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Machine Learning, Part I

Robert Gentleman, Wolfgang Huber, Vince
Carey, Raphael Irizarry

Abstract

In this lab we will cover some of the basic principles of machine
learning. We will use the ALL data set and will work on two different
problems. For one of them it is relatively easy to classify the samples
and for the other, it is harder. You will be introduced to some of
the basic concepts in machine learning such as the distance function,
supervised and unsupervised machine learning, as well as the so-
called confusion matrix.

1.1 Introduction

Fundamental to the task of machine learning is selecting a distance. In
many cases it is more important than the choice of classification method
(you might want to try some different choices for distances in the prob-
lems below and see what changes). Feature selection is also an important
problem. We suggest that you take a simple approach and use genes which
are differentially expressed between the phenotypes under study. In some
cases this can be improved on, but in general it seems to be a reasonable
approach. In most cases we have no a priori reason to believe that any
one gene should get more weighting than another. If that is true, then we
must standardize the genes before carrying out machine learning. If we do
not standardize them (for each gene, subtract some measure of the center
and divide by some measure of the variability, across samples), then many
machine learning algorithms (and distances) will treat different genes quite
differently, typically depending on their observed mean expression level and
its variation across samples. So, standardization is recommended, however,
it raises an important prerequisite. If you decide to standardize your ex-
pression data you will need to perform some sort of non-specific filtering to
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remove genes that have low variability, for example because they are not ex-
pressed, or because the microarray experiment did not work for these genes
due to low labeling or hybridization efficiencies. The reason you must do
this is that we do not want to amplify what is essentially noise by the
operation of standardization.

1.1.1 Machine Learning Check List

1. Filter out features (genes) which show little variation across samples,
or which are known not to be of interest. If appropriate transform
features to all be on the same scale.

2. Select a distance measure. What does it mean for two genes to be
close? Make sure that the selected distance embodies your notion of
similarity.

3. Feature selection: select features to be used for machine learning.

4. Select the algorithm: which of the very many machine learning
algorithms do you want to use?

5. Assess the performance of your analysis. If performing supervised
machine learning performance is often assessed using cross-validation.
For unsupervised machine learning (or clustering) it is more difficult
to determine how well the algorithm has performed.

Non-specific filtering

First load the Biobase and ALL packages and then use the data function
to load the ALL data. Since the data in ALL are large and phenotypically quite
diverse, we reduce the cases down to a reasonable two group comparison. We will
return to a multigroup comparison later.

> library("Biobase")

> library("ALL")

> data(ALL, package = "ALL")

> ALLBs = ALL[, grep("^B", as.character(ALL$BT))]

> ALLBCRNEG = ALLBs[, ALLBs$mol == "BCR/ABL" | ALLBs$mol == "NEG"]

> ALLBCRNEG$mol.biol = factor(ALLBCRNEG$mol.biol)

> numBN = length(ALLBCRNEG$mol.biol)

> ALLBCRALL1 = ALLBs[, ALLBs$mol == "BCR/ABL" | ALLBs$mol == "ALL1/AF4"]

> ALLBCRALL1$mol.biol = factor(ALLBCRALL1$mol.biol)

> numBA = length(ALLBCRALL1$mol.biol)

Question 1
How many samples are in the BCR/ABL-NEG subset? How many are in the
BCR/ABL-ALL1/AF4 subset?
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You now have two data sets to work with. Most of the code for carrying out
machine learning can easily be applied to either data set. The comparison of
BCR/ABL to NEG is difficult, and the error rates are typically quite high. On
the other hand, the comparison of BCR/ABL to ALL1/AF4 is rather easy, and
the error rates should be small. In this lab we will first select some genes to use as
features for the rest of the lab. Next we will use those features to do some machine
learning, in particular we will make use of cross-validation to select parameters
of the classification model and see how to assess the model itself. Many of the
details can be explored in much more detail, and some suggestions are made.

Preprocessing

First carry out non-specific filtering, as described in the Differential Expression
Lab. You should remove those genes that you think are not sufficiently informative
to be considered further. One recommendation is to filter on variability. Here, we
take the simplistic approach of using the 75th percentile of the interquartile range
(IQR) as the cut-off point. We do this because we want to have relatively few
genes to deal with so the examples will run quickly on laptops. Finding the IQR
can be done either by applying the IQR function over all rows of the ExpressionSet ,
or by manually computing quantiles using the very fast function rowQ (there are
some slight, hardly relevant numerical differences).

> lowQ = rowQ(ALLBCRNEG, floor(0.25 * numBN))

> upQ = rowQ(ALLBCRNEG, ceiling(0.75 * numBN))

> iqrs = upQ - lowQ

> giqr = iqrs > quantile(iqrs, probs = 0.75)

> sum(giqr)

[1] 3156

> BNsub = ALLBCRNEG[giqr, ]

Exercise 1
What kind of object is BNsub?

Solutions: class(BNsub)

1.2 Selecting a Distance

To some extent your choices here are not always that flexible because many ma-
chine learning algorithms have the distance measure fixed in advance. There are a
number of different tools that you can use in R to compute the distance between
objects. They include the function dist, the function daisy from the cluster
package (?), and the functions in the bioDist package. The bioDist package is
discussed in Chapter 12 of ?. Some ideas on visualizing distance measures can be
found in Section 10.5 of that same reference.
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Exercise 2
What distance measures are availble in the bioDist package? Hint: load the
package and then look at the loaded functions, or read the vignette.

Solutions: The distances available include Kullback-Leibler distance, mutual
information distance, Euclidean distance, Manhattan distance and correlation
distance (using Pearson, Spearman or Kendall’s tau). See the dist function, and
the daisy function in the cluster package, for other distances.
To make the computations easier, we take the first sixty genes from the BNsub

data set and use those for the exercises in this section. The dist function com-
putes the distance between rows of an input matrix. Since we want the distances
between samples, we transpose the matrix using the function t. The return value
is an instance of the dist class and you should read the manual page carefully
to find out more about this class. Since this class is not supported by some R
functions we will want to use, we also convert it to a matrix.

> dSub <- BNsub[1:60, ]

> eucD <- dist(t(exprs(dSub)))

> eucD@Size

[1] 79

> eucM <- as.matrix(eucD)

We can use this as an input to various clustering algorithms and plot the outputs.
But for now we want to visualize it as a heatmap.

> library("RColorBrewer")

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> heatmap(eucM, sym = TRUE, col = hmcol, distfun = function(x) as.dist(x))

Question 2
What do you notice most about the heatmap? What color is used to encode
objects that are similar? What color encodes objects that are dissimilar?

Solutions: The diagonal band of red squares is probably the most prominent
feature. After that you might notice that there is one sample, that seems to be a
long way from all other samples.

Question 3
Repeat this analysis using Kendall’s tau distance. How much does the heatmap
change?
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Figure 1.1. A heatmap of the between-sample distances.

Solutions:
Since the bioDist package is loaded we can simply the call the tau.dist function.
All other steps are essentially the same, as before.

> tauD = tau.dist(t(exprs(dSub)))

> tauD@Size

[1] 79

> tauM <- as.matrix(tauD)
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Since our goal is to introduce you to a number of different distances and to help
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you understand their effects, visualization is important. We will also create a few
helper functions to make it easier to carry out certain transformations and cal-
culations. First we define a function to find the closest neighbor of a particular
observation given a distance matrix and a label specifying an observation in the
distance matrix.

> closestN = function(distM, label) {

+ loc = match(label, row.names(distM))

+ names(which.min(distM[label, -loc]))

+ }

> closestN(eucM, "03002")

[1] "22013"

Exercise 3
Compute the distance between the samples using the MIdist function from the
bioDist package. What distance does this function compute? Which sample is
closest to "03002" in this distance?

Solutions:

> library("bioDist")

> cD = MIdist(t(exprs(dSub)))

> cM = as.matrix(cD)

> closestN(cM, "03002")

[1] "84004"

Feature Selection

Now we are ready to select features. Perhaps the easiest approach to feature
selection is to use a t-test.

> library("genefilter")

> tt1 = rowttests(BNsub, "mol.biol")

> numToSel <- 50

Using the t-test statistics, we will select the top 50 genes to use for the machine
learning questions below.

> tt1ord = order(abs(tt1$statistic), decreasing = TRUE)

> top50 = tt1ord[1:numToSel]

> BNsub1 = BNsub[top50, ]

Exercise 4
What is the value of the largest t-statistic? Which gene does it correspond to?
What is the corresponding p-value?
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Solutions: To solve this problem we use the which.max, that returns the index
of the largest element of a vector. Using that, we can obtain the t-statistic, p-value,
and feature name and hence the symbol, etc.

> largeT = which.max(tt1$statistic)

> tt1$statistic[largeT]

[1] 9.261419

> tt1$p.value[largeT]

[1] 3.762489e-14

> featureNames(BNsub)[largeT]

[1] "1636_g_at"

> hgu95av2SYMBOL[[featureNames(BNsub)[largeT]]]

[1] "ABL1"

Next we will standardize all gene expression values. As discussed above, it
is important that non-specific filtering has already been applied, otherwise the
standardization step will add unnecessary noise to the data. Since we will compute
IQR by row many times in the next code chunk, we first write a helper function
to compute this for us.

> rowIQRs = function(eSet) {

+ numSamp = ncol(eSet)

+ lowQ = rowQ(eSet, floor(0.25 * numSamp))

+ upQ = rowQ(eSet, ceiling(0.75 * numSamp))

+ upQ - lowQ

+ }

Exercise 5
Use the rowIQRs function to repeat the IQR calculation that was carried out
previously. Do you get the same values?

Solutions:
We first capture the output of the function call, and then compare this, element-
wise to the previously computed value.

> byFun = rowIQRs(ALLBCRNEG)

> all(byFun == iqrs)

[1] TRUE
Now we are ready to standardize all genes, which we will do by subtracting the

row medians and dividing by the row IQRs. Again, we write a helper function,
standardize, that will do most of the work.

> standardize = function(x) (x - rowMedians(x))/rowIQRs(x)

> exprs(BNsub1) = standardize(exprs(BNsub1))

Take a quick look at the data to verify that everything went as intended.
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> library("RColorBrewer")

> hmcol <- colorRampPalette(brewer.pal(10, "RdBu"))(256)

> spcol <- ifelse(BNsub1$mol.biol == "BCR/ABL", "goldenrod", "skyblue")

> heatmap(exprs(BNsub1), col = hmcol, ColSideColors = spcol)
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Figure 1.2. Heatmap.

Exercise 6
a What do we expect to see in the heatmap? Do we see that?

b What color corresponds to high values of expression?

c Optional: Repeat the calculations to this point using ALLBCRALL1.

d Optional: Use either the ROC package or the edd package to select genes
for the machine learning portion. Alternatively you could use genes in a
GO category or a KEGG pathway (but you still want to use only those
that passed your non-specific filter).

Solutions:

a We expect to see our two groups well differentiated, and we do.

b Blue colors correspond to higher values. So we see that the BCR/ABL
group tends to have higher values of expression than the NEG group for
most of the genes.

c This question is a bit too open ended to provide a concise answer to.

d This question is a bit too open ended to provide a concise answer to.
Make sure that you standardize the gene expression data once you have selected
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your set of interesting genes. This standardization insures that all genes have
equal weighting in the machine learning exercises below.

1.3 Machine Learning

There are many different machine learning algorithms available in R. You may
use which ever one you would like, we suggest using k nearest neighbors for this
lab since it is conceptually simple and can be used to demonstrate most of the
general principles. We also recommend that you use the MLInterfaces package.
The reason for this suggestion is that this package provides a uniform set of
calling parameters and a uniform return value which will make it easier to switch
your code from one machine learning algorithm to another. This package does
not implement any of the machine learning algorithms, it just provides a set of
interfaces and in general the name of the function or method remains the same,
but a B is post-pended, so we will use knnB and knn.cvB.

Exercise 7
Use the knn method to estimate the prediction error rate. If you are ambitious
you could try to do this with something more sophisticated than leave-one-out
cross-validation.
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Solutions: We will use the MLearn interface to the machine learning code. We
first need to devise a method for dividing our sample into a training set and a
test set, so that we can see how well the model, developed on the training set,
predicts outcomes on the test set.

> Negs = which(BNsub1$mol.biol == "NEG")

> Bcr = which(BNsub1$mol.biol == "BCR/ABL")

> S1 = sample(Negs, 20, replace = FALSE)

> S2 = sample(Bcr, 20, replace = FALSE)

> TrainInd = c(S1, S2)

Now with that determined, we can make use of the simple interface to the different
machine learning tools, provided by MLearn.

> kans = MLearn(mol.biol ~ ., BNsub1, "knn", TrainInd)

> confuMat(kans)

predicted

given BCR/ABL NEG

BCR/ABL 16 1

NEG 4 18

> dldans = MLearn(mol.biol ~ ., BNsub1, "dlda", TrainInd)

> confuMat(dldans)

predicted

given BCR/ABL NEG

BCR/ABL 16 1

NEG 3 19

> ldaans = MLearn(mol.biol ~ ., BNsub1, "dlda", TrainInd)

> confuMat(ldaans)

predicted

given BCR/ABL NEG

BCR/ABL 16 1

NEG 3 19

Next we demonstrate the use of the xvalML function to perform cross-validation.

> lk1 <- xvalML(mol.biol ~ ., BNsub1, "knn", xvalMethod = "LOO")

> table(lk1, BNsub1$mol.biol)

lk1 BCR/ABL NEG

BCR/ABL 35 2

NEG 2 40
Some example code is given below, but you will need to modify it to answer the

questions that have been posed.

> library("class")

> a1 = knn.cv(t(exprs(BNsub1)), BNsub1$mol.biol)

> ctab1 = table(a1, BNsub1$mol.biol)

> errrate = (ctab1["BCR/ABL", "NEG"] + ctab1["NEG", "BCR/ABL"])/sum(ctab1)
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Exercise 8
Use cross-validation to estimate k, the number of nearest neighbors to use. That
is, for each of a number of values of k, estimate the cross-validation error, and
then select k as that value which yields the smallest error rate.

Solutions: This is quite an interesting problem. Basically, what you need to
do, is to try out the knn algorithm, for a variety of values of k, and see what
value of k gives the lowest error rate.

> lk2 <- xvalML(mol.biol ~ ., data = BNsub1, "knn", xvalMethod = "LOO",

+ k = 2)

> table(lk2, BNsub1$mol.biol)

lk2 BCR/ABL NEG

BCR/ABL 35 1

NEG 2 41

> lk3 <- xvalML(mol.biol ~ ., data = BNsub1, "knn", xvalMethod = "LOO",

+ k = 3)

> table(lk3, BNsub1$mol.biol)

lk3 BCR/ABL NEG

BCR/ABL 33 2

NEG 4 40

> lk5 <- xvalML(mol.biol ~ ., data = BNsub1, "knn", xvalMethod = "LOO",

+ k = 5)

> table(lk5, BNsub1$mol.biol)

lk5 BCR/ABL NEG

BCR/ABL 33 2

NEG 4 40
Again, the code below is intended solely to get you started, it does not represent

a complete solution to the question, you must modify it.

> alist = list()

> for (i in 1:4) alist[[i]] = knn.cv(t(exprs(BNsub1)), BNsub1$mol.biol,

+ k = i)

> sapply(alist, function(x) {

+ ct1 = table(x, BNsub1$mol.biol)

+ (ct1["BCR/ABL", "NEG"] + ct1["NEG", "BCR/ABL"])/sum(ct1)

+ })

[1] 0.05063291 0.06329114 0.07594937 0.06329114

Exercise 9
a What happens when k is even and there is a tie?

b Optional: Suppose that instead of Euclidean distance you wanted to use
some other metric, such as 1-correlation. How might you achieve that?

c How might you define outlier and doubt classes? Are there any outliers, or
hard to classify samples?
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Solutions:

a Ties are broken at random. This suggests that it might not be all that
helpful to select a value of k that is even, as different users would potentially
classify samples differently, given the same data.

b Basically this is quite difficult with the current implementation. You would
essentially need to do the nearest neighbor finding directly off of the
distance matrix, and this will be somewhat slow.

c The knn function has a parameter, prob that if set to TRUE will cause the
proportion of votes for the winning class to be returned. This could be
used. Also, the parameter l can be used, in that case doubt is encoded
as NA. The concept of outlier is more difficult, but could potentially be
handled in a preprocessing step. Any object that is a long way from all
other objects could be identified as an outlier and removed. This does not
help with pairs of outliers, or triples.

1.3.1 MLInterfaces

We now repeat some of the previous calculations using the MLInterfaces
package. Load the library and explore its documentation.

> library("MLInterfaces")

Exercise 10
a Use library(help=MLInterfaces), ?"MLearn-methods" and openVignette()

to explore the package.

b Try to follow the example at the bottom of the MLearn-methods help page.
Depending on the packages installed on your computer, you might have
luck with the command example("MLearn-methods").

Solutions:

a solution goes here

b solution goes here
A key function is MLearn. MLearn is designed for easy use with expression data.

The first argument is the name of variable containing a priori classification infor-
mation, e.g., mol.biol. The second argument is an instance of the ExpressionSet
class, the third argument the name of the machine learning algorithm, and the
fourth argument the individuals to be used for training. So to use the k nearest
neighbors machine learning algorithm using the first 50 samples for training, do
the following:

> knnResult <- MLearn(mol.biol ~ ., BNsub1, "knn", 1:50)

> knnResult

MLOutput instance, method= knn

Call:

MLearn(formula = formula, data = data, method = method, trainInd = trainInd,
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mlSpecials = mlSpecials)

predicted class distribution:

BCR/ABL NEG

14 15

Exercise 11
a Interpret each line of the input to MLearn.

(a) What would you do to change the training set?
(b) To use every second sample as the training set?
(c) To use all but the last sample for training?
(d) To use a training set of 50 individuals, chosen at random from the

samples in BNsub1 (hint: use the sample function).

b Interpret the output of MLearn. In particular, look at the predicted class
distribution and check that the right number of samples are being used for
testing.

Solutions:

a (a) solution goes here
(b) solution goes here
(c) solution goes here

b solution goes here
The confusion matrix compares the known classification of the testing set with

the predicted classification based on the tuned machine learning algorithm.

> confuMat(knnResult)

predicted

given BCR/ABL NEG

BCR/ABL 12 0

NEG 2 15

Exercise 12
a Interpret the confusion matrix. How well do you think the algorithm is

doing? What might you do to improve the classification?

b What other information can you extract from the fitted model?

Solutions:

a solution goes here

b solution goes here

Cross-validation

Cross-validation is often used to assess the prediction error of supervised machine
learning. In order to get an accurate assessment it is important that all steps that
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can affect the outcome are included in the cross-validation process. In particular,
the selection of features to use in the machine learning algorithm must be included
within the cross-validation step. The MLInterfaces package has a method for
performing cross-validation. The method is called xval. Ponder its help page
(?xval) and think about how you might perform cross-validation of BNsub1. From
the xval help page, it looks like we should be able to perform cross validation
with a command like:

> knnXval <- xvalML(mol.biol ~ ., data = BNsub1, "knn", xvalMethod = "LOO")

The first two arguments should be familiar. The third argument, knnB, specifies
that we will use the knn function. The final argument, xvalMethod , indicates
the method that will be used for cross-validation. The cryptic ”LOO” stands for
leave-one-out.

Exercise 13
a Describe in words the operation that xval is performing.

b What is the length of knnXval? Why?

c Interpret the meaning of each element in knnXval.

d What information is provided by the following command? How would you
use this to assess the performance of this machine learning algorithm?

Solutions:

a xval for leave-one-out cross-validation returns a list, with each element in
the list being the result of a single cross validation.

b solution goes here

> table(given = BNsub1$mol.biol, predicted = knnXval)

predicted

given BCR/ABL NEG

BCR/ABL 35 2

NEG 2 40

Now, let’s see what happens when we include feature selection in the cross-
validation algorithm.

> BNx = BNsub

> exprs(BNx) = standardize(exprs(BNx))

> t.fun <- function(data, fac) {

+ (abs(rowttests(data, data[[fac]], tstatOnly = FALSE)$statistic))

+ }

> lk3f <- xvalML(mol.biol ~ ., data = BNx, "knn", xvalMethod = "LOO",

+ fsFun = t.fun, fsNum = 50)

> table(given = BNx$mol.biol, predicted = lk3f$out)

predicted

given BCR/ABL NEG

BCR/ABL 33 4

NEG 4 38
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Exercise 14
a In the example above we used 50 features for each of the cross-validations.

What happens if we use twice as many? What happens if we only use 5?
How would you interpret these results?

b Optional: Hard Repeat the exercise above using 10 fold cross-validation.
To do this you will need to divide the data into 10 groups and use the group
argument to xval.

c Next, use xval with a different classifier, such as support vector machines
(the function is svmB).

Solutions:

a > lk3f1 <- xvalML(mol.biol ~ ., data = BNx, "knn", xvalMethod = "LOO",

+ fsFun = t.fun, fsNum = 100)

> table(given = BNx$mol.biol, predicted = lk3f1$out)

predicted

given BCR/ABL NEG

BCR/ABL 36 1

NEG 6 36

> lk3f2 <- xvalML(mol.biol ~ ., data = BNx, "knn", xvalMethod = "LOO",

+ fsFun = t.fun, fsNum = 5)

> table(given = BNx$mol.biol, predicted = lk3f2$out)

predicted

given BCR/ABL NEG

BCR/ABL 30 7

NEG 10 32

> table(lk3f2$fs.memory)

183 184 196 539 1578 2368 2500 2573

79 79 79 1 1 79 3 74

> varsused = sort(unique(lk3f2$fs.memory))

> heatmap(exprs(BNsub)[varsused, ], ColSide = ifelse(BNx$mol ==

+ "NEG", "skyblue", "salmon"), col = topo.colors(255), keep.dendro = TRUE)

> library("hgu95av2")

> unlist(mget(featureNames(BNsub)[varsused], hgu95av2SYMBOL))

1635_at 1636_g_at 1674_at 32434_at 37015_at 39730_at 40202_at 40504_at

"ABL1" "ABL1" "YES1" "MARCKS" "ALDH1A1" "ABL1" "KLF9" "PON2"

Multi-group machine learning

The part of the exercise described here is optional, but it does raise some inter-
esting issues. We briefly consider the application of supervised machine learning
methods to a mult-class problem. We will return to our original data, and instead
of creating a two class problem, we will create a three class problem.
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Instead of treating this as two separate two class problems make one data
set that has all three phenotypes. Now use the kNN procedure to make class
predictions. Can you estimate the class conditional error rates? Can you control
the procedure so that the class-conditional error rates are treated equally?

1.4 Random Forests

In this part of the laboratory exercise we will use the random forests (??) and the
randomForest package to further explore the data in the golubEsets package.

> library(randomForest)

randomForest 4.5-18

Type rfNews() to see new features/changes/bug fixes.

Basic use of the random forest technology is fairly straightforward. The only
parameter that seems to be very important is mtry. This controls the number of
features that are selected for each split. The default value is the square root of the
number of features but often a smaller value tends to have better performance.

> set.seed(123)

> trainY = BNsub$mol.biol[TrainInd]

> Xm = t(exprs(BNsub)[, TrainInd])

> rf1 <- randomForest(Xm, trainY, ntree = 2000, mtry = 55, importance = TRUE)

> rf1

Call:

randomForest(x = Xm, y = trainY, ntree = 2000, mtry = 55, importance = TRUE)

Type of random forest: classification

Number of trees: 2000

No. of variables tried at each split: 55

OOB estimate of error rate: 12.5%

Confusion matrix:

BCR/ABL NEG class.error

BCR/ABL 17 3 0.15

NEG 2 18 0.10

> rf2 <- randomForest(Xm, trainY, ntree = 2000, mtry = 35, importance = TRUE)

> rf2

Call:

randomForest(x = Xm, y = trainY, ntree = 2000, mtry = 35, importance = TRUE)

Type of random forest: classification

Number of trees: 2000

No. of variables tried at each split: 35

OOB estimate of error rate: 22.5%

Confusion matrix:

BCR/ABL NEG class.error
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BCR/ABL 17 3 0.15

NEG 6 14 0.30

> vcrf1 = MLearn(mol.biol ~ ., data = BNsub, "randomForest", TrainInd,

+ ntree = 2000, mtry = 55, importance = TRUE)

> vcrf1

MLOutput instance, method= randomForest

Call:

MLearn(formula = formula, data = data, method = method, trainInd = trainInd,

mlSpecials = mlSpecials, ntree = 2000, mtry = 55, importance = TRUE)

predicted class distribution:

BCR/ABL NEG

24 15

> vcrf2 = MLearn(mol.biol ~ ., data = BNsub, "randomForest", TrainInd,

+ ntree = 2000, mtry = 35, importance = TRUE)

> vcrf2

MLOutput instance, method= randomForest

Call:

MLearn(formula = formula, data = data, method = method, trainInd = trainInd,

mlSpecials = mlSpecials, ntree = 2000, mtry = 35, importance = TRUE)

predicted class distribution:

BCR/ABL NEG

22 17

Random forests seems to have some difficulties when the sizes of the groups are
not approximately equal. There is a weight argument that can be given to the
random forest function but it appears to have little or no effect. We can use the
prediction function to assess the ability of these two forests to predict the class
for the test set.

> p1 <- predict(rf1, Xm, prox = TRUE)

> table(trainY, p1$pred)

trainY BCR/ABL NEG

BCR/ABL 20 0

NEG 0 20

> p2 <- predict(rf2, Xm, prox = TRUE)

> table(trainY, p2$pred)

trainY BCR/ABL NEG

BCR/ABL 20 0

NEG 0 20

> confuMat(vcrf1)

predicted

given BCR/ABL NEG

BCR/ABL 15 2

NEG 9 13

> confuMat(vcrf2)
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predicted

given BCR/ABL NEG

BCR/ABL 14 3

NEG 8 14

1.4.1 Feature Selection

One of the nice things about the random forest technology is that it provides some
indication of which variables were most important in the classification process.
These features can be compared to those selected by t-test or other means. The
current version of randomForest produces four different variable importance
statistics. Breiman has recently recommended that only two of those be consid-
ered (the other two are too unstable). The ones to concentrate on are measures
two and four. In the next code chunk a small function is defined that can be used
to extract the most important variables (those with the highest scores).

> varImpPlot(rf1, n.var = 15)
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rf1

> varImpPlot(rf2, n.var = 15)
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> impvars <- function(x, which = 2, k = 10) {

+ v1 <- order(x$importance[, which])

+ l1 <- length(v1)

+ x$importance[v1[(l1 - k + 1):l1], which]

+ }

> iv.rf1 <- impvars(rf1, k = 25)

> library("hgu95av2")

> library(annotate)

> isyms <- getSYMBOL(names(iv.rf1), data = "hgu95av2")

> par(las = 2)

> plot(getVarImp(vcrf1), resolveenv = hgu95av2SYMBOL)
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1.4.2 More exercises

Again a number of interesting exercises present themselves.

Exercise 15
a Reverse the role of the test set and the training set and see how the

estimated prediction errors change.

b Use the whole data set to build a random forest. How well does it do?

Solutions:

a solution goes here

b solution goes here

c solution goes here

The version number of R and the packages and their versions that were
used to generate this document are listed below

R version 2.5.0 RC (2007-04-22 r41275)
i386-apple-darwin8.9.1

locale:
C
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attached base packages:
[1] "splines" "tools" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

other attached packages:
annotate randomForest sma hgu95av2 MLInterfaces rda
"1.14.1" "4.5-18" "0.5.15" "1.16.0" "1.10.2" "1.0"

rpart class genefilter survival bioDist RColorBrewer
"3.1-35" "7.2-34" "1.15.6" "2.31" "1.8.0" "0.2-3"

ALL Biobase weaver codetools digest
"1.4.2" "1.14.0" "1.2.0" "0.1-1" "0.3.0"
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