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Experiments/Data
 There are n samples
 for each sample we measure mRNA

expression levels on G genes
 we consider the case where there are two

phenotypes (e.g. BCR/ABL vs NEG)
 A t-test can be computed, for each gene

comparing the two samples (other test
statistics can be handled easily)



Differential Expression
 Usual approach is to try and find the set of

differentially expressed genes [those with
extreme values of the univariate statistic, x]

 Often adjusting in some way for multiple
comparisons

 This can be criticized on many grounds
 it introduces an artificial distinction - differentially

expressed
 it focuses attention on only a few genes that change

by a large amount



Differential Expression
 p-value correction methods don’t really do what

we want
 p-values are not signed, so the effects may be

in different directions
 to see if too many genes of a particular type

have been selected a  Hypergeometric
calculation is made, but it relies on the articial
distinction between expressed and not
expressed

 we (and others) propose a different approach:
find sets of genes whose expression changes in
concert, possibly not by a large amount



Holistic Approach
 we will attempt to find gene sets, or sets,

of genes where there are potentially small
but coordinated changes in gene
expression

 for example, if all genes are expressed at
slightly higher (or all at slightly lower)
values for one  phenotype versus the
other



Related Work
 PGC-1 alpha-responsive genes involed in

oxidative phosphorylation are coordinately
downregulated in human diabetes. Mootha et
al, Nature Genetics, 2003

 mTOR inhibition reverses Akt-dependent
prostate intraepithelial neoplasia through
regulation of apoptotic and HIF-1 dependent
pathways, Majumder et al, Nature Medicine,
2004

 Discovering statistically significant pathways in
expression profiling studies. Tian et al, PNAS,
2005,



Gene Set Enrichment
 proposed by Mootha et al (2003)
 very similar (and was one of the motivations for

this work) but is more complex and
computationally expensive

 they discuss gene sets, S, which are the same
as gene sets

 they sidestep multiple testing issues by testing
a single hypothesis (the maximal observed per
set statistic)

 I will sidestep multiple testing issues by simply
reporting unadjusted p-values



Gene Set Enrichment
 For each gene set S, a Kolmogorov-Smirnov

running sum is computed
 The assayed genes are ordered according to

some criterion (say a two sample t-test; or
signal-to-noise ratio SNR).

 Beginning with the top ranking gene the
running sum increases when a gene in set S is
encountered and decreases otherwise

 The enrichment score (ES) for a set S is
defined to be the largest value of the running
sum.



Gene Set Enrichment
 The maximal ES (MES), over all sets S under

consideration is recorded.
 For each of B permutations of the class label,

ES and MES values are computed.
 The observed MES is then compared to the B

values of MES that have been computed, via
permutation.

 This is a single p-value for all tests and hence
needs no correction (on the other hand you are
testing only one thing).



From Mootha et al

ES=enrichment score
        for each gene
     = scaled K-S dist

A set called OXPHOS 
got the largest ES score,
with p=0.029 on 1,000
permutations.



OXPHOS
Other

All genes
OXPHOS

(A small difference 
for many genes)



Mootha’s ts are approx normal



Normal qq-plot of √n x t

OXPHOS



Selection of gene sets
 pathways (KEGG, cMAP, BioCarta)
 molecular function, biological process cellular

location (GO)
 predefined sets from the published literature

etc
 regions of synteny; chromosome bands
 some care should be exercised to select gene

sets that are of interest a priori
 there are more gene sets than genes so you will

simply end up back in the multiple comparison
problem



Gene Sets
 a set of gene sets is merely a grouping of genes

(entities)
 the groups do not need to be exhaustive or

disjoint
 we do not need to be completely right, we can

have some genes that are not in the gene set,
and we can miss some, but not too many

 we are relying on averaging to help adjust for
mistakes

 given the state of genomic knowledge this
seems reasonable



Software
 There are a number of Bioconductor

packages that you can use
 GSEAbase: has basic infrastructure

classes etc
 Category: tools for creating incidence

matrices and performing tests
 PGSEA, sigPathways, GlobalAncova, are

other packages you should consider



Simple Statistical Approach
 the data matrix has G rows (one for each gene)

and N columns (one for each sample)
 let’s assume that there are two phenotypes of

interest, so we have a two-sample comparison
 we can compute univariate test statistics, x, a

G-vector
 select some set of gene sets, or gene sets, and

let C denote the number of such sets
 you should address the problem that very

commonly some genes are represented by a
single probe and others by many (same for
Hypergeometric testing)



Gene Sets
 define A, a C by G matrix, such that A[i,j]=1 if

gene j is in gene set i, and A[i,j]=0,  otherwise
 the row sums of A represent the number of

genes in each gene set
 the column sums of A represent the number of

gene sets a gene is in
 if two rows are identical (for a given set of

genes) then the two gene sets are aliased (in
the usual statistical sense)

 other patterns can can cause problems and
need some study



Gene Sets
 the simplest transformation is to simply sum up

the t-statistics for all genes in each gene set,
             z = Ax
 we divide the sum by the square root of the

number of genes per gene set (this is right if
genes are independent - very unrealistic)

 then the resultant statistics, under the null
hypothesis, have approximately a N(0,1)
distribution

 we could also use other, per gene set, test
statistics such as the median, or sign-test



Gene Sets: Reference Distribution
 an alternative is to generate many versions of x,

the per gene set test statistic, from some
reference distribution

 e.g. go back to the original expression data and
either permute the sample labels or bootstrap to
provide a reference distribution

 you should not (as Tian et al do) permute the
gene labels [what is your null hypothesis?]



Comparisons
 you can do either within gene set comparisons

• for a given gene set is the observed test statistic
unusual

 or overall comparisons
• are any of the observed gene set statistics unusually

large with respect to the entire reference distribution
 the former requires some consideration of

multiple testing issues
 note that the approach is inherently multivariate,

one data set gives G test statistics (one per
gene) and these are transformed to yield one
per gene set



Bayesian Approach
 following Newton et al, we could compute

the posterior probability that a gene is
differentially expressed

 then x, our G vector is a set of
probabilities

 z = Ax, is then a C vector of the expected
number of differentially expressed genes
in each gene set



Bayesian Approach
 adjustment for gene set size is needed
 an expected number per gene set can be

obtained by using p*=mean of the
posterior probabilities and the gene set
size

 gene sets that deviate substantially from
that expected number are of interest



Example: ALL Data
 samples on patients with ALL were

assayed using HGu95Av2 GeneChips
 we were interested in comparing those

with BCR/ABL (basically a 9;22
translocation) with those that had no
cytogenetic abnormalities (NEG)

 37 BCR/ABL and 42 NEG



Example: ALL Data
 we then mapped the probes to KEGG pathways
 the mapping to pathways is via EntrezGene ID

• we have a many-to-one problem and solve it by
taking the probe set with the most extreme t-statistic

 we chose to only consider pathways with at
least 10 genes

 this leaves us with 79 samples, 1036 genes and
70 pathways





Which gene sets
 so the qq-plot looks interesting and

identifies at least one gene set that looks
interesting

 we identify it, and create a plot that shows
the two group means (BCR/ABL and
NEG)

 if all points are below or above the 45
degree line that should be interesting



Different Univariate test statistics



BCR/ABL vs NEG - gene sets are cytochrome
band (only those with more than 10 genes per
band) Two

largest
are
9q34
and
1p36 -
both
already
implicat
ed



Aliasing
 all others have ignored this - but it does

matter
 when we use gene sets, two gene sets

can have substantial overlap
 if they are both significant, we might ask

why



For cytokine-cytokine and Jak-
Stat we have



Comparison of Gene Expression



The Analysis
 and when the genes involved, are

separated into three groups
 those in Cytokine-Cytokine only
 those in Jak-Stat only
 those common

 then we find that the first and third are
significant, but the second (Jak-Stat
alone) is not



Some other extensions
 gene sets might be a better way to do

meta-analysis
 one of the fundamental problems with

meta-analysis on gene expression data is
the gene matching problem

 even technical replicates on the same
array do not show similar expression
patterns



Extensions
 if instead we compute per gene set effects

these are sort of independent of the probes that
were used

 matching is easier and potentially more
biologically relevant

 the problem of adjustment still exists; how do
we make two gene sets with different numbers
of expression estimates comparable



Extensions
 you can do per array computations
 residuals are one of the most underused

tools for analyzing microarrays
 we first filter genes for variability
 next standardize on a per gene basis -

subtract the median divide by MAD
 now X*= AX, is a Cxn array, one entry for

each gene set for each sample





Concluding Remarks
 the analysis of gene expression data still

requires more research
 we should be looking at mechanisms for

coordinated expression
 transcription factors
 amplifications
 deletions
 change in chromatin structure



Concluding Remarks
 p-value corrections are not really the right

approach here
 bringing more biology to bear seems to

be more likely to bear fruit
 we need some results to indicate how to

deal with the coordinated gene
expression (lack of independence within a
gene set)
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