An Introduction to ShortRead

Martin Morgan
25 July, 2008

> library(ShortRead)

The ShortRead package aims to provide key functionality for input, qual-
ity assurance, and basic manipulation of ‘short read” DNA sequences such as
those produced by Solexa, 454, Helicos, SOLiD, and related technologies. This
vignette introduces key functionality.

The package is still very much in development. Support is most fully devel-
oped for Solexa; contributions from the community are welcome.

1 A first workflow

This section walks through a simple work flow. It outlines the hierarchy of files
produced by Solexa. It then illustrates a common way for reading short read
data into R.

1.1 SolexaPath: navigating Solexa output

SolexaPath provides functionality to navigate files produced by Solexa Genome
Analyzer pipeline software. A typical way to start a ShortRead session is to
point to the root of the output file hierarchy. The ShortRead package includes
a very small subset of files emulating this hierarchy. The root is found at

> exptPath <- system.file("extdata", package = "ShortRead")

Usually exptPath would be a location on the users’ file system. Key components
of the hierarchy are parsed into R with

> sp <- SolexaPath(exptPath)
> sp

class: SolexaPath

experimentPath: /home/mtmorgan/arch/x86_64/R-devel/library/ShortRead/extdata
dataPath: Data

scanPath: NA

imageAnalysisPath: Cl1-36Firecrest

baseCallPath: Bustard

analysisPath: GERALD

SolexaPath scans the directory hierarchy to identifying useful directories. For
instance, image intensity files are in the ‘Firecrest’ directory, while summary
and alignment files are in the analysis directory

> imageAnalysisPath (sp)

[1] "/home/mtmorgan/arch/x86_64/R-devel/library/ShortRead/extdata/Data/C1-36Firecrest"

> analysisPath(sp)

[1] "/home/mtmorgan/arch/x86_64/R-devel/library/ShortRead/extdata/Data/C1-36Firecrest/Bustazr

Most functionality in ShortRead uses baseCallPath or analysisPath. Solexa
documentation provides details of file content. SolexaPath accepts additional
arguments that allow individual file paths to be specified.

Many functions for Solexa data input ‘know’ where appropriate files are
located,. Specifying sp is often sufficient for identifying the desired directory
path. Examples of this are illustrated below, with for instance readAligned
and readFastq.

Displaying an object, e.g., sp, provides hints at how to access information
in the object, e.g., analysisPath. This is a convention in ShortRead.

1.2 readAligned: reading aligned data into R

Solexa s_N_export.txt files (_N_ is a placeholder for the lane identifier) rep-
resent one place to start working the short read data in R. These files result
from running ANALYSIS eland_extended in the Solexa Genome Analyzer. The
files contain information on all reads, including alignment information for those
reads successfully aligned to the genome.

ShortRead parses additional alignment files, including MAQ binary and text
(mapview) files. ShortRead flexibly parses many other Solexa files; aligned reads
represent just one entry point.

To read a single s_N_export.txt file into R, for instance from lane 2, use
the command

> aln <- readAligned(sp, "s_2_export.txt")
> aln

class: AlignedRead
length: 1000 reads; width: 35 cycles

chromosome: NM NM ... chrb.fa 29:255:255
position: NA NA ... 71805980 NA

strand: ... F

alignQuality: NumericQuality

alignData varLabels: run lane ... y filtering

readAligned illustrates the convention used for identifying files for input
into R and used by ShortRead. The function takes a directory path and a

pattern (as a regular expression, similar to the R function list.files) of file
names to match in the directory. Usually, all files matching the pattern are
read into a single R object; this behavior is desirable for several of the input
functions in ShortRead. In the present case the usual expectation is that a
single s_N_export.txt file will be read into a single R object, so the pattern
argument will identify a single file.

Currently supported alignment files include:

SolexaExport the Solexa ‘export’ file format described in the Solexa pipeline
version 0.3 documentation.

MAQMapview the MAQ ‘mapview’ format described at http://maq.sourceforge.
net/maq-manpage.shtml#5| as viewed 3 May, 2008.

MAQMap the MAQ binary ‘map’ format described at http://maq.sourceforge.
net/maq-manpage . shtml#5| as viewed 3 May, 2008.

Other parser contributions are welcome. Paired end read support is not yet
available.

1.3 Exploring ShortRead objects

aln is an object of AlignedRead class. It contains short reads and their (cali-
brated) qualities:

> sread(aln)

A DNAStringSet instance of length 1000
width seq
[1] 35 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC
2] 35 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT
(3] 35 ACCAAAAACACCACATACACGAGCAACACACGTAC
[4] 35 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA
(5] 35 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA
(6] 35 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA
[7] 35 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT
(8l 35 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG
(9] 35 AATGACCGATAATTAAAAATAAAATCTTTGCATAT

[992] 35 GAAAAAAAAACAGAACGATGCGTTCATCCACGGCA
[993] 35 TTATCCCTGGTTTCTCCTTGTGACTCTCTGTTGTC
[994] 35 AGAGCTTTAGGCAGCTCGGTGTGTCCTTTCTATTC
[995] 35 TATATTGCCCCCTGCAGCAATGCCCCTTACCCGTC
[996] 35 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG
[997] 35 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT
[998] 35 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA
[999] 35 ATCTACATTAAGGTCAATTACAATGATAAATAAAA
[1000] 35 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC

http://maq.sourceforge.net/maq-manpage.shtml#5
http://maq.sourceforge.net/maq-manpage.shtml#5
http://maq.sourceforge.net/maq-manpage.shtml#5
http://maq.sourceforge.net/maq-manpage.shtml#5

> quality(aln)

class: SFastqQuality
quality:
A BStringSet instance of length 1000
width seq
[1] 35 YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH
[2] 35 ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO
[3] 35 LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE
[4] 35 JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ

[5] 35 LLLILIIIDLLHLLLLLLLLLLLALLLLHLLLLEI
[6] 35 YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD
[7] 35 Z777777777ZY777727ZY772ZYYZZ7777ZZUUUUU
[8] 35 ZZ77777Z7ZUZ7UZZ77777277Z7Z7ZZYZYZZZUUHUH
[9] 35 ZZZZ7Z7ZZYZ7ZY7777Y777777777777ZZXUNUUU

[992] 35 YYYVVVSSGVSQIGIUSFFYIHLUUHFQXULPLLH

[993] 35 Z777777777777777777ZY7ZX777777ZSUUJUU
[994] 35 YIOSMSGSYOSUIYUSUDLIWUQIQQUUUFPLENG
[995] 35 Z777777777777ZYZXYZZ7ZX777ZX77ZSZUUUUU

[996] 35 ZZZZZ7ZYZZYUYZYUYZKYUDUZIYYODJGUGAA
[997] 35 Z77777777777777777ZYZZYXXZYSSXXUUHHQ
[998] 35 ZZZ777777777777Y777Z7ZY7Z777YZZXZUUUUS
[999] 35 ZZZ77777777ZYXZYZYZZYZYZZXKZSYXUUNUN
[1000] 35 Z7Z7777777777777Y77777ZZZYYSYSZXUUUUU

The short reads are stored as a DNAStringSet class. This class is defined
in Biostrings. It represents DNA sequence data relatively efficiently. There are
a a number of very useful methods defined for DNAStringSet. Some of these
methods are illustrated in this vignette. Other methods are described in the
help pages and vignettes of the Biostrings package.

Qualities are represented as SFastqQuality-class objects. The qualities in the
aln object returned by readAligned are of class BStringSet. The BStringSet
class is also defined in Biostrings, and shares many methods with those of
DNAStringSet.

The aln object contains additional information about alignments. Some of
this additional information is expected from any alignment, whether generated
by Solexa or other software. For example, aln contains the particular sequence
within a target (e.g., chromosomes in a genome assembly), the position (e.g.,
base pair coordinate), and strand to which the alignment was made, and the
quality of the alignment. The display of aln suggests how to access this infor-
mation. For instance, the strand to which alignments are made can be extracted
(as a factor with three levels; the level "" corresponds to unaligned reads) and
tabulated using familiar R functions.

> whichStrand <- strand(aln)
> class (whichStrand)

[1] "factor"

> levels(whichStrand)
(13 " “F" "R"

> table(whichStrand)

whichStrand
F R
594 203 203

This shows that about 59.4 percent of reads were not aligned (level "").
The aln object contains information in addition to that expected of all align-
ments. This information is accessible using alignData:

> alignData(aln)

An object of class "AlignedDataFrame"
readName: 1, 2, ..., 1000 (1000 total)
varLabels and varMetadata description:

run: Analysis pipeline run
lane: Flow cell lane

filtering: Read successfully passed filtering?
(6 total)

Users familiar with the EzpressionSet class in Biobase will recognize this as an
AnnotatedDataFrame-like object, containing a data frame with rows for each
short read. The AlignedDataFrame contains additional meta data about the
meaning of each column. For instance, data extracted from the Solexa export
file includes:

> varMetadata(alignData(aln))

labelDescription
run Analysis pipeline run
lane Flow cell lane
tile Flow cell tile
X Cluster x-coordinate
y Cluster y-coordinate

filtering Read successfully passed filtering?

Guides to the precise meaning of this data are on the help page for the Aligne-
dRead class, and in the manufacturer manuals.

Simple information about the alignments can be found by querying this
object. For instance, unaligned reads have NA as their position, and reads passing
Solexa ‘filtering’ (their base purity and chastity criteria) have a component of
their auxiliary alignData set to "Y". Thus the fraction of unaligned reads and
reads passing filtering are

> mapped <- !is.na(position(aln))
> filtered <- alignData(aln)[["filtering"]] == "Y"
> sum(!mapped)/length(aln)

[1] 0.594
> sum(filtered)/length(aln)
[1] 0.764

Extracting the reads that passed filtering but were unmapped is accom-
plished with

> failedAlign <- aln[filtered & !mapped]
> failedAlign

class: AlignedRead
length: 400 reads; width: 35 cycles

chromosome: NM NM ... NM 29:255:255

position: NA NA ... NA NA

strand: .

alignQuality: NumericQuality

alignData varLabels: run lane ... y filtering

Alternatively, we can extract just the short reads, and select the subset of those
that failed filtering.

> failedReads <- sread(aln)[filtered & !mapped]

1.4 Quality assessment

The ga function provides a convenient way to summarize read and alignment
quality. One way of obtaining quality assessment results is

> gaSummary <- qga(sp)

The ga object is a list-like structure. As invoked above and currently imple-
mented, qa visits all s_N_export.txt files in the appropriate directory. It ex-
tracts useful information from the files, and summarizes the results into a nested
list-like structure.

Evaluating qa for a single lane can take several minutes. For this reason a
common use case is to evaluate qa and save the result to disk for later use, e.g.,

> save(qaSummary, file = "/path/to/file.rda")

A feature of ShortRead is the use of Rmpi and coarse-grained parallel processing
when available. Thus commands such as

> library (Rmpi)

> mpi.spawn.Rslaves(nsl = 8)
> gaSummary <- ga(sp)

> mpi.close.Rslaves()

will distribute the task of processing each lane to each of the Rmpi workers.
With Rmpi, all 8 lanes of a Solexa experiment are processed in the time take to
process a single lane.

The elements of the quality assessment list are suggested by the output:

> qaSummary

class: SolexaExportQA(9)
QA elements (access with qal[["elt"]1]):
readCounts: data.frame(1l 3)
baseCalls: data.frame(l 5)
readQualityScore: data.frame(1536 4)
baseQuality: data.frame(94 3)
alignQuality: data.frame(69 3)
frequentSequences: data.frame(150 4)
sequenceDistribution: data.frame(11l 4)
perCycle: list(2)
baseCall: data.frame(173 4)
quality: data.frame(648 5)
perTile: 1list(2)
readCounts: data.frame(3 4)
medianReadQualityScore: data.frame(3 4)

For instance, the count of reads in each lane is summarized in the readCounts
element, and can be displayed as

> gaSummary[["readCounts"]]

read filtered aligned
s_2_export.txt 1000 764 406

> qaSummary[["baseCalls"]]

A C G T N
s_2_export.txt 9537 7480 7406 10537 40

The readCounts element contains a data frame with 1 row and 3 columns
(these dimensions are indicated in the parenthetical annotation of readCounts
in the output of qaSummary). The rows represent different lanes. The columns
indicated the number of reads, the number of reads surviving the Solexa filtering
criteria, and the number of reads aligned to the reference genome for the lane.
The baseCalls element summarizes base calls in the unfiltered reads.

Other elements of qaSummary are more complicated, and their interpretation
is not directly obvious. Instead, a common use is to forward the results of ga
to a report generator.

> report(qa, dest = "/path/to/qa_report.pdf")

The report includes R code that can be used to understand how SolexaExportQA-
class objects can be processed.

2 Using ShortRead for data exploration
2.1 Datal/O

ShortRead provides a variety of methods to read data into R, in addition to
readAligned.

2.1.1 readXStringColumns

readXStringColumns reads a column of DNA or other sequence-like data. For
instance, the Solexa files s_N_export.txt contain lines with the following in-
formation:

> pattern <- "s_2_export.txt"
> f1 <- file.path(analysisPath(sp), pattern)
> strsplit(readLines(fl, n = 1), "\t")

[[1]1]

[1] "HWI-EAS88"
[2] "3"

[3] "2"

[4] "1"

[5] "451"

[6] "945"

[73 "

[8] "

[9] "CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC"
[10] "YQMIMIMMLMMIGIGMFICMFFFIMMHIIHAAGAH"
[11] "Nm

[12] "

[13] "

[14] ""

[15] nn

[16] ""

[17] "

[18] "

[19] ""

[20] "

[21] nn

[22] "N"

> length(readLines(f1))
[1] 1000

Column 9 is the read, and column 10 the ASCII-encoded Solexa Fastq quality
score; there are 1000 lines (i.e., 1000 reads) in this sample file.

Suppose the task is to read column 9 as a DNAStringSet and column 10
as a BStringSet. DNAStringSet is a class that contains ITUPAC-encoded DNA
strings (IUPAC code allows for nucleotide ambiguity); BStringSet is a class that
contains any character with ASCII code 0 through 255. Both of these classes
are defined in the Biostrings package. readXStringColumns allows us to read
in columns of text as these classes.

Important arguments for readXStringColumns are the dirPath in which to
look for files, the pattern of files to parse, and the colClasses of the columns
to be parsed. The dirPath and pattern arguments are like 1ist.files. col-
Classes is like the corresponding argument to read.table: it is a list specifying
the class of each column to be read, or NULL if the column is to be ignored. In
our case there are 21 columns, and we would like to read in columns 9 and 10.
Hence

> colClasses <- rep(list(NULL), 21)
> colClasses[9:10] <- c("DNAString", "BString")
> names (colClasses) [9:10] <- c("read", "quality")

We use the class of the underlying object, DNAString or BString, rather than
the class of the object we will create, e.g., DNAStringSet. Applying names to
colClasses is not required but makes subsequent manipulation easy. We are
now ready to read our file

> cols <- readXStringColumns (analysisPath(sp), pattern,
+ colClasses)
> cols

$read
A DNAStringSet instance of length 1000
width seq
[1] 35 CCAGAGCCCCCCGCTCACTCCTGAACCAGTCTCTC
[2] 35 AGCCTCCCTCTTTCTGAATATACGGCAGAGCTGTT
(3] 35 ACCAAAAACACCACATACACGAGCAACACACGTAC
[4] 35 AATCGGAAGAGCTCGTATGCCGGCTTCTGCTTGGA
(5] 35 AAAGATAAACTCTAGGCCACCTCCTCCTTCTTCTA
(6] 35 AAAAAAAAAAAGGACACACCATGAGATCACAGGGA
(7] 35 TAAAAAATTAGCAAAAAACCAAAAATGTAATTGAT
(8] 35 TAAATCGTGCTGTAACCTTTCCCAACATCTCTGTG
[9] 35 AATGACCGATAATTAAAAATAAAATCTTTGCATAT

[992] 35 GAAAAAAAAACAGAACGATGCGTTCATCCACGGCA
[993] 35 TTATCCCTGGTTTCTCCTTGTGACTCTCTGTTGTC
[994] 35 AGAGCTTTAGGCAGCTCGGTGTGTCCTTTCTATTC
[995] 35 TATATTGCCCCCTGCAGCAATGCCCCTTACCCGTC
[996] 35 GTGGCAGCGGTGAGGCGGCGGGGGGGGGTTGTTTG
[997] 35 GTCGGAGGTCAGCAAGCTGTAGTCGGTGTAAAGCT
[998] 35 GTCATAAATTGGACAGTGTGGCTCCAGTATTCTCA

[999] 35 ATCTACATTAAGGTCAATTACAATGATAAATAAAA
[1000] 35 TTCTCAGCCATTCAGTATTCCTCAGGTGAAAATTC

$quality
A BStringSet instance of length 1000
width seq
[1] 35 YQMIMIMMLMMIGIGMFICMFFFIMMHITHAAGAH
[2] 35 ZXZUYXZQYYXUZXYZYYZZXXZZIMFHXQSUPPO
[3] 35 LGDHLILLLLLLLIGFLLALDIFDILLHFIAECAE
[4] 35 JJYYIYVSYYYYYYYYSDYYWVUYYNNVSVQQELQ

[5] 35 LLLILITIIDLLHLLLLLLLLLLLALLLLHLLLLEI
[6] 35 YYYYYYYWVVMGGUHQHQMUFMICDMCDHQHEDDD
[71 35 Z777777777Y77777Y7777ZYY777777ZUUUUU
[s] 35 ZZZ77Z7Z7ZUZZUZZZ7Z7Z7Z7Z7ZZZYZYZZZUUHUH
[9]1 35 ZZ77777ZY77Y7777Y777777777777ZZXUNUUU

[992] 35 YYYVVVSSGVSQIGIUSFFYIHLUUHFQXULPLLH

[993] 35 Z7Z7777777777777777727ZY7X7777777ZSUUJUU
[994] 35 YIOSMSGSYOSUIYUSUDLIWUQIQQUUUFPLENG
[995] 35 ZZZ777777777727ZYZXYZZZXZZZXZ7ZZSZUUUUU

[996] 35 ZZZ7Z7Z7ZYZZYUYZYUYZKYUDUZIYYODJGUGAA
[997] 35 ZZ77777777777777ZZZYZZYXXZYSSXXUUHHQ
[998] 35 Z777777777777777Y7777ZY7777Y77XZUUUUS
[999] 35 ZZZZZZ7Z7ZZZZYXZYZYZZYZYZZXKZSYXUUNUN
[1000] 35 77777777777777Y77777777ZYYSYSZXUUUUU

The file is parsed and appropriate data objects created.

A feature of readXStringColumns, and other input functions in the Short-
Read package is that all files matching pattern in the specified dirPath will be
read into a single object. This provides a convenient way to, for instance, parse
all tiles in a Solexa lane into a single DNAStringSet object.

There are several advantages to reading columns as XStringSet objects.
These are more compact than the corresponding character representation:

> object.size(cols$read)

[1] 45680

> object.size(as.character(cols$read))
[1] 94280

They are read in much more quickly. And the DNAStringSet and related classes
are used extensively in ShortRead, Biostrings, BSgenome and other packages
relevant to short read technology.

10

2.1.2 readFastq

readXStringColumns should be considered a ‘low-level’ function providing easy
access to columns of data. Another flexible input function is readFastq. Fastq
files combine reads and their base qualities in four-line records such as the
following:

> fqpattern <- "s_1_sequence.txt"
> f1 <- file.path(analysisPath(sp), fqpattern)
> readLines(f1, 4)

[1] "@HWI-EAS88_1_1_1_1001_499"
[2] "GGACTTTGTAGGATACCCTCGCTTTCCTTCTCCTGT"
[3] "+HWI-EAS88_1_1_1_1001_499"

(4] "111111111111¥1Y1111111111]]1VCHVMPLAS"

The first and third lines are an identifier (encoding the machine, run, lane, tile,
x and y coordinates of the cluster that gave rise to the read, in this case). The
second line is the read, and the fourth line the per-base quality. Files of this
sort can be read in as

> fq <- readFastq(sp, fqpattern)
> fq

class: ShortReadQ
length: 256 reads; width: 36 cycles

This resulting object (of class ShortReadQ) contains the short reads, their qual-
ities, and the identifiers:

> reads <- sread(fq)
> qualities <- quality(fq)
> class(qualities)

[1] "SFastqQuality"
attr(, "package")
[1] "ShortRead"

> id(fq)

A BStringSet instance of length 256
width seq
[1] 24 HWI-EAS88_1_1_1_1001_499

[2] 23 HWI-EAS88_1_1_1_898_392

[3] 23 HWI-EAS88_1_1_1_922_465

[4] 23 HWI-EAS88_1_1_1_895_493
[5] 23 HWI-EAS88_1_1_1_953_493

[6] 23 HWI-EASS88_1_1_1_868_763

[7] 23 HWI-EAS88_1_1_1_819_788

11

[8] 23 HWI-EAS88_1_1_1_801_123

9] 23 HWI-EASS88_1_1_1_885_419

[248] 23 HWI-EAS88_1_1_1_603_569
[249] 23 HWI-EAS88_1_1_1_718_225
[250] 23 HWI-EAS88_1_1_1_406_412

[251] 23 HWI-EAS88_1_1_1_549_119

[252] 23 HWI-EASS88_1_1_1_693_898

[253] 23 HWI-EAS88_1_1_1_183_559
[254] 23 HWI-EAS88_1_1_1_314_891
[255] 23 HWI-EAS88_1_1_1_884_867

[256] 23 HWI-EAS88_1_1_1_878_444

Notice that the class of the qualities is SFastqQuality, to indicate that these
are quality scores derived using the Solexa convention, rather than ordinary
BStringSet objects.

The object has essential operations for convenient manipulation, for instance
simultaneously forming the subset of all three components:

> fql1:5]

class: ShortReadQ
length: 5 reads; width: 36 cycles

2.1.3 Additional input functions

ShortRead includes additional functions to facilitate input. For instance, read-
Prb reads Solexa _prb.txt files. These files contain base-specific quality in-
formation, and readPrb returns an SFastqQuality-class object representing the
fastg-encoded base-specific quality scores of all reads.

Additional files can be parsed using standard R input methods. For instance,
the s_N_LLLL_int.txt files in the imageAnalysisPath directory contain lines,
one line per read, of nucleotide intensities. Each line contain lane, tile, X and
Y coordinate information, followed by quadruplets of intensity values. There
are as many quadruplets as there are cycles. Fach quadruplet represents the
intensity of the A, C, G, and T nucleotide at the corresponding cycle. Thus

> intFile <- list.files(imageAnalysisPath(sp), "s_1_0001_int.txt",
+ full = TRUE)
> strsplit(readLines(intFile, 1), "\t")[[1]]1[1:6]

[1] "1"
[2] "1"

[31 "109"
[4] "548"

[5] " 409.0 504.5 475.0 11120.8"
[6] " 880.8 3231.2 464.8 7933.4"

12

> intDf <- read.table(intFile)
> dim(intDf)

[1] 256 148

An interesting exercise is to display the intensities at cycle 2 (below) and to
compare these to cycle, e.g., 30.

> ¢c2 <- intDf[, 2 * 4 + 1:4]
> colnames(c2) <- C(HAH’ ucu’ ”G", IITH)
> print(splom(c2, pch = ".", cex = 3))

B L 10006000 10000

ra .
2-/.,) - 5000 T 5000
L. k.t'-'
. 0 5000 0
- 1 1

L 100 6)00 10000

- 1 . - 5000 © 5000 - ,“
Ik 3o | pdpdliginas s 2| O 5000 o | peliockes -

|
. . [y
. | 1oogo0 10000 | -
A
. » M
PR C R
if. # - 5000 © 5000 4
o o g *
F 10000 T T T B . B
60080000 . . .
- 8000 KN I “
- 6000 s B LIt
A 4000 - ﬂéﬁ : e {
) S it
2000 o 2F T 0w P '*.: T
02000000 | ¥ Sy | ¥y -

Scatter Plot Matrix

2.2 Sorting

Short reads can be sorted, or the permutation required to bring the short read
into lexicographic order, using srsort and srorder. These functions are differ-
ent from sort and order because the result is independent of the locale, and
operate quickly on DNAStringSet and BStringSet objects.

Duplicate reads can be identified with srduplicated, which returns a logical
vector much like duplicated.

2.3 Summarizing read occurrence

The tables function summarizes read occurrences, for instance,

13

> tbls <- tables(aln)
> names (tbls)

[1] "top" "distribution"
> tbls$top[1:5]

GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTAGA
GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTGiX
GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTTGi
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAi
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCi

2

> head(tbls$distribution)

nOccurrences nReads

1 1 972
2 2 5
3 3 1
4 5 1
5 10 1

The top component returned by tables is a list tallying the most commonly
occurring sequences in the short reads. Knowledgeable readers will recognize
the top-occurring read as a close match to one of the manufacturer adapters.
The distribution component returned by tables is a data frame that
summarizes how many reads (e.g., 972) are represented exactly 1 times.

2.4 Finding near matches to short sequences

Facilities exist for finding reads that are near matches to specific sequences,
e.g., manufacturer adapter or primer sequences. srdistance reports the edit
distance between each read and a (short!) reference sequence. To find reads
close to the most common read in the example above, one might

> dist <- srdistance(sread(aln), names(tbls$top) [1])[[1]]
> table(dist)[1:10]

dist
0O 1 2 3 4 7 910 12 13
10 711 2 1 1 1 1 3 2

‘Near’ matches can be filtered from the alignment, e.g.,

14

> alnSubset <- aln[dist > 4]

A different strategy can be used to tally or eliminate reads that are predom-
inantly of a single nucleotide. alphabetFrequency calculates the frequency of
each nucleotide (in DNA strings) or letter (for other string sets) in each read.
Thus one could identify and eliminate reads with more than 30 A nucleotides
with

> countA <- alphabetFrequency (sread(aln))[, "A"]
> alnNoPolyA <- aln[countA < 30]

alphabetFrequency, which simply counts nucleotides, is much faster than srdis-
tance, which performs full pairwise alignemnt of each read to the subject.

Users wanting to use R for whole-genome alignments or more flexible pairwise
aligment are encouraged to investigate the Biostrings package, especially the
PDict class and matchPDict and pairwiseAlignment functions.

2.5 pileup

pileup provides a convenient way to summarize where reads align on refer-
ence sequences. pileup uses alignments obtained from other sources, e.g.,
readAligned or the PDict family of functions in Biostrings.

3 Advance features

3.1 The pattern argument to input functions

Most ShortRead input functions are designed to accept a directory path ar-
gument, and a pattern argument. The latter is a grep-like pattern (as used
by, e.g., list.files). Many input functions are implemented so that all files
matching the pattern are read into a single large input object. Thus the
s_N_LLLL_seq.txt files consist of four numeric columns and a fifth column
corresponding to the short read. The following code illustrates the file structure
and inputs the final column as a DNAStringSet:

> seqFls <- list.files(baseCallPath(sp), "_seq.txt",
+ full = TRUE)
> strsplit(readLines (seqFls[[11], 1), "\t")

[[1]1]

[1] nqn
[2] nqn
[3] 109"
[4] ngag"

[5] "TTGTTTTCATGTGATTTTAAAAATGTATTTGTTTGT"

> colClasses <- c(rep(list(NULL), 4), "DNAString")
> reads <- readXStringColumns (baseCallPath(sp),
+ "s_1_0001_seq.txt", colClasses = colClasses)

15

The more general pattern

> reads <- readXStringColumns (baseCallPath(sp),
+ "s_1_.%_seq.txt", colClasses = colClasses)

inputs all lane 1 tile files into a single DNAStringSet object.

3.2 srapply

Solexa and other short read technologies often include many files, e.g., 1 s_L_NNNN_int.txt
file per tile, 300 tiles per lane, 8 lanes per flow cell for 2400 s_L_NNNN_int.txt

files per flow cell. A natural way to extract information from these is to write

short functions, e.g., to find the average intensity per base at cycle 12.

> calcInt <- function(filename, cycle, verbose = FALSE) {
+ if (verbose)

+ cat("calcInt", filename, cycle, "\n")

+ c12 <- read.table(filename) [, cycle * 4 +

+ 1:4]

+ colnames(c12) <- c("A", "C", "G", "T")

+ colMeans (c12)

+ }

One way to apply this function to all intensity files in a Solexa run is

> intFls <- list.files(imageAnalysisPath(sp), ".*_int.txt",
+ full = TRUE)
> Ilres <- lapply(intFls, calcInt, cycle = 12)

The files are generally large and numerous, so even simple calculations consume
significant computational resources. The srapply function is meant to provide
a transparent way to perform calculations like this distributed over multiple
nodes of an MPI cluster. Thus

> srres <- srapply(intFls, calcInt, cycle = 12)
> identical(lres, srres)

[1] TRUE

evaluates the function as lapply, whereas

> library(Rmpi)

> mpi.spawn.Rslaves(nsl = 16)

> srres <- srapply(intFls, calclnt, cycle = 12)
> mpi.close.Rslaves()

distributes the calculation over available workers, resulting in a speedup approx-
imately inversely proportional to the number of available compute nodes.

16

4 Conclusions and directions for development

ShortRead provides tools for reading, manipulation, and quality assessment of
short read data. Current facilities in ShortRead emphasize processing of single-
end Solexa data.

Development priorities in the near term include expanded facilities for im-
porting key file types from additional manufactures, more extensive quality as-
sessment methodologies, and development of infrastructure for paired-end reads.

17

	A first workflow
	SolexaPath: navigating Solexa output
	readAligned: reading aligned data into R
	Exploring ShortRead objects
	Quality assessment

	Using ShortRead for data exploration
	Data I/O
	readXStringColumns
	readFastq
	Additional input functions

	Sorting
	Summarizing read occurrence
	Finding near matches to short sequences
	pileup

	Advance features
	The pattern argument to input functions
	srapply

	Conclusions and directions for development

