# Bach mouse mammary gland (10X Genomics) ## Introduction This performs an analysis of the @bach2017differentiation 10X Genomics dataset, from which we will consider a single sample of epithelial cells from the mouse mammary gland during gestation. ## Data loading ```r library(scRNAseq) sce.mam <- BachMammaryData(samples="G_1") ``` ```r library(scater) rownames(sce.mam) <- uniquifyFeatureNames( rowData(sce.mam)$Ensembl, rowData(sce.mam)$Symbol) library(AnnotationHub) ens.mm.v97 <- AnnotationHub()[["AH73905"]] rowData(sce.mam)$SEQNAME <- mapIds(ens.mm.v97, keys=rowData(sce.mam)$Ensembl, keytype="GENEID", column="SEQNAME") ``` ## Quality control ```r unfiltered <- sce.mam ``` ```r is.mito <- rowData(sce.mam)$SEQNAME == "MT" stats <- perCellQCMetrics(sce.mam, subsets=list(Mito=which(is.mito))) qc <- quickPerCellQC(stats, percent_subsets="subsets_Mito_percent") sce.mam <- sce.mam[,!qc$discard] ``` ```r colData(unfiltered) <- cbind(colData(unfiltered), stats) unfiltered$discard <- qc$discard gridExtra::grid.arrange( plotColData(unfiltered, y="sum", colour_by="discard") + scale_y_log10() + ggtitle("Total count"), plotColData(unfiltered, y="detected", colour_by="discard") + scale_y_log10() + ggtitle("Detected features"), plotColData(unfiltered, y="subsets_Mito_percent", colour_by="discard") + ggtitle("Mito percent"), ncol=2 ) ```
Distribution of each QC metric across cells in the Bach mammary gland dataset. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-bach-qc-dist)Distribution of each QC metric across cells in the Bach mammary gland dataset. Each point represents a cell and is colored according to whether that cell was discarded.

```r plotColData(unfiltered, x="sum", y="subsets_Mito_percent", colour_by="discard") + scale_x_log10() ```
Percentage of mitochondrial reads in each cell in the Bach mammary gland dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

(\#fig:unref-bach-qc-comp)Percentage of mitochondrial reads in each cell in the Bach mammary gland dataset compared to its total count. Each point represents a cell and is colored according to whether that cell was discarded.

```r colSums(as.matrix(qc)) ``` ``` ## low_lib_size low_n_features high_subsets_Mito_percent ## 0 0 143 ## discard ## 143 ``` ## Normalization ```r library(scran) set.seed(101000110) clusters <- quickCluster(sce.mam) sce.mam <- computeSumFactors(sce.mam, clusters=clusters) sce.mam <- logNormCounts(sce.mam) ``` ```r summary(sizeFactors(sce.mam)) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.271 0.522 0.758 1.000 1.204 10.958 ``` ```r plot(librarySizeFactors(sce.mam), sizeFactors(sce.mam), pch=16, xlab="Library size factors", ylab="Deconvolution factors", log="xy") ```
Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

(\#fig:unref-bach-norm)Relationship between the library size factors and the deconvolution size factors in the Bach mammary gland dataset.

## Variance modelling We use a Poisson-based technical trend to capture more genuine biological variation in the biological component. ```r set.seed(00010101) dec.mam <- modelGeneVarByPoisson(sce.mam) top.mam <- getTopHVGs(dec.mam, prop=0.1) ``` ```r plot(dec.mam$mean, dec.mam$total, pch=16, cex=0.5, xlab="Mean of log-expression", ylab="Variance of log-expression") curfit <- metadata(dec.mam) curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2) ```
Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

(\#fig:unref-bach-var)Per-gene variance as a function of the mean for the log-expression values in the Bach mammary gland dataset. Each point represents a gene (black) with the mean-variance trend (blue) fitted to simulated Poisson counts.

## Dimensionality reduction ```r library(BiocSingular) set.seed(101010011) sce.mam <- denoisePCA(sce.mam, technical=dec.mam, subset.row=top.mam) sce.mam <- runTSNE(sce.mam, dimred="PCA") ``` ```r ncol(reducedDim(sce.mam, "PCA")) ``` ``` ## [1] 15 ``` ## Clustering We use a higher `k` to obtain coarser clusters (for use in `doubletCluster()` later). ```r snn.gr <- buildSNNGraph(sce.mam, use.dimred="PCA", k=25) colLabels(sce.mam) <- factor(igraph::cluster_walktrap(snn.gr)$membership) ``` ```r table(colLabels(sce.mam)) ``` ``` ## ## 1 2 3 4 5 6 7 8 9 10 ## 550 799 716 452 24 84 52 39 32 24 ``` ```r plotTSNE(sce.mam, colour_by="label") ```
Obligatory $t$-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

(\#fig:unref-bach-tsne)Obligatory $t$-SNE plot of the Bach mammary gland dataset, where each point represents a cell and is colored according to the assigned cluster.

## Session Info {-}
``` R version 4.0.4 (2021-02-15) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 20.04.2 LTS Matrix products: default BLAS: /home/biocbuild/bbs-3.12-books/R/lib/libRblas.so LAPACK: /home/biocbuild/bbs-3.12-books/R/lib/libRlapack.so locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=C [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base other attached packages: [1] BiocSingular_1.6.0 scran_1.18.5 [3] AnnotationHub_2.22.0 BiocFileCache_1.14.0 [5] dbplyr_2.1.0 scater_1.18.6 [7] ggplot2_3.3.3 ensembldb_2.14.0 [9] AnnotationFilter_1.14.0 GenomicFeatures_1.42.2 [11] AnnotationDbi_1.52.0 scRNAseq_2.4.0 [13] SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0 [15] Biobase_2.50.0 GenomicRanges_1.42.0 [17] GenomeInfoDb_1.26.4 IRanges_2.24.1 [19] S4Vectors_0.28.1 BiocGenerics_0.36.0 [21] MatrixGenerics_1.2.1 matrixStats_0.58.0 [23] BiocStyle_2.18.1 rebook_1.0.0 loaded via a namespace (and not attached): [1] igraph_1.2.6 lazyeval_0.2.2 [3] BiocParallel_1.24.1 digest_0.6.27 [5] htmltools_0.5.1.1 viridis_0.5.1 [7] fansi_0.4.2 magrittr_2.0.1 [9] memoise_2.0.0 limma_3.46.0 [11] Biostrings_2.58.0 askpass_1.1 [13] prettyunits_1.1.1 colorspace_2.0-0 [15] blob_1.2.1 rappdirs_0.3.3 [17] xfun_0.22 dplyr_1.0.5 [19] callr_3.5.1 crayon_1.4.1 [21] RCurl_1.98-1.3 jsonlite_1.7.2 [23] graph_1.68.0 glue_1.4.2 [25] gtable_0.3.0 zlibbioc_1.36.0 [27] XVector_0.30.0 DelayedArray_0.16.2 [29] scales_1.1.1 edgeR_3.32.1 [31] DBI_1.1.1 Rcpp_1.0.6 [33] viridisLite_0.3.0 xtable_1.8-4 [35] progress_1.2.2 dqrng_0.2.1 [37] bit_4.0.4 rsvd_1.0.3 [39] httr_1.4.2 ellipsis_0.3.1 [41] pkgconfig_2.0.3 XML_3.99-0.6 [43] farver_2.1.0 scuttle_1.0.4 [45] CodeDepends_0.6.5 sass_0.3.1 [47] locfit_1.5-9.4 utf8_1.2.1 [49] tidyselect_1.1.0 labeling_0.4.2 [51] rlang_0.4.10 later_1.1.0.1 [53] munsell_0.5.0 BiocVersion_3.12.0 [55] tools_4.0.4 cachem_1.0.4 [57] generics_0.1.0 RSQLite_2.2.4 [59] ExperimentHub_1.16.0 evaluate_0.14 [61] stringr_1.4.0 fastmap_1.1.0 [63] yaml_2.2.1 processx_3.4.5 [65] knitr_1.31 bit64_4.0.5 [67] purrr_0.3.4 sparseMatrixStats_1.2.1 [69] mime_0.10 xml2_1.3.2 [71] biomaRt_2.46.3 compiler_4.0.4 [73] beeswarm_0.3.1 curl_4.3 [75] interactiveDisplayBase_1.28.0 statmod_1.4.35 [77] tibble_3.1.0 bslib_0.2.4 [79] stringi_1.5.3 highr_0.8 [81] ps_1.6.0 lattice_0.20-41 [83] bluster_1.0.0 ProtGenerics_1.22.0 [85] Matrix_1.3-2 vctrs_0.3.6 [87] pillar_1.5.1 lifecycle_1.0.0 [89] BiocManager_1.30.10 jquerylib_0.1.3 [91] BiocNeighbors_1.8.2 cowplot_1.1.1 [93] bitops_1.0-6 irlba_2.3.3 [95] httpuv_1.5.5 rtracklayer_1.50.0 [97] R6_2.5.0 bookdown_0.21 [99] promises_1.2.0.1 gridExtra_2.3 [101] vipor_0.4.5 codetools_0.2-18 [103] assertthat_0.2.1 openssl_1.4.3 [105] withr_2.4.1 GenomicAlignments_1.26.0 [107] Rsamtools_2.6.0 GenomeInfoDbData_1.2.4 [109] hms_1.0.0 grid_4.0.4 [111] beachmat_2.6.4 rmarkdown_2.7 [113] DelayedMatrixStats_1.12.3 Rtsne_0.15 [115] shiny_1.6.0 ggbeeswarm_0.6.0 ```