-validation by which parameters
α ∈ [0, 1] (weight on the sample covariance matrix, to which 1 − α × I is added to
get the effective covariance to be used in discriminant computation) and δ (parameter

15

dictating how features are dropped depending on their distance from data centroids) are
selected. We therefore use RDA in two stages, first to inspect the results of internal
cross-validation, and then to compute the predictors for the ‘optimal’ α and δ. (There
are typically a range of attractive values for these parameters.)

> set.seed(12345)

> rda1 = MLearn(mol.biol ~ ., ffbALL, rdacvI, xvalSpec("NOTEST"))

We now retrieve the summary of cross-validation results:

> attr(RObject(rda1), "xvalAns")

Call:

rda.cv(fit = run1, x = x, y = resp)

$nonzero

delta

alpha 0 0.333 0.667 1 1.333 1.667 2 2.333 2.667 3

0 901 130 12 0 0 0 0 0 0 0

0.11 901 30 0 0 0 0 0 0 0 0

0.22 901 35 1 0 0 0 0 0 0 0

0.33 901 53 2 0 0 0 0 0 0 0

0.44 901 83 6 0 0 0 0 0 0 0

0.55 901 139 16 2 0 0 0 0 0 0

0.66 901 240 46 8 1 0 0 0 0 0

0.77 901 395 132 43 13 4 1 0 0 0

0.88 901 614 380 220 120 66 38 20 10 5

0.99 901 880 855 831 806 779 755 732 707 685

$cv.err

delta

alpha 0 0.333 0.667 1 1.333 1.667 2 2.333 2.667 3

0 16 16 18 37 37 37 37 37 37 37

0.11 9 9 37 37 37 37 37 37 37 37

0.22 11 9 36 37 37 37 37 37 37 37

0.33 13 10 29 37 37 37 37 37 37 37

0.44 14 11 19 37 37 37 37 37 37 37

0.55 14 14 13 32 37 37 37 37 37 37

0.66 14 13 12 17 31 37 37 37 37 37

0.77 14 13 13 12 15 22 32 36 37 37

0.88 14 14 13 13 13 12 11 14 17 22

0.99 14 14 14 14 14 14 14 14 14 14

We see that values of α around .11 and δ around .33 lead to small numbers of errors in
cross-validation. Thus:

16

> rda2 = MLearn(mol.biol ~ ., ffbALL, rdaI, xvalSpec("NOTEST"),

+ alpha = 0.11, delta = 0.333)

> confuMat(rda2, "train")

predicted

given BCR/ABL NEG

NEG 1 41

BCR/ABL 35 2

Exercises

� There is a problem with the rendering of the confusion matrix above. Describe
how to avoid it.

� Obtain the list of ‘retained genes’ by inspecting the rda2 object. Compare to
limma top table.

5.4 Support vector machine

An important variation on LDA is the support vector machine (SVM) algorithm. The
basic ideas can be gleaned from a paper by Kristin Bennett to be distributed at the
course.

> svm1 = MLearn(mol.biol ~ ., ffbALL, svmI, xvalSpec("LOG", 5,

+ balKfold.xvspec(5)), kernel = "linear")

> confuMat(svm1)

predicted

given NEG BCR/ABL

NEG 35 7

BCR/ABL 8 29

Exercises

� Examine the tune infrastructure of package e1071 and consider whether a selection
of parameters for tuning the svm can improve performance in this case. To use tune
you will have to extract response and predictor data and convert to appropriate
formats.

5.5 Boosting

Random forests uses an ensemble of trees to generate predictions; boosting uses very
simple trees generated along a sequence of data reweighting steps. At each iteration,

17

data that are easy to classify are downweighted. We use the implementation in adaboost
package; there are others.

This seems to be a very intensive algorithm and we run it for a very short while for
feasibility. You may examine the effects of reducing the feature set.

> ada1 = MLearn(mol.biol ~ ., ffbALL, adaI, 1:40, type = "discrete",

+ iter = 20)

> confuMat(ada1)

6 Unsupervised learning in brief

Unsupervised learning occurs in the absence of class labels. In essence, one is trying to
learn both the class labels and the rules for attaching them to objects yet unseen.

Cluster analysis is widely used, is propagated through heatmap displays, and has
substantial conceptual defects. We will not discuss it unless there is extra time.

6.1 PCA and biplots

To discuss principal components and dimension reduction, we use a simpler data set:
the crabs data set in the MASS package. Consider the following display:

> pairs(crabs[, -c(1:3)], col = ifelse(crabs$sp == "B", "blue",

+ "orange"))

18

FL

6 10 14 18

●
●●
●●

●●●●●●●
●●●●●●●

●●●
●●●●●

●●● ●●●●●●●●●●●
●●

●●● ●●●
●

●

●●●●
●●●●
●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●

●●

●

●
●●

●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●
●●●●●●●●

●●

●
●

● ●●
●●●●●● ●●●●●●●

●●
●●●●● ●●●●●●● ●●●●

● ●●●● ●●● ●●●●
● ●

●
●●

●●
●●
●●●●●●●●

●●●●
●●●

●●●●●
●●●●●●●

●●●●●●
●●●

●●●
●●●

●

●

●●●●
●●●●

●●●
●●●●●●●●

●●●●●●●
●●
●●●●●●●●●●●●●●●

●●●
●●

●

●
●●

●
●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●
●●●

●●●●●
●●

●
●

●●●
●●●

●●●
●●●●●●●
●●

●●●●● ●●●●●●●●●●●●●●●●
●●● ●●●●

● ●

20 40

●
●●●●

●●
●●●●●●●●

●●●●
●●●

●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●

●

●

●●●●
●●●●

●●●
●●●●●●●

●●●●●●●
●●●

●●●●●●●●●●●●●●●●●
●

●●

●

●
●●

●
●●●●●●

●●●●●●●●
●●●
●●
●●

●●●●●●●●●●●●●●●
●●●

●●●●●
●●

●
●

●●●
●●●

●●●
●●●●●●●

●●
●●●●● ●●●●●●●●●●

●●●●●●●●● ●●●●
● ●

10
15

20

●
●●

●●
●●
●●●●●●●●

●●●●
●●●●●●●

●●●● ●●●●●
●●●●●

●●●
●●●●●●

●

●

●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●
●● ●●●●● ●●●●●●●●● ●●

●●

●

●
●●

●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●
● ●●

●●●●●
●●

●
●

●●●
●●●
●●●●●●

●●●●
●●

●●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●●
● ●

6
10

14
18

●
●●●●

●
●
●●
●●●●●

●●●●●●●●●
●●
●●
●●
●
●●●●
●
●●●●
●●
●●

●

●●

●
●●

●

●

●●●●
●●
●●●●●

●●●●
●
●●
●●●●●●
●●
●●●

●
●●●●●
●●
●●
●
●
●
●●
●

●
●● ●

●
●●

●●●
●
●
●
●●
●●●●●
●●●●●●

●●●
●●
●
●●●
●●●●●●●

●●●
●
●●●●

●●
●
●

●●
●

●●
●
●
●
●●
●
●●
●●●●●

●●●●●●
●
●
●●●
●●
●

●
●●
●●
●
●●
●

●●
●

●●
●●●

●

RW

●
●●●●

●
●
●●
●●●

●●
●●●●●●●●●

●●
●●

●●
●
●●●●

●
●●●●
●●

●●

●

●●

●
●●

●

●

●●●●
●●
●●●●●

●●●●
●

●●
●●●●
●●
●●
●●●
●

●●●●●
●●

●●
●
●
●
●●
●

●
●●●

●
●●

●●●
●
●
●
●●
●●●●●
●●●●●●

●●●
●●
●
●●●

●●●●●●●●
●
●

●
●●●
●

●●
●
●

●●
●

●●
●

●
●
●●
●
●●
●●●●●
●●●●●

●
●

●
●●●

●●
●

●
●●

●●
●
●●

●

●●
●

●●
●●●

●

●
●●●●

●
●
●●
●●●

●●
●●●●●●

●●●
●●
●●

●●
●
●●●●

●
●●●●

●●
●●

●

●●

●
●●

●

●

●●●●
●●
●●●●●

●●●●
●

●●
●●●●●●
●●
●●●
●
●●●●●
●●

●●
●
●

●
●●
●

●
●● ●

●
●●

●●●
●
●
●
●●
●●●●●
●●●●●●

●●●
●●

●
●●●

●●●●●●●●
●
●

●
●●●
●

●●
●
●

●●
●

●●
●
●
●
●●
●

●●
●●●●●

●●●●●
●
●

●
●●●
●●

●

●
●●
●●

●
●●

●

●●
●

●●
●●●

●

●
●●●●

●
●
●●
●●●

●●
●●●●●●●●●

●●
●●

●●
●

●●●●
●
●●
●●

●●
●●

●

●●

●
●●

●

●

●●●●
●●
●●●●●

●●●●
●

●●
●●●●
●●
●●
●●●
●

●●●●● ●●
●●●
●
●

●●
●

●
●●●

●
●●

●●●
●
●
●
●●

●●●●●
●●●●●●
●●●

●●
●

●●●
●●●●●●●
●●●

●
● ●●
●

●●
●
●

●●
●

●●
●
●
●
●●

●
●●
●●●●●

●●●●●
●
●

●
●●●
●●
●

●
●●

●●
●
●●
●

●●
●

●●
●●●

●

●
●●

●●
●●

●●●
●●●●●●

●●●
●
●●●●●●

●
●
●●●
●●●
●
●●●●
●●
●●

●●●●
●●

●

●

●●●●
●●●●

●●●
●●●●
●
●●
●●●
●●●●●●

●●●
●●●●●
●●●●●
●●●●●

●
●●

●

●

●●
●●●

●●●
●
●●●●●●
●●●●

●●
●●●

●●●●
●●●
●●●●●
●●●

●
●●

●●
●
●●

●●

●●
●●
●●

●●
●●●

●●●●●●●●
●
●●●●
●
●
●●
●●
●●
●
●●
●●●●●●●

●
●

●
●●
●●

●

●
●●
●●

●●●●●
●●●●●●
●●●
●
●●●●●●●

●
●● ●●●●

●
●●●●●●

●●
●●● ●●●

●

●

●●●●
●●●●
●●●

●●●●●
●●

●●●●●●●●●
●●●

●●●●●
●●●●●●●●●●

●
●●

●

●

●●
●●
●

●●●●
●●●●●●
●●●●
●●

●●●
●●●●
●●●

●●●●●
●●●
●

●●
●●

●
●●

●●

●●
● ●●

●
●●
●●● ●●●●●●●●

●
●●●●●

●
●●
●●

●● ●
●●

●● ●●●● ●
●

●

●
●●●●

●

CL
●
●●●●

●●
●●●

●●●●●●
●●●
●

●●●●●●
●

●
●●●●●●

●
●●●●

●●
●●

●●●●●●

●

●

●●●●
●●●●

●●●
●●●●
●

●●
●●●
●●●●●●

●●●
●●●●●
●●●●●
●●●●●

●
●●

●

●

●●
●●

●
●●●●

●●●●●●
●●●●
●●
●●●

●●●●
●●●

●●●●●
●●●
●

●●
●●

●
●●
●●

●●
●●

●●
●●
●●●
●●●●●●●●●

●●●●
●

●
●●
●●

●●
●
●●
●●●●●●●

●
●

●
●●
●●

●

15
25

35
45

●
●●

●●
●●
●●●
●●●●●●
●●●

●
●●●●●●

●
●
●● ●●●●
●
●●●●●

●●●
●●●●●●

●

●

●●●●
●●●●●●●

●●●●
●

●●
●●●●●●●
●●

●●●
●●●●●
●●●●●●●●● ●
●

●●
●

●

●●
●●●

●●●
●

●●●●●●
●●●●●●
●●●

●●●●
●●●
●●●●●
●●●
●

●●
●●

●
●●
●●

●●
●●●

●
●●
●●●●

●●●●●●●●
●●●●●

●
●●
●●

● ●●
●●

●●●●●●●
●

●

●
●●●●

●

20
40

●
●
●●●

●●
●●●
●●●●●●●●●

●
●●●●
●●●
●●●
●●●●
●
●●●●
●●●●

●
●●
●●●

●

●

●●●●
●●●●

●●●
●●●●
●●●
●●●●●●●

●●
●●●

●●●●●
●●●●●
●●
●●●

●
●●

●

●
●●

●●●
●
●●●

●●●●●●●
●●●
●●●

●●

●●
●●
●●●
●●●
●●
●●●●

●●
●●●
●●

●●

●●
●●
●

●●●
●●●

●●●●●
●●●

●
●●●●
●
●
●●
●●
●●
●●●

●●
●●●●●
●●
●
●●●

●
●

●
●
●●●

●●●●●
●●●●●●●●●
●
●●●●●●●

●●●
●●●●

●
●●●●

●●●●

●
●●

●●●

●

●

●●●●
●●●●
●●●

●●●●
●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●
●●●

●
●●

●

●
●●

●●
●

●
●●●
●●●●●●●●●●
●●●●●

●●
●●●

●●●●●●●
●●●●
●●

●●●
●●

●●

●●
● ●●

●●●
●●●
●●●●●●●

●●
●●●●●

●
●●
●●

●● ●●●●
●

●●●● ●●●
●

●●●●
●

●
●
●●●

●●
●●●

●●●●●●●●●●
●●●●
●●●

●●●
●●●●

●
●●●●
●●●●

●
●●
●●●

●

●

●●●●
●●●●

●●●
●●●●
●●●
●●●●●●●●

●●●●
●●●●●

●●●●●
●●
●●●

●
●●

●

●
●●

●●
●

●
●●●

●●●●●●●●●●●●●●●

●●
●●

●●●
●●●

●●
●●●●

●●
●●●
●●

●●

●●
●●

●
●●●

●●●
●●●●●
●●●

●
●●●●
●

●
●●
●●

●●
●●●●●

●●●●●
●●

●
●●●

●
●

CW
●
●
●●●

●●
●●●
●●●●●●●●●

●
●●●●●●●

●●●
●●●●

●
●●●●

●●●●

●
●●
●●●

●

●

●●●●
●●●●●●●

●●●●
●●●
●●●●●●●
●●

●●●
●●●●●
●●●●●

●●
●● ●
●

●●
●

●
●●

●●●
●
●●●

●●●●●●●●●●●●●●●

●●
●●●●●●●●●●

●●●●
●●

●●●
●●
●●

●●
●●●

●●●
●●●

●●●●●
●●●●

●●●●●
●

●●
●●

● ●● ●●●●
●●●●●●●

●
●●●●

●

10 15 20

●●●
●●

●●●●●
●●●●●●●●●

●●
●●●●●●

●●●
●●●●●●

●●●
●●
●●

●●
●
●
●●

●

●
●●●●

●●●●
●
●
●
●●●●
●●●
●
●
●●●●●●

●
●●●

●●●●●

●
●●
●
●
●●
●
●
●●

●●
●

●
●●

●
●●
●●●●

●●●●●●
●
●●
●●●
●●●

●●●
●●●
●●●●●●

●●●●
●●

●●●
●●

●●

●●
●●
●

●●●●
●
●●●●●●●●

●●
●●
●
●●
●
●●●
●
●
●
●
●●
●●●●
●●
●●

●

●
●
●●●

●

●●●
●●

●●●
●●●

●●●●●●●●
●●
●●●●●●

●●●
●●●●●●
●●●
●●
●●

●●
●

●
●●

●

●
●●●●
●●●●
●
●
●

●●●●●●●
●

●
●●●●●●●

●●●

●●●●●

●
●●

●
●

●●
●
●

● ●
●●

●

●
●●

●
●●

●●●●
●●●●●●
●
●●
●●●

●●●
●●●
●●●

●●●●●●
●●●●
●●

●●●
●●

●●

●●
● ●●

●●●●●
● ●●●●●●●

●●
●●
●

●●
●

●●●
●
●

●
●

●●
●● ●●
●●
●●

●

●
●

●●●
●

15 25 35 45

●●●
●●

●●●●●
●●●●●●●●●

●●
●●●●●●

●●●
●●●●●●

●●●
●●

●●
●●

●
●
●●

●

●
●●●●
●●●●

●
●
●

●●●●●●●
●
●
●●●●●●

●
●●●

●●●●●

●
●●
●
●
●●
●
●
●●

●●
●

●
●●

●
●●

●●●●
●●●●●●
●
●●
●●●
●●●

●●●
●●●●

●●●●●
●●●●

●●
●●●
●●

●●

●●
●●

●
●●●●●

●●●●●●●●
●●

●●
●
●●

●
●●●

●
●
●
●
●●

●●●●
●●
●●

●

●
●
●●●

●

●●●●●
●●●●●●●●●●●●●●

●●
●●●●●●

●●●
●●●●●●

●●●
●●
●●

●●
●

●
●●

●

●
●●●●
●●●●

●
●
●

●●●●
●●●
●
●
●●●●●●

●
●●●

●●●●●

●
●●
●
●
●●
●
●
●●

●●
●

●
●●

●
●●

●●●●
●●●●●●
●
●●
●●●
●●●

●●●
●●●●

●●●●●
●●●●

●●
●●●
●●
●●

●●
●●

●
●●●●●

●●●●●●●●
●●

●●
●
●●

●
●●●●

●
●
●
●●
●●●●
●●
●●

●

●
●
●●●

●

10 15 20

10
15

20

BD

Various crab body measurements are plotted against each other. Clearly there are
high correlations between certain variables and it would be useful to focus on measures
that are independently informative on the relationship between crab size and species.
Such independently informative measures can be constructed using linear combinations
of the raw measurements.

6.1.1 PCA defined and illustrated

Principal components analysis transforms the multivariate data X into a new coordinate
system. If the original variables are X1, . . . , Xp, then the variables in the new rep-
resentation are denoted PC1, . . . , PCp. These new variables have the properties that
PC1 is the linear combination of the X having maximal variance, PC2 is the variance-
maximizing linear combination of residuals of X after projecting on PC1, and so on. If
most of the variation in Xn×p can be captured in a low dimensional linear subspace of the
space spanned by the columns of X, scatterplots of the first few principal components
will depict this.

Formally, we can compute the PC using the singular value decomposition of X, in
which X = UDV t, where Un×p and Vp×p are orthonormal, and D is a diagonal matrix of

19

p nonnegative singular values. The principal components transformation is XV = UD,
and if D is structured so that Dii ≥ Djj whenever i > j, then column i of XV is PCi.
Note also that Dii =

√
n− 1SD PCi.

> library(MASS)

> data(crabs)

> pcs = prcomp(crabs[, -c(1:3)])

> plot(pcs)

pcs

V
ar

ia
nc

es

0
20

40
60

80
10

0
12

0
14

0

> pairs(pcs$x, col = ifelse(crabs$sp == "B", "blue", "orange"))

20

PC1

−3 −1 1

●
●●●●

● ●● ●●
●●●● ● ●●●●●

●●●●●●●
● ●●

●●●●
●

●●●●
●●●●

●● ●
●●●

●

●

●●●●
●●●●

●●●
●● ●●●●●

●●●●●● ●●●●●●
●●●●●

●●●●●●●
●●●

●
●●

●

●
●●
●●●
●●● ●
●●●●● ●●

● ●●
●● ●●●

●●●●●● ●
●●● ●●
● ●●●

●●
●●
●

● ●
●●

●●
● ●●

●●●
●●●
●●●●●●●●

●
●● ●● ●

●
●●●●

●● ●●●
●●
●● ●● ●●

●

●
●●●●
●

●
●●●●
● ●●● ●

●●● ●●● ●●●●
●●●●●●●

●●●
● ●●●

●
●●●● ●●●●

●● ●
●●●

●

●

●●●●● ●● ●●●●
●●●● ●●●

●● ●●● ●●● ●●● ●
●●●● ●
● ●●● ● ●●

● ●●
●
●●

●

●
●●
●●●

● ●● ●
●●●●●●● ●●●●●●

●●

●●
● ●●

●●
●●●●●

●● ●●
● ●

●●
●

●●
●●

●●
● ●●

● ●●
●●●

● ●●●●●●●
●
●● ●● ●

●
●● ●●

●● ●●●
●●

●●●● ●●●

●
●●●●

●

−1.0 0.0 1.0

●
●●●●

●●
● ●●

●● ● ●●● ●●●●
●● ●●●● ●

● ● ●
●● ●●

●
●● ●●● ●● ●

● ● ●
●● ●

●

●

●●● ●● ●● ●● ●●
●● ●●● ●●
●● ●● ● ●●●●● ● ●

●● ●● ●
● ●●● ●● ●
● ●●

●
●●

●

●
●●
● ●●

● ● ●●
●●●● ●●● ●●●● ●●● ●

●●
●●●●●

●● ●●●
● ●● ●
● ●

● ●
●

● ●
● ●

● ●
●●●

●● ●
●●●

●●●● ●●●● ●
●● ●●●

●
●●●●

●● ●●●
● ●

●●● ●●● ●

●
●●● ●

●

−
30

−
10

10

●
● ●●●

●● ●●●
● ●● ●● ●●● ●●

● ● ●●●●●
● ● ●

●●● ●
●

●● ●● ●●●●

●●●
●●●

●

●

● ●●● ●●●● ●● ●
●●●●● ●●

●●●● ●●●● ●●● ●
●● ● ●●

● ●●●● ●●
●● ●

●
●●

●

●
●●

● ●●
●●●●

● ●● ●● ●●● ●●● ●● ●●

●●
● ●●

● ●
● ●●● ●

●●●●
● ●
●●

●
●●

● ●

●●
●● ●

●● ●
●● ●

●●● ● ● ●● ●●
●●● ●●

●
●● ●●

● ●●● ●
● ●

●● ● ● ●●
●

●
● ●● ●

●

−
3

−
1

1

●
●
●●● ●

●

●

●
●

●
●

●
●

●
●

●
●
●
●

●
●●●
●
●
●

●

●

●
●●
●●

●
●●●●●●

●
●

●

●
●

●

●
●

●

● ●●●●
●●
●●
●
●●●

●

●

●●●●
●
●
●
●
●●

●
●
●●
●
●●●
●●
●

●●
●●
●●
●
●●

●

●●
●

●● ●
●

●
●
●●●

●
●●

●●
●●

●●
●

●●
●●

●
●
●

●●●
●

●●
●
●●
●

●
●

●
●●

●●
●

●●
●●

●●

●

●
●●

●
●●●●

●●
●
●
●
●
●
●●
●●●

●
●

●

●
● ●

●●
●

●

●
●

●

●●
●●
●

●

●

●

●
●

●
●

●

●●●

●

PC2 ●
●

●●●●
●

●

●
●

●
●

●
●

●
●

●
●
●

●
●

●●●
●

●
●

●

●

●
● ●

●●
●

●●●● ●●
●
●

●

●
●

●

●
●

●

● ●●●●
● ●● ●

●
●● ●
●

●

● ●●●
●

●
●
●

● ●

●
●

●●
●

●●●
●●

●
● ●

●●
● ●

●
● ●

●

●●●

●●●
●
●

●
● ● ●

●
●●

●●
●●
●●

●
●●
●●

●
●

●

●●●
●

● ●
●

●●●

●
●

●
● ●

●●
●
●●

● ●

●●

●

●
●●

●
●● ●●

●●
●

●
●

●
●
●●
●●●

●
●

●

●
● ●

●●
●

●

●
●

●

●●
●●

●

●

●

●

●
●
●

●

●

●●●

●

●
●

●●●●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●●

●
●

●
●

●

●
●●

●●
●

●● ●●● ●
●

●
●

●
●

●

●
●

●

●●●● ●
● ●● ●

●
●●●

●

●

●● ●●
●

●
●

●
● ●

●
●
●●

●
●●●

●●
●

● ●
●●

●●
●

● ●

●

●●
●

● ●●
●

●
●

●● ●
●

●●

●●● ●
●●

●
●●

● ●

●
●

●

●● ●
●

●●
●

●●
●

●
●

●
●●

●●
●

● ●
●●

●●

●

●
●●

●
● ●● ●

●●
●

●
●
●

●
●●

●● ●

●
●

●

●
●●

●●
●

●

●
●

●

●●● ●
●

●

●

●

●
●

●
●

●

●● ●

●

●
●

●●● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●●

●
●

●
●

●

●
●●

● ●
●

●● ●● ●●
●

●
●

●
●

●

●
●

●

●● ●●●
●●●●

●
● ●●

●

●

●● ●●
●

●
●

●
●●

●
●

●●●
● ●●

● ●
●

● ●
●●

● ●
●

●●

●

● ●
●

●●●
●

●
●

●●●
●

●●

●● ●●
●●

●
●●

● ●

●
●

●

●●●
●

●●
●

● ●●

●
●

●
●●

●●
●

●●
● ●

●●

●

●
● ●

●
● ●● ●

●●
●
●

●
●

●
● ●

● ●●

●
●

●

●
●●

●●
●

●

●
●

●

● ●● ●
●

●

●

●

●
●

●
●

●

●● ●

●

●
●
●
●●

●
●
●
●

●
●
●

●
●●
●
●●●

●
●

●●
●●●●

●
●

●
●

●
●
●

●

●●
●
●

●●

●●

●

●
●

●

●●

●

●

●

●
●
●
●
●
●

●
●
●●

●

●●
●

●

●●

●

●

●●
●
●
●●

●
●
●

●

●
●

●
●
●

●

●

●●
●
●

●

●

●

●

●●
●

●

●
●●●

●●
●

●

●
●●

●●
●●●
●

●

●
●
●●●
●
●

●
●

●
●●

●●
●

●●

●●

●●

●

●
●

●●●
●

●
●

●
●

●

●●

●●
●

●

●

●
●

●

●
●
●●●
●●●●●

●
●

●
●

●

●
●
●

●●
●

●

●●

●
●

●

●

●
●

●●●
●●

●●●

●

●
●

●
●●
●

●
●

●

●
●

●

●
● ●

●
●●●

●
●

●●
●●

●●

●
●

●
●

●
●
●

●

●●
●
●

●●

●●

●

●
●

●

●●

●

●

●

●
●
●

●
●
●

●
●

●●

●

● ●
●

●

●●

●

●

●●
●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●●
●
●

●

●

●

●

●●●
●

●
●●●

●●
●

●

●
●●

●●
●● ●

●

●

●
●

●● ●
●

●

●
●

●
●●

● ●
●

●●

●●

● ●

●

●
●

●●●
●

●
●
●

●

●

●●

●●
●

●

●

●
●

●

●
●

●●●
●●●●●

●
●

●
●

●

●
●

●

● ●
●

●

●●

●
●

●

●

●
●

●●●
● ●

●●●

●

PC3
●
●

●
●●

●
●

●
●

●
●

●

●
●●

●
●●●

●
●

● ●
●●

● ●

●
●

●
●

●
●

●

●

●●
●

●

● ●

● ●

●

●
●

●

● ●

●

●

●

●
●

●
●

●
●

●
●

●●

●

● ●
●

●

●●

●

●

●●
●

●
●●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●
●●●

●●
●

●

●
●●

●●
● ●●

●

●

●
●
● ●●

●
●

●
●

●
●●

●●
●

● ●

●●

● ●

●

●
●

●● ●
●

●
●

●
●

●

●●

●●
●

●

●

●
●

●

●
●
●● ●

●●● ●●

●
●

●
●

●

●
●

●

● ●
●

●

●●

●
●

●

●

●
●

●● ●
● ●

●● ●

●

−
2

0
1

2

●
●

●
●●

●
●

●
●

●
●

●

●
●●
●

●● ●

●
●

● ●
●●●●

●
●

●
●

●
●

●

●

●●
●

●

●●

●●

●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●
●

● ●

●

●●
●

●

●●

●

●

●●
●
●

●●

●
●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●

●

●

● ●
●

●

●
●●●

●●
●

●

●
●●

●●
●● ●

●

●

●
●

● ●●
●

●

●
●

●
●●

● ●
●

●●

● ●

●●

●

●
●

●●●
●

●
●

●
●

●

● ●

● ●
●

●

●

●
●

●

●
●
● ● ●

●● ●● ●

●
●

●
●

●

●
●

●

●●
●

●

● ●

●
●

●

●

●
●

●●●
● ●

●● ●

●

−
1.

0
0.

0
1.

0

●●
●
●●

●●
●

●

●
●
●

●

●
●
●

●
●
●
●

●

●

●

●
●●
●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●●
●

●

●
●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●●
●●

●
●

●

●
●

●●

●

●
●
●

●
●

●

●
●
●

●●●

●●●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●

●

●
●
●

●

●●●
●
●●
●
●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●

● ●●
●
●●

● ●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●
●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●●
●●

●
●

●

●
●

●●

●

●
●

●
●
●

●

●
●

●

●●●

● ●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

●●●
●

●●
●
●
●

●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●
●●

●

● ● ●
●

●●

● ●
●

●

●
●

●

●

●
●

●

●
●
●

●
●

●

●

●
●●

●

●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●●
●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

● ●

●●
●●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●●●

●●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●
●

●

●

● ●●
●
●●●
●

●
●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●●

●

● PC4 ●●
●

●●

●●
●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●
●●

●

●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●
●●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

● ●
● ●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●● ●

●● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●
●

●

●

●●●
●

● ●●
●

●
●

●

●

●●

●

●●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●
●●

●

●

−30 −10 10

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●
●

●

●
●
●

●
●

●

●●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●

●
●

●
●
●

●
●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−2 0 1 2

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

● ●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●● ●

●●
●
●

●

●

●

●

●

● ●●
●

●
●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●
●

●
●

●
●
●

●
●

●

●●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●●

●

●

●

●

●

●

●

● ●●

●●
●

●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●
●

● ●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

−0.5 0.5

−
0.

5
0.

5

PC5

6.1.2 Biplots: superimposing samples and variables after dimension reduc-
tion

The biplot shows the data in PC space and also shows the relative contributions of the
original variables in composing the transformation.

> biplot(pcs, choices = 2:3)

21

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

−
0.

15
−

0.
10

−
0.

05
0.

00
0.

05
0.

10
0.

15

PC2

P
C

3

1

2

3
4

5
6

7

8
9

10

11
12

13

14 15

16

1718 19

20

21

2223
24

25
2627

28
29

30

31

32

33

34

35

3637
38

39

4041

4243

44

45

46

47

48 49

50

51

52

53
54
55

56

57
58

59

60
61
62

63

64
65

66

67

6869

70

71

7273
74

75
76

77

78
79

80

81

82
83

84
85

86
87

88

8990

91

92

93

94

95

96

97
98

99
100

101
102103104

105106

107

108

109

110111

112
113

114115 116
117

118

119
120

121
122 123

124

125

126
127

128

129
130

131 132
133

134135

136137

138
139

140

141
142

143144145

146

147
148
149

150

151

152
153

154
155

156

157

158

159

160

161

162

163
164165

166
167168169170171

172

173

174

175

176

177

178

179

180 181

182

183

184185

186
187

188

189

190
191

192193194

195
196

197198199

200

−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

FL

RW

CL

CW

BD

In addition to the sample representation in PC1-PC2, we have a representation of the
original variables and their roles in defining the principal components transformation.
The right-hand and top axes measure the first and second components of the eigenvectors
corresponding to the original variables.

A formal definition of the biplot procedure is given in Venables and Ripley, and is
worth reviewing. Rows of X are observations and columns are variables. A rank-2
approximation to X is obtained via singular value decomposition, setting all but the
largest two singular values to zero. Now

X ≈ [u1u2]

[
λ1 0
0 λ2

] [
vt1
vt2

]
= GH t

and various approaches can be entertained for absorption of the eigenvalues λi into G
and H. A two-parameter system for doing this is

G = nα/2[u1u2]

[
λ1 0
0 λ2

]1−θ

, H = nα/2[v1v2]

[
λ1 0
0 λ2

]θ
.

The “principal component biplot” sets α = θ = 1, and consists in plotting rows of
G and H with distinguished symbols. Euclidean distances between rows of G represent

22

Mahalanobis distances between observations; inner products betwen rows of H represent
covariances between variables.

Exercise

Create a biplot using the gene expression data from ALL, focusing on genes found to be
predictive by randomForests. Interpret.

23

	Introduction
	Data structures
	Logistic regression and linear discriminant analysis
	Manual fit of a logistic regression
	Using MLInterfaces
	A simple application: single gene logistic regression
	Prediction with many genes

	Summary

	Some technical details of MLInterfaces
	The signature of MLearn
	Available learnerSchema instances
	Tuning

	Supervised learning: Additional illustrations
	CART
	Random forests and variable importance assessment
	Regularized discriminant analysis
	Support vector machine
	Boosting

	Unsupervised learning in brief
	PCA and biplots
	PCA defined and illustrated
	Biplots: superimposing samples and variables after dimension reduction

