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ABSTRACT  

Support Vector Machines (SVMs) and related kernel methods 
have become increasingly popular tools for data mining tasks such 
as classification, regression, and novelty detection.  The goal of 
this tutorial is to provide an intuitive explanation of SVMs from a 
geometric perspective.  The classification problem is used to 
investigate the basic concepts behind SVMs and to examine their 
strengths and weaknesses from a data mining perspective.    While 
this overview is not comprehensive, it does provide  resources for 
those interested in further exploring SVMs. 
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1. INTRODUCTION 
Recently there has been an explosion in the number of research 
papers on the topic of  Support Vector Machines (SVMs).  SVMs 
have been successfully applied to a number of applications 
ranging from particle identification, face identification, and text 
categorization to engine knock detection, bioinformatics, and 
database marketing.  The approach is systematic, reproducible, 
and properly motivated by statistical learning theory.  Training 
involves optimization of a convex cost function: there are no false 
local minima to complicate the learning process. SVMs are the 
most well-known of a class of algorithms that use the idea of 
kernel substitution and which we will broadly refer to as kernel 
methods.  The general SVM and kernel methodology appears to 
be well-suited for data mining tasks. 

In this tutorial, we motivate the primary concepts behind the SVM 
approach by examining geometrically the problem of 
classification.  The approach produces elegant mathematical 
models that are both geometrically intuitive and theoretically 
well-founded.  Existing and new special-purpose optimization 
algorithms can be used to efficiently construct optimal model 
solutions.   We illustrate the flexibility and generality of the 
approach by examining extensions of the technique to 
classification via linear programming, regression and novelty 
detection.  This tutorial is not exhaustive and many approaches 
(e.g. kernel PCA[56], density estimation [67], etc) have not been 
considered. Users interested in actually using SVMs should 
consult more thorough treatments such as the books by Cristianini 
and Shawe-Taylor [14], Vapnik's books on statistical learning 
theory  [65][66] and recent edited volumes [50] [56].  Readers 
should consult these and web resources (e.g. [14][69]) for more 
comprehensive and current treatment of this methodology.  We 

conclude this tutorial with a general discussion of the benefits and 
shortcomings of SVMs for data mining problems. 
To understand  the power and elegance of the SVM approach, one 
must grasp three key ideas:  margins, duality, and kernels.  We 
examine these concepts for the case of simple linear classification 
and then show how they can be extended to more complex tasks.  
A more mathematically rigorous treatment of the geometric 
arguments of this paper can be found in [3][12]. 

2. L INEAR DISCRIMINANTS 
Let us consider a binary classification task with datapoints xi 
(i=1,…,m) having corresponding labels yi=±1.  Each datapoint is 
represented  in a d dimensional input or attribute space.  Let the 
classification function be:  f(x)=sign(w·x-b).   The vector w 
determines the orientation of a discriminant plane.  The scalar b 
determines the offset of the plane from the origin.  Let us begin by 
assuming that the two sets are linearly separable, i.e. there exists a 
plane that correctly classifies all the points in the two sets.  There 
are infinitely many possible separating planes that correctly 
classify the training data.  Figure 1 illustrates two different 
separating planes. Which one is preferable?  Intuitively one 
prefers the solid plane since small perturbations of any point 
would not introduce misclassification errors.  Without any 
additional information, the solid plane is more likely to generalize 
better on future data.  Geometrically we can characterize the solid 
plane as being “ furthest”  from both classes.  

 
 

 

 

 

 

Figure 1 - Two possible linear  discr iminant planes 

How can we construct the plane “ furthest’ ’  from both classes?  
Figure 2 illustrates one approach.  We can examine the convex 
hull of each class’  training data  (indicated by dotted lines in 
Figure 2) and then find the closest points in the two convex hulls 
(circles labeled d and c).   The convex hull of a set of points is the 
smallest convex set containing the points. If we construct the 
plane that bisects these two points (w=d-c), the resulting classifier 
should be robust in some sense. 
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Figure 2 – Best plane bisects closest points in the convex 
hulls 

The closest points in the two convex hulls can be found by 
solving the following quadratic problem. 
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There are many existing algorithms for solving general-purpose 
quadratic problems and also new approaches for exploiting the 
special structure of SVM problems (See Section 7).   Notice that 
the solution depends only on the three boldly circled points. 

 

 

 

 

 

 

 

 

Figure 3 - Best plane maximizes the margin 

An alternative approach is to maximize the margin between two 
parallel supporting planes.  A plane supports a class if all points in 
that class are on one side of that plane. For the points with the 
class label +1 we would like there to exist w and b such that w·xi> 
b or w·xi-b>0 depending on the class label. Let us suppose the 
smallest value of |w·xi-b| is κ, then w·xi-b≥κ. The argument inside 
the decision function is invariant under a positive rescaling so we 
will implicitly fix a scale by requiring w·xi-b≥1. For the points 
with the class label  -1 we similarly require w·xi-b≤-1 .  To find 
the plane furthest from both sets, we can simply maximize the 
distance or margin between the support planes for each class as 
illustrated in Figure 3.  The support planes are “pushed”  apart 
until they “bump” into a small number of data points (the support 
vectors) from each class.  The support vectors in Figure 3 are 
outlined in bold circles. 

The distance or margin between these supporting planes 
w·x=b+1 and w·x=b-1 is γ = 2/||w||2.  Thus maximizing the margin 

is equivalent to minimizing ||w||2/2 in the following quadratic 
program: 
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The constraints can be simplified to ( ) 1i iy w x b⋅ − ≥ . 

Note that the solution found by “maximizing the margin between 
parallel supporting planes”  method (Figure 3) is identical to that 
found by “bisecting the closest points in the convex hull method”  
(Figure 2).  In the maximum margin method, the supporting 
planes are pushed apart until they bump into the support vectors 
(boldly circled points), and the solution only depends on these 
support vectors.  In Figure 2, these same support vectors 
determine the closest points in the convex hull.  It is no 
coincidence that the solutions are identical.  This is a wonderful 
example of the mathematical programming concept of duality.  
The Lagrangian dual of the supporting plane QP (2) yields the 
following dual QP  (see [66] for derivation): 
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which is equivalent modulo scaling to the closest points in the 
convex hull QP (1) [3].  We can choose to solve either the primal 
QP (2) or the dual QP (1) or (3).  They all yield the same normal 

to the plane 
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support vectors (for which 0iα > ). 

Thus we can choose to solve either the primal supporting plane 
QP problem  (2) or dual convex hull  QP problem (1)or (3) to give 
the same solution.  From a mathematical programming 
perspective, these are relatively straightforward problems from a 
well-studied class of convex quadratic programs.  There are many 
effective robust algorithms for solving such QP tasks.  Since the 
QP problems are convex, any local minimum found can be 
identified as the global minimum. In practice, the dual 
formulations (2) (3) are preferable since they have very simple 
constraints and they more readily admit extensions to nonlinear 
discriminants using kernels as discussed in later sections. 

3. THEORETICAL FOUNDATIONS 
From a statistical learning theory perspective these QP 
formulations are well-founded.  Roughly, statistical learning 
proves that bounds on the generalization error on future points not 
in the training set can be obtained.  These bounds are a function 
of the misclassification error on the training data and terms that 
measure the complexity or capacity of the classification function.  
For linear functions, maximizing the margin of separation as 
discussed above reduces the function capacity or complexity.  
Thus by explicitly maximizing the margin we are minimizing 
bounds on the generalization error and can expect better 
generalization with high probability. The size of the margin is not 
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directly dependent on the dimensionality of the data.  Thus we can 
expect good performance even for very high-dimensional data 
(i.e., with a very large number of attributes).  In a sense, problems 
caused by overfitting of high-dimensional data are greatly 
reduced. The reader is referred to the large volume of literature on 
this topic, e.g. [14][65][66], for more technical discussions of 
statistical learning theory. 

We can gain insight into these results using geometric arguments.  
Classification functions that have more capacity to fit the training 
data are more likely to overfit resulting in poor generalization.  
Figures 4 and 5 illustrate how a linear discriminant that separates 
two classes with a small margin has more capacity to fit the data 
than one with a large margin.  In Figure 4, a “skinny”  plane can 
take many possible orientations and still strictly separate all the 
data.  In Figure 5, the “ fat”  plane has limited flexibility to separate 
the data.  In some sense a fat margin is less complex than a skinny 
one.  So the complexity or capacity of a linear discriminant is a 
function of the margin of separation.  Usually we think of 
complexity of a linear function as being determined by the 
number of variables.  But if the margin is fat, then the complexity 
of a function can be low even if the number of variables is very 
high.  Maximizing the margin regulates the complexity of the 
model. 

 

 

 

 

 

 

Figure 4 - M any possible " skinny"  margin planes 

 

 

 

 

 

 

Figure 5 - Few possible " fat"  margin planes 

4. L INEARLY INSEPARABLE CASE 
 

 

 

 

 

 

Figure 6 – For  inseparable data the convex hulls   
intersect 

So far we have assumed that the two datasets are linearly 
separable.  If this is not true, the strategy of constructing the plane 
that bisects the two closest points of the convex hulls will fail.  As 

illustrated in Figure 6, if the points are not linearly separable than 
the convex hulls will intersect.  Note that if the single bad square 
is removed, then our strategy would work again.  Thus we need to 
restrict the influence of any single point.  This can be 
accomplished by using the reduced convex hulls instead of the 
usual definition of convex hulls [3].  The influence of each point 
is restricted by introducing an upper bound D<1 on the multiplier 
for that point.  Formally the reduced convex hull is defined as: 
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For D sufficiently small the reduced convex hulls will not 
intersect.  Figure 7 shows the reduced convex hulls (for D=1/2) 
and the separating plane constructed by bisecting the closest 
points in the two reduced convex hulls. The reduced convex hulls 
for each set are indicated by dotted lines. 

 

 

 

 

 

 

 

Figure 7 -  Best plane bisects the reduced convex hulls 

To find the two closest points in the convex hulls we modify the 
quadratic program  for the separable case by adding an upper 
bound D on multiplier for each constraint to yield:
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Figure 8 - Select plane to maximize margin and minimize error   

For the linearly inseparable case, the primal supporting plane 
method will also fail.  Since the QP task (2) is not feasible for the 
linearly inseparable case, the constraints must be relaxed.  
Consider the linearly inseparable problem shown in Figure 8.  
Ideally we would like no points to be misclassified and no points 
to fall in the margin.  But we must relax the constraints that insure 
that each point is on the appropriate side of its supporting plane.  
Any point falling on the wrong side of its supporting plane is 
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considered to be an error.   We want to simultaneously maximize 
the margin and minimize the error. 

This can also be accomplished through minor changes in the 
supporting plane QP problem (2).   A nonnegative slack or error 
variable iz  is added to each constraint and then added as a 

weighted penalty term in the objective as follows: 
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Once again we can show that the primal relaxed supporting plane 
method is equivalent to the dual problem of finding the closest 
points in the reduced convex hulls.   The Lagrangian dual of the 
QP task (6) is: 
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See [11][66] for the formal derivation of this dual.  This is the 
most commonly used SVM formulation for classification.  Note 
that the only difference between this QP (7) and that for the 
separable case QP (3) is the addition of the upper bounds on αj.  
Like the upper bounds in the reduced convex hull QP (5), these 
bounds limit the influence of any particular data point.  
Analogous to the linearly separable case, the geometric problem 
of finding the closest points in the reduced convex hulls QP (5) 
has been shown to be equivalent to the QP task in (7) modulo 
scaling of αi and D by the size of the optimal margin [3][12]. 

Up to this point we have examined linear discrimination for the 
linearly separable and inseparable cases.  The basic principle of 
SVM is to construct the maximum margin separating plane.  This 
is equivalent to the dual problem of finding the two closest points 
in the (reduced) convex hulls for each class.  By using this 
approach to control complexity, SVMs can construct linear 
classification functions with good theoretical and practical 
generalization properties even in very high-dimensional attribute 
spaces.  Robust and efficient quadratic programming methods 
exist for solving the dual formulations.  But if the linear 
discriminants are not appropriate for the data set, resulting in high 
training set errors, SVM methods will not perform well.  In the 
next section, we examine how the SVM approach has been 
generalized to construct highly nonlinear classification functions. 

5. NONLINEAR FUNCTIONS VIA 
KERNELS 
 

 

 

 

 

Figure 9 - Example requir ing a quadratic discr iminant 

Consider the classification problem in Figure 9.  No simple linear 
discriminant function will work well.  A quadratic function such 
as the circle pictured is needed.  A classic method for converting a 
linear classification algorithm into a nonlinear classification 
algorithm is to simply add additional attributes to the data that are 
nonlinear functions of the original data.  Existing linear 
classification algorithms can be then applied to the expanded 
dataset in feature space producing nonlinear functions in the 
original input space.  To construct a quadratic discriminant in a 
two dimensional vector space with attributes r and s, simply map 
the original two dimensional input space [ ],r s  to the five 

dimensional feature space 2 2, , , ,r s rs r s� �
� � and construct a linear 

discriminant in that space. Specifically, 
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The resulting classification function,  
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is linear in the mapped five-dimensional feature space but it is 
quadratic in the two-dimensional input space. 

For high-dimensional datasets, this nonlinear mapping method has 
two potential problems stemming from the fact that 
dimensionality of the feature space explodes exponentially. The 
first problem is that overfitting becomes a problem.  SVMs are 
largely immune to this problem since they rely on margin 
maximization, provided an appropriate value of parameter C is 
chosen.  The second concern is that it is not practical to actually 
compute ( )xθ .  SVMs get around this issue through the use of 

kernels. 

Examine what happens when the nonlinear mapping is introduced 

into QP (7). Let us 'define: : '( ) n nR R nx nθ → >> We 

need to optimize: 
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Notice that the mapped data only occurs as an inner product in the 
objective.  Now we apply a little mathematically rigorous magic 
known as Hilbert-Schmidt Kernels, first applied to SVMs in [11]. 
By Mercer’s Theorem, we know that for certain mappings θ  and 
any two points u and v, the inner product of the mapped points 
can be evaluated using the kernel function without ever explicitly 
knowing the mapping, e.g. ( ) ( ) ( , )u v K u vθ θ⋅ ≡ . Some of the 
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more popular known kernels are given below.  New kernels are 
being developed to fit domain specific requirements. 
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Table 1- Examples of Kernel Functions 

 

Substituting the kernel into the Dual SVM yields: 
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To change from a linear to nonlinear classifier, one must only 
substitute a kernel evaluation in the objective instead of the 
original dot product.  Thus by changing kernels we can get 
different highly nonlinear classifiers.  No algorithmic changes are 
required from the linear case other than substitution of a kernel 
evaluation for the simple dot product.  All the benefits of the 
original linear SVM method are maintained.  We can train a 
highly nonlinear classification function such as a polynomial or a 
radial basis function machine, or a sigmoidal neural network 
using robust, efficient algorithms that have no problems with local 
minima. By using kernel substitution a linear algorithm (only 
capable of handling separable data) can be turned into a general 
nonlinear algorithm. 

6. SUMMARY OF SVM METHOD 
 

The resulting SVM method (in its most popular form) can be 
summarized as follows 

1. Select the parameter C representing the tradeoff 
between minimizing the training set error and 
maximizing the margin.  Select the kernel function and 
any kernel parameters.  For example for the radial basis 
function kernel, one must select the width of the 
gaussian σ. 

2. Solve Dual QP (9) or an alternative SVM formulation 
using an appropriate quadratic programming or linear 
programming algorithm. 

3. Recover the primal threshold variable b using the 
support vectors 

4. Classify a new point x as follows: 

 ( ) ( ( , ) )
ii i

i

f x sign y K x x bα= −�  (10) 

Typically the parameters in Step 1 are selected using cross-
validation if sufficient data are available. However, recent model 
selection strategies can give a reasonable estimate for the kernel 
parameter without use of additional validation data [13][10]. As 

an example, we consider a recent scheme proposed by Joachims 
[30]. In this approach the number of leave-one-out errors of an 
SVM is bounded by |{ i:(2αiB

2+zi) ≥ 1} |/m where αi are the 
solutions of the optimization task in (9) and B2 is an upper bound 
on K(xi,xi) with K(xi,xj) ≥ 0 (we can determine zi from 
yi(�jαjK(xj,xi)-b) ≥ 1−zi). Thus, for a given value of the kernel 
parameter, the leave-one-out error is estimated from this quantity 
(the system is not retrained with datapoints left out: the bound is 
determined using the αi

0 from the solution of (9) ). The kernel 
parameter is then incremented or decremented in the direction 
needed to lower this bound. Model selection approaches such as 
this scheme are becoming increasingly accurate in predicting the 
best choice of kernel parameter without the need for validation 
data. 

This basic SVM approach has now been extended with many 
variations and has been applied to many different types of 
inference problems.  Different mathematical programming models 
are produced but they typically require the solution of a linear or 
quadratic programming problem.  The choice of algorithm used to 
solve the linear or quadratic program is not critical for the quality 
of the solution.  Modulo numeric differences, any appropriate 
optimization algorithm will produce an optimal solution, though 
the computational cost of obtaining the solution is dependent on 
the specific optimization utilized, of course.  Thus we will briefly 
discuss available QP and LP solvers in the next section.  

7. ALGORITHMIC APPROACHES 
Typically an SVM approach requires the solution of a QP or LP 
problem.  LP and QP type problems have been extensively studied 
in the field of mathematical programming.  One advantage of 
SVM methods is that this prior optimization research can be 
immediately exploited.  Existing general-purpose QP algorithms 
such as quasi-Newton methods and primal-dual interior-point 
methods can successfully solve problems of small size (thousands 
of points).  Existing LP solvers based on simplex or interior 
points can handle of problems of moderate size (ten to hundreds 
of thousands of data points).  These algorithms are not suitable 
when the original data matrix (for linear methods) or the kernel 
matrix needed for nonlinear methods no longer fits in main 
memory. For larger datasets alternative techniques have to be 
used. These can be divided into three categories: techniques in 
which kernel components are evaluated and discarded during 
learning,  decomposition methods in which an evolving subset of 
data is used, and new optimization approaches that specifically 
exploit the structure of the SVM problem.   

For the first category the most obvious approach is to sequentially 
update the αi and this is the approach used by the Kernel Adatron 
(KA) algorithm [23].  For some variants of SVM models, this 
method is very easy to implement and can give a quick impression 
of the performance of SVMs on classification tasks. It is 
equivalent to Hildreth's method in optimization theory.  However, 
it is not as fast as most QP routines, especially on small datasets.  
In general, such methods have linear convergence rates and thus 
may require many scans of the data. 

Chunking and decomposition methods optimize the SVM with 
respect to subsets.  Rather than sequentially updating the αi the 
alternative is to update the αi in parallel but using only a subset or 
working set of data at each stage.  In chunking [41], some QP 
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optimization algorithm is used to optimize the dual QP on an 
initial arbitrary subset of data. The support vectors found are 
retained and all other datapoints (with αi=0) discarded. A new 
working set of data is then derived from these support vectors and 
additional datapoints that maximally violate the storage 
constraints. This chunking process is then iterated until the margin 
is maximized. Of course, this procedure may still fail because the 
dataset is too large or the hypothesis modeling the data is not 
sparse (most of the αi are non-zero, say). In this case 
decomposition methods provide a better approach: these 
algorithms only use a fixed-size subset of data called the working 
set with the remainder kept fixed.  A much smaller QP or LP is 
solved for each working set.  Thus many small  subproblems are 
solved instead of one massive one. There are many successful 
codes based on these decomposition strategies.     SVM codes 
available online such as SVMTorch [15] and SVMLight  [32] use 
these working set strategies.    The LP variants are particularly 
interesting.  The fastest LP methods decompose the problem by 
rows and columns and have been used to solve the largest 
reported nonlinear SVM regression problems with up to to sixteen 
thousand points with a kernel matrix of over a billion elements 
[6][36]. 

The limiting case of decomposition is the Sequential Minimal 
Optimization (SMO) algorithm of Platt [43] in which only two αi 
are optimized at each iteration.   The smallest set of parameters 
that can be optimized with each iteration is plainly two if the 
constraint �i=1

m αiyi=0 is to hold. Remarkably, if only two 
parameters are optimized and the rest kept fixed then it is possible 
to derive an analytical solution that can be executed using few 
numerical operations. This eliminates the need for a QP solver for 
the subproblem.  The method therefore consists of a heuristic step 
for finding the best pair of parameters to optimize and use of an 
analytic expression to ensure the dual objective function increases 
monotonically.  SMO and improved versions [33] have proven to 
be an effective approach for large problems. 

The third approach is to directly attack the SVM problem from an 
optimization perspective and create algorithms that explicitly 
exploit the structure of the problem.   Frequently these involve 
reformulations of the base SVM problem that have proven to be 
just as effective as the original SVM in practice.   Keerthi et al  
[34] proposed a very effective algorithm based on the dual 
geometry of finding the two closest points in the convex hulls 
such as discussed in Section 2.  These approaches have been 
particularly effective for linear SVM problems.   We give some 
examples of recent developments for massive Linear SVM 
problems. The Lagrangian SVM (LSVM) method reformulates 
the classification problem as an unconstrainted optimization 
problem and then solves the problem using an algorithm requiring 
only solution of systems of linear equalities.  Using an eleven line 
Matlab code, LSVM solves linear classification problems for 
millions of points in minutes on a Pentium III [37].   LSVM uses 
a method based on the Sherman-Morrison-Woodbury formula that 
requires only the solution of systems of linear equalities.   This 
technique has been used to solve linear SVMs with up to 2 
million points.  The interior-point  [22] and Semi-Smooth Support 
Vector Methods [21] of Ferris and Munson are out-of-core  
algorithms that have been used to solve linear classification 
problems with up to 60 million data points in 34 dimensions.  
Overall, rapid progress is being made in the scalability of SVM 

approaches.  The best algorithms for optimization of SVM 
objective functions remains an active research subject. 

8. SVM  EXTENSIONS 
One of the major advantages of the SVM approach is its 
flexibility.  Using the basic concepts of maximizing margins, 
duality, and kernels, the paradigm can be adapted to many types 
of inference problems. We illustrate this flexibility with three 
examples.  The first illustrates that by simply changing the norm 
used for regularization, i.e., how the margin is measured, we can 
produce a linear program (LP) model for classification. The 
second example shows how the technique has been adapted to do 
the unsupervised learning task of novelty detection. The third 
example shows how SVMs have been adapted to do regression. 
These are just three of the many variations and extensions of the 
SVM approach to inference problems in data mining and machine 
learning. 

8.1 LP Approaches to Classification. 
A common strategy for developing new SVM methods with 
desirable properties is to adjust the error and margin metrics used 
in the mathematical programming formulation.  Rather than using 
quadratic programming it is also possible to derive a kernel 
classifier in which the learning task involves linear programming  
(LP) instead.  Recall that the primal SVM formulation (6) 
maximizes the margin between the supporting planes for each 
class where the distance is measured by the 2-norm.  The resulting 
QP does this by minimizing the error and minimizing the 2-norm 
of w.  If the model is changed to maximize the margin as 
measured by the infinity norm, one minimizes the error and 
minimizes the 1-norm of w (the sum of the absolute values of the 
components of w), e.g., 
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This problem is easily converted into a LP problem solvable by 
simplex or interior point algorithms.  Since the 1-norm of w is 
minimized the optimal w will be very sparse.  Many attributes will 
be dropped since they receive no weight in the optimal solution.   
Thus this formulation automatically performs feature selection 
and had been used in that capacity [4]. 

To create nonlinear discriminants the problem is formulated 
directly in the kernel or feature space.  Recall that in the original 
SVM formulation the final classification was done as follows: 
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By minimizing 
1

1

m

i
i

α α
=

=�  we obtain a solution which is 

sparse, i.e. relatively few datapoints will be support vectors. 
Furthermore, efficient simplex and interior point methods exist for 
solving linear programming problems so this is a practical 
alternative to conventional QP.  This linear programming 
approach evolved independently of the QP approach to SVMs  
and, as we will see, linear programming approaches to regression 
and novelty detection are also possible. 

8.2 Novelty Detection 
For many real-world problems the task is not to classify but to 
detect novel or abnormal instances. Novelty or abnormality 
detection has potential applications in many problem domains 
such as condition monitoring or medical diagnosis. One approach 
is to model the support of a data distribution (rather than having 
to find a real-valued function for estimating the density of the data 
itself). Thus, at its simplest level, the objective is to create a 
binary-valued function that is positive in those regions of input 
space where the data predominantly lies and negative elsewhere.  

One approach  is to find a hypersphere with a minimal radius R 
and center a which contains most of the data: novel test points lie 
outside the boundary of this hypersphere. The technique we now 
outline was originally suggested by Tax and Duin [62][63] and 
used by these authors for real life applications. The effect of 
outliers is reduced by using slack variables z to allow for 
datapoints outside the sphere.  The task is to minimize the volume 
of the sphere and the distance of the datapoints outside,  i.e. 
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Using the same methodology as explained above for SVM 
classification,  the dual Lagrangian is formed and kernel functions 
are substituted to produce the following dual QP task for novelty 
detection: 
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If mν > 1 then at bound examples will occur with αi=1/mν and 
these correspond to outliers in the training process. Having 
completed the training process a test point v is declared novel if:  
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where R2 is first computed by finding an example which is non-
bound and setting this inequality to an equality.  

An alternative approach has been developed by Schölkopf et al 
[51]. Suppose we restricted our attention to RBF kernels: in this 

case the data lie in a region on the surface of a hypersphere in 
feature space since θ(x)⋅θ(x)=K(x,x)=1. The objective is therefore 
to separate off this region from the surface region containing no 
data. This is achieved by constructing a hyperplane which is 
maximally distant from the origin with all datapoints lying on the 
opposite side from the origin, such that w·xi-b ≥ 0. After kernel 
substitution the dual formulation of the learning task involves 
minimization of: 
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To determine b we find an example, k say, which is non-bound (αi 
and βi are nonzero and 0 < αi < 1/mν) and determine b from:  

1
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=� .  The support of the distribution is then 

modeled by the decision function:  
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In the above models the parameter ν has a neat interpretation as 
an upper bound on the fraction of outliers and a lower bound of 
the fraction of patterns that are support vectors. Schölkopf et al. 
[51] provide good experimental evidence in favor of this approach 
including the highlighting of abnormal digits in the USPS 
handwritten character dataset.  

 

Figure 10 - Novelty detection using (17): points outside 
the boundary are viewed as novel. 

For the model of Schölkopf et al. the origin of feature space plays 
a special role. It effectively acts as a prior for where the class of 
abnormal instances is assumed to lie. Rather than repelling away 
from the origin we could consider attracting the hyperplane onto 
datapoints in feature space. In input space this corresponds to a 
surface that wraps around the data clusters (Figure 10) and can be 
achieved through the following linear programming task [9]: 
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The parameter b is just treated as an additional parameter in the 
minimization process, though unrestricted in sign. Noise and 
outliers are handled by introducing a soft boundary with error z. 
This method has been successfully used for detection of 
abnormalities in blood samples and detection of faults in the 
condition monitoring of ball-bearing cages [9].  

8.3 Regression 
 

SVM approaches for real-valued outputs have also been 
formulated and theoretically motivated from statistical learning 
theory [66].  SVM regression uses the ε−insensitive loss function 
shown in Figure 11. If the deviation between the actual and 
predicted value is less than ε, then the regression function is not 
considered to be in error.  Thus mathematically we would like 

i iw x b yε ε− ≤ ⋅ − − ≤ .  Geometrically, we can visualize this as a 

band or tube of size 2ε around the hypothesis function f(x) and 
any points outside this tube can be viewed as training errors (see 
Figure 12). 

 

 
 

Figure 11- A piecewise linear  εεεε-insensitive loss function 

 

As before we minimize w  to penalize overcomplexity. To 

account for training errors we also introduce slack variables z and 
ẑ i for the two types of training error. The first computes the error 

for underestimating the function.  The second computes the error 
for overestimating the function. These slack variables are zero for 
points inside the tube and progressively increase for points 
outside the tube according to the loss function used. This general 
approach is called ε-SV regression and is the most common 
approach to SV regression. For a linear ε−insensitive loss 
function the task is therefore to optimize: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 - Plot of  wx-b versus y with εεεε-insensitive 
tube. Points outside of the tube are er rors. 
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The same strategy of computing the Lagrangian dual and adding 
kernels functions is then used to construct nonlinear regression 
functions. 

Apart from the formulations given here it is possible to define 
other loss functions giving rise to different dual objective 
functions. In addition, rather than specifying ε a priori it is 
possible to specify an upper bound ν (0 ≤ ν ≤ 1) on the fraction of 
points lying outside the band and then find ε by optimizing 
[48][49]. As for classification and novelty detection it is possible 
to formulate a linear programming approach to regression e.g.:  
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Minimizing the sum of the αi approximately minimizes the 
number of support vectors.  Thus the method favors sparse 
functions that  smoothly approximate the data.  

9. SVM APPLICATIONS 
SVMs have been successfully applied to a number of applications 
ranging from particle identification [1], face detection [40] and 
text categorization [17][19][29][31] to engine knock detection 
[46], bioinformatics [7][24][28][71][38] and database marketing 
[5]. In this section we discuss three successful application areas as 
illustrations: machine vision, handwritten character recognition, 

( )w x b y ε⋅ − − =

( )w x b y ε⋅ − − = −
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and bioinformatics.  These are rapidly changing research areas so 
more contemporary accounts are best obtained from relevant 
websites [27].  

9.1 Applications to Machine Vision 
SVMs are very suited to the classsification tasks that commonly 
arise in machine vision. As an example we consider an application 
involving face identification [20]. This experiment used the 
standard ORL dataset [39] (consisting of 10 images per person 
from 40 different persons). Three methods were tried: a direct 
SVM classifier that learned the original images directly (apart 
from some local rescaling), a classifier that used more extensive 
pre-processing involving rescaling, local sampling and local 
principal component analysis, and an invariant SVM classifier 
that learned the original images plus a set of images which have 
been translated and zoomed. For the invariant SVM classifier the 
training set of 200 images (5 per person) was increased to 1400 
translated and zoomed examples and an RBF kernel was used. On 
the test set these three methods gave generalization errors of 
5.5%, 3.7%, and 1.5% respectively. This was compared with a 
number of alternative techniques with the best result among the 
latter being 2.7%. Face and gender detection have also been 
successfully achieved. 3D object recognition [47] is another 
successful area of application including 3D face recognition, 
pedestrian recognition [44], etc. 

9.2  Handwritten digit recognition 
The United States Postal Service (USPS) dataset consists of 9298 
handwritten digits each consisting of a 16×16 vector with entries 
between -1 and 1. An RBF network and a SVM were compared 
on this dataset. The RBF network had spherical Gaussian RBF 
nodes with the same number of Gaussian basis functions as there 
were support vectors for the SVM. The centers and variances for 
the Gaussians were found using classical k-means clustering. 
Gaussian kernels were used and the system was trained with a soft 
margin (with C=10.0). A set of one-against-all classifiers was 
used since this is a multi-class problem. With a training set of 
7291 and test set of 2007, the SVM outperformed an RBF 
network on all digits [55]. SVMs have also been applied to the 
much larger NIST dataset of handwritten characters consisting of 
60,000 training and 10,000 test images each with 400 pixels. 
Recently DeCoste and Scholkopf [16] have shown that SVMs 
outperform all other techniques on this dataset. 

9.3 Applications to Bioinformatics: functional 
interpretation of gene expression data.  
The recent development of DNA microarray technology is 
creating a wealth of gene expression data. In this technology RNA 
is extracted from cells in sample tissues and reverse transcribed 
into labeled cDNA. Using fluorescent labels, cDNA binding to 
DNA probes is then highlighted by laser excitation. The level of 
expression of a gene is proportional to the amount of cDNA that 
hybridizes with each DNA probe and hence proportional to the 
intensity of fluorescent excitation at each site. 

As an example of gene expression data we will consider a recent 
ovarian cancer dataset investigated by Furey et al. [24]. The 
microarray used had 97,802 DNA probes and 30 tissue samples 
were used. The task considered was binary classification (ovarian 
cancer or no cancer). This example is fairly typical for current 
datsets: it has a very high dimensionality with comparatively few 

examples. Viewed as a machine learning task the high 
dimensionality and sparsity of datapoints suggest the use of SVMs 
since the good generalization ability of SVMs doesn't depend on 
the dimensionality of the space but on maximizing the margin. 
Also the high-dimensional feature vector xi is absorbed in the 
kernel matrix for the purposes of computation, thus the learning 
task follows the reduced dimensionality of the example set size 
rather than the number of features. By constrast a neural network 
would need 97,802 input nodes and a correspondingly large 
number of weights to adjust. A further motivation for considering 
SVMs comes from the existence of the model selection bounds 
mentioned in Section 6 which may be exploited to achieve 
effective feature selection [69] thereby highlighting those genes 
which have the most significantly different expression levels for 
cancer. 

In the study by Furey et al. [24] three cancer datasets were 
considered: the ovarian cancer dataset mentioned above, a colon 
tumor dataset and datasets for acute myeloid leukemia (AML) or 
acute lymphoblastic leukemia (ALL). For ovarian cancer it was 
possible to get perfect classification using leave-one-out testing 
for one choice of the model parameters [24]. For the colon cancer 
expression levels from 40 tumor and 22 normal colon tissues were 
determined using a DNA microarray and leave-one-out testing 
gave six incorrectly labelled tissues.  

For the leukemia datasets [24][38] the training set consisted of 38 
examples (27 ALL and 11 AML) and the test set consisted of 34 
examples (20 ALL and 14 AML). A weighted voting scheme 
correctly learned 36 of the 38 instances and a self-organizing map 
gave two clusters: one with 24 ALL and 1 AML and the other 
with 10 AML and 3 ALL [25]. The SVM correctly learned all the 
training data. On the test data the weighted voting scheme gave 29 
of 34 correct, declining to predict on 5. For the SVM, results 
varied according to the different configurations that achieved zero 
training error. 30 to 32 of test instances were correctly labeled 
except for one choice with 29 correct and the 5 declined by the 
weighted voting scheme classified incorrectly.  

SVMs have been successfully applied to other bioinformatics 
tasks. In a second successful application they have been used for 
protein homology detection [28] to determine the structural and 
functional properties of new protein sequences. Determination of 
these properties is achieved by relating new sequences to proteins 
with known structural features. In this application the SVM 
outperformed a number of established systems for homology 
detection for relating the test sequence to the correct families. As 
a third application we also mention the detection of translation 
initiation sites (the points on nucleotide sequences where regions 
encoding proteins start). SVMs performed very well on this task 
using a kernel function specifically designed to include prior 
biological information [71]. 

10.  DISCUSSION 
Support Vector Machines have many appealing features. 

1. SVMs are a rare example of a methodology where geometric 
intutition, elegant mathematics, theoretical guarantees, and 
practical algorithms meet. 

2. SVMs represent a general methodology for many types of 
problems.  We have seen that SVMs can be applied to a wide 
range of classification, regression, and novelty detection 
tasks but they can also be applied to other areas we have not 
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covered such as operator inversion and unsupervised 
learning. They can be used to generate many possible 
learning machine architectures (e.g., RBF networks, 
feedforward neural networks) through an appropriate choice 
of kernel.  The general methodology is very flexible.  It can 
be customized to meet particular application needs.  Using 
the ideas of margin/regularization, duality, and kernels, one 
can extend the method to meet the needs of a wide variety of 
data mining tasks. 

3. The method eliminates many of the problems experienced 
with other inference methodologies like neural networks and 
decision trees. 

a. There are no problems with local minima.  We can 
construct highly nonlinear classification and 
regression functions without worrying about 
getting stuck at local minima. 

b. There are few model parameters to pick.  For 
example if one chooses to construct a radial basis 
function (RBF) machine for classification one need 
only pick two parameters:  the penalty parameter 
for misclassification and the width of the gaussian 
kernel.  The number of basis functions is 
automatically selected by the SVM algorithm.  

c. The final results are stable, reproducible, and 
largely independent of the specific algorithm used 
to optimize the SVM model.  If two users apply the 
same SVM model with the same parameters to the 
same data, they will get the same solution modulo 
numeric issues.  Compare this with neural 
networks where the results are dependent on the 
particular algorithm and starting point used. 

4. Robust optimization algorithms exist for solving SVM 
models.  The problems are formulated as mathematical 
programming models so state-of-the-art research from that 
area can be readily applied.   Results have been reported in 
the literature for classification problems with millions of data 
points. 

5. The method is relatively simple to use.   One need not be a 
SVM expert to successfully apply existing SVM software to 
new problems. 

6. There are many successful applications of SVM.  They have 
proven to be robust to noise and perform well on many tasks. 

 
While SVMs are a powerful paradigm, many issues remain to be 
solved before they become indispensable tools in a data miner’s 
toolbox.  Consider the following challenging questions and SVMs 
progress on them to date. 
 

1. Will SVMs always perform best? Will it beat my best 
hand-tuned method on a particular dataset? 
Though one can always anticipate the existence of 
datasets for which SVMs will perform worse than 
alternative techniques, this does not exclude the 
possibility that they perform best on the average or 
outperform other techniques across a range of important 
applications. As we have seen in the last section, SVMs 
do indeed perform best for some important application 
domains.  But SVMs are no panacea.  They still require 
skill to apply them and other methods may be better 
suited for particular applications. 

2. Do SVMs scale to massive datasets? 
The computational costs of an SVM approach depends 
on the optimization algorithm being used.  The very 
best algorithms to date are typically quadratic and 
involved multiple scans of the data.    But these 
algorithms are constantly being improved.  The latest 
linear classification algorithms report results for 60 
million data points.  So progress is being made. 

3. Do SVMs eliminate the model selection problem? 
Within the SVM method one must still select the 
attributes to be included in the problems, the type of 
kernel  (including its parameters), and model parameters 
that trade-off the error and capacity control.  Currently,  
the most commonly used method for picking these 
parameters is still cross-validation.  Cross-validation 
can be quite expensive.  But as discussed in Section 6 
researchers are exploiting the underlying SVM 
mathematical formulations and the associated statistical 
learning theory to develop efficient model selection 
criteria.  Eventually model selection will probably 
become one of the strengths of the approach.  

4. How does one incorporate domain knowledge into 
SVM? 
Right now the only way to incorporate domain 
knowledge is through the preparation of the data and 
choice/design of kernels. The implicit mapping into a 
higher dimensional feature space makes use of prior 
knowledge difficult.  An interesting question is how 
well will SVM perform against alternative algorithmic 
approaches that can exploit prior knowledge about the 
problem domain.  

5. How interpretable are the results produced by a SVM? 
Interpretability has not been a priority to date in SVM 
research.  The support vectors found by the algorithms 
provide limited information.  Further research into 
producing interpretable results with confidence 
measures is needed. 

���
What format must the data be in to use SVMs?  What is 
the effect of attribute scaling? How does one handle 
categorical variables and missing data?  
Like neural networks, SVMs were primarily developed 
to apply to real-valued vectors.  So typically data is 
converted to real-vectors and scaled.  Different methods 
for doing this conversion can affect the outcome of the 
algorithm.  Usually categorical variables are mapped to 
numeric values.  The problem of missing data has not 
been explicitly addressed within the methodology so 
one must depend on existing preprocessing techniques. 
There is however potential for SVMs to handle these 
issues better.  For example, new types of kernels could 
be developed to explicitly handle data with graphical 
structure and missing values.  

Though these and other questions remain open at the current time, 
progress in the last few years has resulted in many new insights 
and we can expect  SVMs  to grow in importance as a data mining 
tool. 
 
 

11.  ACKNOWLEDGMENTS 
 



SIGKDD Explorations. Copyright � 2000 ACM SIGKDD, December 2000. Volume 2, Issue 2   –   page 11 

This work was performed with the support of the National Science 
Foundation under grants 970923 and IIS-9979860. 

 

 

12.  REFERENCES 
 

[1] Barabino N., Pallavicini M., Petrolini A., Pontil M. and 
Verri A. Support vector machines vs multi-layer perceptrons 
in particle identification. In Proceedings of the European 
Symposium on Artifical Neural Networks '99 (D-Facto Press, 
Belgium), p. 257-262, 1999. 

[2] Bennett K. and Bredensteiner E. Geometry in Learning, in 
Geometry at Work, C. Gorini Editor, Mathematical 
Association of America, Washington D.C., 132-145, 2000. 

[3] Bennett K. and Bredensteiner E. Duality and Geometry in 
SVMs. In P. Langley editor, Proc. of 17th International 
Conference on Machine Learning, Morgan Kaufmann, San 
Francisco, 65-72, 2000 

[4] Bennett K., Demiriz A. and Shawe-Taylor J. A Column 
Generation Algorithm for Boosting. In P. Langley editor, 
Proc. of 17th International Conference on Machine 
Learning, Morgan Kaufmann, San Francisco, 57-64, 2000. 

[5] Bennett K., Wu D. and Auslender L. On support vector 
decision trees for database marketing. Research Report No. 
98-100, Rensselaer Polytechnic Institute, Troy, NY, 1998.  

[6] Bradley P., Mangasarian O. and Musicant, D. Optimization 
in Massive Datasets. To appear in Abello, J., Pardalos P., 
Resende, M (eds) , Handbook of Massive Datasets, Kluwer, 
2000. 

[7] Brown M., Grundy W., D. Lin, N. Cristianini, C. Sugnet, T. 
Furey, M. Ares Jr. D. Haussler. Knowledge-based Analysis 
of Microarray Gene Expression Data using Support Vector 
Machines.  Proceedings of the National Academy of 
Sciences,  97 (1), p. 262-267, 2000. 

[8] Burges C. A tutorial on support vector machines for pattern 
recognition. Data Mining and Knowledge Discovery, 2, p. 
121-167, 1998. 

[9] Campbell C. and Bennett K.  A Linear Programming 
Approach to Novelty Detection. To appear in Advances in 
Neural Information Processing Systems 14 (Morgan 
Kaufmann, 2001). 

[10] Chapelle O. and Vapnik V. Model selection for support 
vector machines. To appear in Advances in Neural 
Information Processing Systems, 12, ed. S.A. Solla, T.K. 
Leen and K.-R. Muller, MIT Press, 2000. 

[11]  Cortes C. and Vapnik V. Support vector networks.  Machine 
Learning 20, p. 273-297, 1995.  

[12] Crisp D. and Burges C. A geometric interpretation of ν-svm 
classifiers. Advances in Neural Information Processing 
Systems, 12, ed. S.A. Solla, T.K. Leen and K.-R. Muller, 
MIT Press, 2000.  

[13] Cristianini N., Campbell C. and Shawe-Taylor, J. 
Dynamically adapting kernels in support vector machines. 
Advances in Neural Information Processing Systems, 11, ed. 

M. Kearns, S. A. Solla, and D. Cohn, MIT Press, p. 204-210, 
1999. 

[14] Cristianini N. and Shawe-Taylor J. An Introduction to 
Support Vector Machines and other Kernel-based Learning 
Methods. Cambridge University Press, 2000.  www.support-
vector.net. 

[15] Collobert R. and Bengio S. SVMTorch web page, 
http://www.idiap.ch/learning/SVMTorch.html 

[16] DeCoste D. and Scholkopf B. Training Invariant Support 
Vector Machines. To appear in Machine Learning (Kluwer, 
2001).  

[17] Drucker H., with Wu D. and Vapnik V. Support vector 
machines for spam categorization. IEEE Trans. on Neural 
Networks, 10,  p. 1048-1054. 1999. 

[18] Drucker H., Burges C.,  Kaufman L., Smola A. and  Vapnik 
V. Support vector regression machines. In: M. Mozer, M. 
Jordan, and T. Petsche (eds.). Advances in Neural 
Information Processing Systems, 9, MIT Press, Cambridge, 
MA, 1997. 

[19] Dumais S., Platt J., Heckerman D. and Sahami M. Inductive 
Learning Algorithms and Representations for Text 
Categorization. 7th International Conference on Information 
and Knowledge Management, 1998. 

[20] Fernandez R. and Viennet E. Face identification using 
support vector machines. Proceedings of the European 
Symposium on Artificial Neural Networks (ESANN99), (D.-
Facto Press, Brussels) p.195-200, 1999 

[21] Ferris, M. and Munson T. Semi-smooth support vector 
machines. Data Mining Institute Technical Report 00-09, 
Computer Sciences Department, University of Wisconsin, 
Madison, Wisconsin, 2000.  

[22] Ferris M. and Munson T. Interior point methods for massive 
support vector machines. Data Mining Institute Technical 
Report 00-05, Computer Sciences Department, University of 
Wisconsin, Madison, Wisconsin, 2000. 

[23] Friess T.-T., Cristianini N. and Campbell, C. The kernel 
adatron algorithm: a fast and simple learning procedure for 
support vector machines. 15th Intl. Conf. Machine Learning, 
Morgan Kaufman Publishers, p. 188-196, 1998.  

[24] Furey T., Cristianini N., Duffy N., Bednarski D., Schummer 
M. and Haussler D. Support Vector Machine Classification 
and Validation of Cancer Tissue Samples using Microarray 
Expression Data. Bioinformatics 16 p. 906-914, 2000. 

[25] Golub T., Slonim D., Tamayo P., Huard C., Gassenbeek M., 
Mesirov J., Coller H., Loh M., Downing J., Caligiuri M., 
Bloomfield C. and Lander E. Modecular Classification of 
cancer: Class discovery and class prediction by gene 
expression monitoring. Science, 286 p. 531-537, 1999. 

[26]  Guyon I., Matic N. and Vapnik V. Discovering informative 
patterns and data cleaning. In U.M. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in 
Knowledge Discovery and Data Mining, MIT Press, p. 181--
203, 1996. 

[27] Guyon, I Web page on SVM Applications, 
http://www.clopinet.com/isabelle/Projects/SVM/applist.html 



SIGKDD Explorations. Copyright � 2000 ACM SIGKDD, December 2000. Volume 2, Issue 2   –   page 12 

[28]  Jaakkola T., Diekhans M. and Haussler, D. A discriminative 
framework for detecting remote protein homologies. MIT 
Preprint, 1999. 

[29] Joachims, T. Text categorization with support vector 
machines: learning with many relevant features. Proc. 
European Conference on Machine Learning (ECML), 1998. 

[30] Joachims, T. Estimating the Generalization Performance of 
an SVM efficiently.  In Proceedings of the 17th 
International Conference on Machine Learning, Morgan 
Kaufmann,. 431-438, 2000.  

[31] Joachims, T. Text categorization with support vector 
machines: learning with many relevant features. Proc. 
European Conference on Machine Learning (ECML), 1998. 

[32] Joachims, T. Web Page on SVMLight:                  
http://www-ai.cs.uni-dortmund.de 
/SOFTWARE/SVM_LIGHT/svm_light.eng.html 

[33] Keerthi S., Shevade S., Bhattacharyya C. and Murthy, K. 
Improvements to Platt's SMO algorithm for SVM classifier 
design. Tech Report, Dept. of CSA, Banglore, India, 1999. 

[34] Keerthi S., Shevade, S., Bhattacharyya C. and Murthy, K. A. 
Fast Iterative Nearest Point Algorithm for Support Vector 
Machine Classifier Design,  Techical Report TR-ISL-99-03, 
Intelligent Systems Lab, Dept of Computer Science and 
Automation, Indian Institute of Science, Bangalore, India, 
(accepted for publication in IEEE Transaction on Neural 
Networks) 1999.  

[35] Luenberger, D.  Linear and Nonlinear Programming. 
Addison-Wesley, 1984. 

[36] Mangasarian, O. and Musicant D.  Massive Support Vector 
Regression  Data mining Institute Technical Report 99-02, 
Dept of Computer Science, University of Wisconsin-
Madison, August 1999. 

[37] Mangasarian, O. and Musicant D.  Lagrangian Support 
Vector Regression  Data mining Institute Technical Report 
00-06, June 2000. 

[38] Mukherjee S., Tamayo P., Slonim D., Verri A.,  Golub T., 
Mesirov J. and Poggio T. Support Vector Machine 
Classification of Microarray Data, MIT AI Memo No. 1677 
and MIT CBCL Paper No. 182. 

[39] ORL dataset: Olivetti Research Laboratory, 1994,. 
http://www.uk.research.att.com/facedatabase.html 

[40] Osuna E., Freund R. and Girosi F. Training Support Vector 
Machines: an Application to Face Detection. Proceedings of 
CVPR'97, Puerto Rico, 1997 

[41] Osuna E., Freund R. and Girosi F. Proc. of  IEEE NNSP, 
Amelia Island, FL p. 24-26, 1997. 

[42]  Osuna E. and Girosi F.  Reducing the Run-time Complexity 
in Support Vector Machines. In B. Scholkopf, C.Burges and 
A. Smola (ed.), Advances in Kernel Methods: Support Vector 
Learning, MIT press, Cambridge, MA, p. 271-284, 1999. 

[43] Platt J. Fast training of SVMs using sequential minimal 
optimization. In B. Scholkopf, C.Burges and A. Smola (ed.), 
Advances in Kernel Methods: Support Vector Learning, MIT 
press, Cambridge, MA, p. 185-208, 1999. 

[44] Papageorgiou C., Oren M. and Poggio, T. A General 
Framework for Object Detection. Proceedings of 
International Conference on Computer Vision, p. 555-562, 
1998. 

[45] Raetsch G., Demiriz A., and Bennett K. Sparse regression 
ensembles in infinite and finite hypothesis space. 
NeuroCOLT2 technical report, Royal Holloway College, 
London, September, 2000. 

[46] Rychetsky M., Ortmann, S. and Glesner, M. Support Vector 
Approaches for Engine Knock Detection. Proc. International 
Joint Conference on Neural Networks (IJCNN 99), July, 
1999, Washington, USA 

[47] Roobaert D. Improving the Generalization of Linear Support 
Vector Machines: an Application to 3D Object Recognition 
with Cluttered Background. Proc. Workshop on Support 
Vector Machines at the 16th International Joint Conference 
on Artificial Intelligence, July 31-August 6, Stockholm, 
Sweden, p. 29-33 1999. 

[48] Scholkopf B., Bartlett P., Smola A. and Williamson R. 
Support vector regression with automatic accuracy control. 
In L. Niklasson, M. Boden and T. Ziemke, editors, 
Proceedings of the 8th International Conference on Artificial 
Neural Networks, Perspectives in Neural Computing, Berlin, 
Springer Verlag, 1998. 

[49] Scholkopf B., Bartlett P., Smola A., and Williamson R. 
Shrinking the Tube: A New Support Vector Regression 
Algorithm. To appear in: M. S. Kearns, S. A. Solla, and D. 
A. Cohn (eds.), Advances in Neural Information Processing 
Systems, 11, MIT Press, Cambridge, MA, 1999. 

[50] Scholkopf B., Burges C. and Smola A. Advances in Kernel 
Methods: Support Vector Machines. MIT Press, Cambridge, 
MA. 1998. 

[51] Scholkopf B., Platt J.C., Shawe-Taylor J., Smola A.J.,  
Williamson R.C. Estimating the support of a high-
dimensional distribution. Microsoft Research Corporation 
Technical Report MSR-TR-99-87, 1999. 

[52] Scholkopf B.,  Shawe-Taylor J., Smola A. and Williamson R. 
Kernel-dependent support vector error bounds. Ninth 
International Conference on Artificial Neural Networks, IEE 
Conference Publications No. 470, p. 304 - 309, 1999. 

[53] Scholkopf B., Smola A., and Muller, K.-R.. Kernel principal 
component analysis. In B. Scholkopf, C. Burges, and A. 
Smola, editors, Advances in Kernel Methods: Support Vector 
Learning. MIT Press, Cambridge, MA, 1999b. 327 -- 352. 

[54] Scholkopf B., Smola A., Williamson R., and Bartlett P. New 
support vector algorithms. To appear in Neural Computation, 
1999. 

[55] Scholkopf, B., Sung, K., Burges C., Girosi F., Niyogi P., 
Poggio T. and Vapnik V. Comparing Support Vector 
Machines with Gaussian Kernels to Radial Basis Function 
Classifiers. IEEE Transactions on Signal Processing, 45, p. 
2758-2765, 1997. 

[56] Smola A., Bartlett P., Scholkopf B. and Schuurmans C. 
(eds),  Advances in Large Margin Classifiers, Chapter 2, 
MIT Press, 1999. 



SIGKDD Explorations. Copyright � 2000 ACM SIGKDD, December 2000. Volume 2, Issue 2   –   page 13 

[57] Shawe-Taylor J. and Cristianini N. Margin distribution and 
soft margin. In A. Smola, P. Barlett, B. Scholkopf and C. 
Schuurmans (eds), Advances in Large Margin Classifiers, 
Chapter 2, MIT Press, 1999. 

[58] Smola A. and Scholkopf B. A tutorial on support vector 
regression. NeuroColt2 TR 1998-03, 1998. 

[59] Smola A. and Scholkopf B. From Regularization Operators 
to Support Vector Kernels. In: M. Mozer, M. Jordan, and T. 
Petsche (eds). Advances in Neural Information Processing 
Systems, 9, MIT Press, Cambridge, MA, 1997. 

[60]  Smola A., Scholkopf B. and Muller K.-R.. The connection 
between regularisation operators and support vector kernels. 
Neural Networks, 11 p. 637-649, 1998. 

[61] Smola A., Williamson R., Mika S., and Scholkopf B. 
Regularized principal manifolds. In Computational Learning 
Theory: 4th European Conference, volume 1572 of Lecture 
Notes in Artificial Intelligence (Springer), p. 214-229, 1999. 

[62] Tax D. and Duin R. Data domain description by Support 
Vectors. In Proceedings of ESANN99, ed. M Verleysen, D. 
Facto Press, Brussels, p. 251-256, 1999. 

[63] Tax D., Ypma A., and Duin R.. Support vector data 
description applied to machine vibration analysis. In: M. 
Boasson, J. Kaandorp, J.Tonino, M. Vosselman (eds.), Proc. 
5th Annual Conference of the Advanced School for 
Computing and Imaging (Heijen, NL, June 15-17), 1999, 
398-405. 

[64]  http://www.ics.uci.edu/mlearn/MLRepository.html  

[65] Vapnik, V. The Nature of Statistical Learning Theory. 
Springer, New York, 1995. 

[66] Vapnik, V.  Statistical Learning Theory. Wiley, 1998. 

[67] Weston, J. Gammerman, A., Stitson, M., Vapnik, V., Vovk, 
V. and Watkins, C.  Support Vector Density Estimation. In 
B. Scholkopf, C. Burges and A. Smola. Advances in Kernel 
Methods: Support Vector Machines. MIT Press, cambridge, 
M.A. p. 293-306, 1999.   

[68] Vapnik, V.and Chapelle, O. Bounds on error expectation for 
Support Vector Machines. Submitted to Neural 
Computation, 1999  

[69] Weston J., Mukherjee, Chapelle, Pontil M., Poggio T., and 
Vapnik V. Feature Selection for SVMs. To appear in 
Advances in Neural Information Processing Systems 14 
(Morgan Kaufmann, 2001). 

[70] http://kernel-machines.org/ 

[71] Zien A., Ratsch G., Mika S., Scholkopf B., Lemmen C.,  
Smola A., Lengauer T. and Muller K.-R. Engineering 
Support Vector Machine Kernels That Recognize Translation 
Initiation Sites. Presented at the German Conference on 
Bioinformatics, 1999.  

 

 

About the authors: 
 

Kristin P Bennett is an associate professor of mathematical 
sciences at Rensselaer Polytechnic Institute. Her research focus on 
support vector machines and other mathematical programming 
based methods for data mining and machine learning and their 
application to practical problems such as drug discovery, 
properties of materials, and database marketing.  She recently 
returned from being a visiting researcher at Microsoft Research 
and has consulted for Chase Manhattan Bank, Kodak and Pfizer.  
She earned a Ph.D. from the Computer Sciences Department at 
University of Wisconsin – Madison.  
(http://www.rpi.edu/~bennek). 

 

Colin Campbell  gained a BSc degree in Physics from Imperial 
College, London and a PhD in Applied Mathematics from the 
Department of Mathematics, King's College, University of 
London. He was appointed to the Faculty of Engineering, Bristol 
University in 1990.  His interests include neural computing, 
machine learning, support vector machines and the application of 
these techniques to medical decision support, bioinformatics and 
machine vision.  (http://lara.enm.bris.ac.uk/cig). 

 

 


